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Abstract

Background: A TRPN channel protein is essential for sensory transduction in insect mechanosensory neurons and in
vertebrate hair cells. The Drosophila TRPN homolog, NOMPC, is required to generate mechanoreceptor potentials and
currents in tactile bristles. NOMPC is also required, together with a TRPV channel, for transduction by chordotonal neurons
of the fly’s antennal ear, but the TRPN or TRPV channels have distinct roles in transduction and in regulating active antennal
mechanics. The evidence suggests that NOMPC is a primary mechanotransducer channel, but its subcellular location—key
for understanding its exact role in transduction—has not yet been established.

Methodology/Principal Findings: Here, by immunostaining, we locate NOMPC at the tips of mechanosensory cilia in both
external and chordotonal sensory neurons, as predicted for a mechanotransducer channel. In chordotonal neurons, the
TRPN and TRPV channels are respectively segregated into distal and proximal ciliary zones. This zonal separation is
demarcated by and requires the ciliary dilation, an intraciliary assembly of intraflagellar transport (IFT) proteins.

Conclusions: Our results provide a strong evidence for NOMPC as a primary transduction channel in Drosophila
mechansensory organs. The data also reveals a structural basis for the model of auditory chordotonal transduction in which
the TRPN and TRPV channels play sequential roles in generating and amplifying the receptor potential, but have opposing
roles in regulating active ciliary motility.
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Introduction

Mechanically-activated ion channels are presumed to generate

fast receptor potentials in the sensory cells that transduce touch

and sound, but establishing the molecular identity of these

channels has been problematic. Even when strong transducer

channel candidates have been identified, as in nematode touch

cells and insect bristles, the mechanism by which these channels

open is still unclear. However, mechanoreceptor organs are

typically highly structured, with extracellular and cytoskeletal

structures adapted to transmit mechanical stimuli to the sensory

endings where transduction occurs. Determining the location of

candidate transducer channels within or relative to these structures

can help to confirm the function of the channels and to understand

how they are activated.

The TRPN proteins are strong candidates for mechanotrans-

ducer channel subunits in both vertebrates and invertebrates.

TRPN homologs are present in insects, nematodes, fish and

amphibians [1,2,3,4], and are required for tactile and proprio-

ceptive behavior in insects and nematodes [1,5], and for

transduction of vibratory stimuli by zebrafish hair cells [4]. By

sequence analysis, they form a distinct subgroup within the TRP

channel superfamily, and are also distinguished by a highly

conserved, N-terminal, cytoplasmic array of 28–29 ankyrin

repeats.

A TRPN protein was first identified in Drosophila as the site of no

mechanoreceptor potential C (nompC) mutations [1], which affect ciliated

mechanoreceptors. These include external sensory organs such as

bristles and campaniform sensilla, and internal chordotonal

organs. An individual sensillum or a chordotonal sensory unit

comprises several specialized support cells and one to three sensory

neurons. Each neuron has a single sensory process or inner

segment, tipped by a ciliary outer segment where the initial

transduction event is thought to occur [6]. nompC null mutants lack

adapting mechanoreceptor potentials and currents in tactile

bristles [1,7], and a missense allele, nompC4, increases the

adaptation kinetics of the receptor current [1], suggesting that

the NOMPC protein is an integral part of the transducer

machinery.

nompC mutants also show severely reduced sound-evoked

potentials in Johnston’s organ (JO), a large antennal chordo-

tonal organ which transduces vibrations from near-field sound

sources [8]. Antennal sound-evoked potentials also require

Nanchung (NAN) and Inactive (IAV), subunits of a TRPV
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channel located in the chordotonal cilia [9,10]. A non-linear

compliance and active oscillation of the antennae, which appear

to originate in JO, amplify its response to weak stimuli [11,12].

The oscillations are reduced in nompC mutants but are greatly

increased in iav and nan mutants, indicating that the NOMPC

and TRPV channels normally have opposing roles in regulating

it [13].

Thus the genetic and physiological evidence suggests that

NOMPC does form a primary mechanotransducer channel, but

without a molecular marker for the protein, its exact location and

role in transduction have been uncertain. Here we report that an

antiserum to a NOMPC fragment labels ciliary foci or zones in

both bristles and chordotonal organs, in wild type but not in nompC

null mutants. In chordotonal organs, NOMPC and IAV proteins

show a striking segregation into distal and proximal ciliary zones

respectively, revealing a structural basis for the distinct roles of the

TRPN and TRPV channels in sensory transduction and

amplification.

Results

NOMPC is located at the distal tips of sensory cilia in
tactile bristles

A cytoplasmic, N-terminal segment (amino acids 14–117)

preceding the ankyrin repeat domain of NOMPC was expressed

as a GST fusion protein and used to generate two rabbit

antisera. Several alternately spliced isoforms of the transcript

are predicted and observed in cDNA clones [ref. 1; Flybase

(http://www.flybase.org)], but all isoforms share this N-terminal

coding sequence and should be detected by these antisera.

When used to immunostain wild type pupal cuticle, both

antisera labelled a dot at the base of each mechanosensory

bristle. Figure 1 shows the confocal images obtained using one

of the antisera. No similar signal was detected in nompC-null

mutants (Figure 2B) indicating that this focal signal represents a

nompC gene product. In homozygous for nompC4, a missense

mutation which retains the bristle receptor current but changes

its adaptation kinetics, the focal signal is present but reduced in

intensity, and some punctuate labeling is seen in the neuronal

cell body (Figure 2C).

To determine the precise subcellular location of NOMPC, we

examined preparations labeled for two previously described

extracellular sensory proteins, the agrin/perlecan-related protein

Eyes Shut (EYS) or Spacemaker (SPAM) [14,15,16] and the zona

pellucida (ZP) domain protein NOMPA [17]. The ciliary outer

segments of bristle sensory processes are divided into two

structurally distinct sections: a proximal connecting cilium with a

short axoneme, and a longer, distal section filled with an array of

densely packed microtubules, the tubular body; EYS/SPAM fills

the extracellular space surrounding the connecting cilium [17].

Double-labeling with anti-NOMPC and mAb 21A6, which detects

EYS, showed the NOMPC focus to be separate from and distal to

the EYS signal, placing it in the tubular body section, not in the

connecting cilium (Figure 1).

The distal part of the cilium is enclosed by a thin sheath of

electron-dense extracellular matrix, which includes NOMPA

[6,17]. Flies expressing a functional, GFP-tagged NOMPA protein

from a native transgene construct show an extended patch of GFP

labeling at each bristle, outlining the sheath and the cilium. The

anti-NOMPC signal was concentrated at the end of this NOMPA-

GFP label closer to the bristle base, indicating that NOMPC is

localized at the apical tip of the cilium (see the schematic drawing

in Figure 1C).

Segregation of NOMPC and TRPV channels in
chordotonal cilia

Chordotonal organs are internal stretch and vibration receptors

composed of sensory units called scolopidia. Each scolopidium

includes one to three sensory neurons whose ciliary outer segments

are enclosed in a fluid-filled capsule, the scolopale. Chordotonal

cilia have an extended axonemal structure, with a cylinder of nine

microtubule doublets extending almost their full length. Midway

along each cilium is a ciliary dilation (CD), where the membrane

and the axonemal microtubules bulge outward to enclose an

electron-dense inclusion. The tips of the cilia in each scolopidium

are attached to an extracellular cap, which like the sheath of a

bristle cilium includes NOMPA. The cap, however, contacts only

the distal third of the cilium. The EYS protein accumulates in the

scolopale space in aggregations around the middle and the base of

the cilium [14,16].

We examined NOMPC localization in JO, the antennal

auditory organ which comprises hundreds of scolopidia. NOMPC

immunolabeling was concentrated in the distal part of the cilia,

specifically in the zone enclosed by the NOMPA-labelled cap

(Figure 3A). No similar signals were detected in nompC-null

mutants, confirming again the specificity of the antibody

(Figure 4B). Interestingly, nompC4 mutants also showed no

detectable anti-NOMPC signal in chordotonal cilia, although

immunolabeling was visible in the region of the neuronal cell

bodies (Figure 4C). This contrasts with the retention of the mutant

protein in bristle cilia, but is consistent with the effects of nompC

null and nompC4 mutations on chordotonal transduction: both

Figure 1. NOMPC localizes in the distal tip of sensory cilia in
tactile bristles. A–B: Mechanosensory bristles on the dorsal abdomen,
immunostained with anti-NOMPC antiserum (red). The monoclonal
antibody 21A6, which detects the extracellular protein EYS, marks the
proximal end of the sensory cilia (blue, arrows). Dendritic sheaths were
labeled with GFP::NOMPA (green in A), and the sensory neurons were
visualized by expressing membrane-associated CD8::GFP (green in B).
The dot-shaped NOMPC signals (arrowheads) are seen only at the distal
tips of the sensory cilia, and are clearly separated from the EYS signals
(arrows). The enlarged images of the area marked by a rectangle in A
are shown in A’. C: Schematic drawing of an abdominal tactile bristle.
Green represents the dendritic cap, cyan the inner dendritic segment.
Red and blue represent the area labeled by anti-NOMPC and mAb 21A6
respectively. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0011012.g001
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greatly reduce but do not eliminate sound-evoked antennal

potentials (data not shown). We also examined the antennae of a

new hypomorphic mutant, nompCf00642, in which the amount of

correctly spliced nompC mRNA is reduced by over 90% [18]. In

this mutant, as consistent with the mRNA level, NOMPC

immunoreactivity was greatly reduced, although it was still

concentrated in the distal zone of sensory cilia (Figure 4D),

confirming further the specificity of our antibody.

We examined the location of NOMPC relative to REMPA, the

Drosophila homolog of the intraflagellar transport protein IFT140,

which is localized at the CD and is required for the normal

organization of the cilium and the CD [19]. In flies expressing a

functional REMPA-YFP fusion [19], the CD is the proximal limit

of NOMPC labeling (Figure 3B). The TRPV channel that includes

the Nanchung and Inactive subunits was previously shown to be

localized proximal to the CD [9], suggesting that it and NOMPC

have a complementary distribution. Indeed, double-labeling of

antennae with anti-NOMPC and a functional GFP-tagged IAV,

clearly shows that the two channel proteins are segregated into

distinct ciliary regions: NOMPC in the distal part and IAV in the

proximal part (Figure 3C). A similar segregation is also shown by

embryonic chordotonal neurons (Figure S1).

In beethoven (btv) mutant flies, which lack the IFT-associated

dynein heavy chain, the CD is disrupted [8], and the TRPV

channel is mislocalized, with some of the TRPV channel found in

the distal zone [19]. The distribution of NOMPC is also affected:

NOMPC is delocalized and present in the proximal zone from

which it is normally excluded (Figure 5). Thus, IFT dynein activity

and/or an intact ciliary dilation are required to maintain the

segregation of the TRPN and TRPV channels.

NOMPC is expressed by almost all chordotonal sensory
units in JO

It has recently been reported that JO comprises several different

subsets of chordotonal neurons which project their axons to

distinct zones of the brain’s antennal mechanosensory and motor

centre (AMMC) [20,21]. Calcium imaging showed that different

sensory stimuli are transduced by different subsets of JO neurons,

and each sensory information travels in parallel to separate zones

in the AMMC. The subgroups AB neurons, which are rapidly

adapting and vibration sensitive, are activated by sound. In

contrast, the slowly adapting, deflection-sensitive neurons (sub-

groups CE neurons) are responsible for gravity and wind sensing

[20,21]. Analysis of GAL4 expression under the control of nompC

promoter suggested that nompC seems to be expressed only by the

sound-sensitive neurons, indicating that gravity (or wind) sensing is

independent of NOMPC [20]. In consistent with this finding,

nompCf00642 mutant showed normal behavioral response to gravity,

whereas the sound-evoked antennal potentials are reduced [18].

To our surprise, however, NOMPC immunoreactivities were not

restricted in the subgroups AB neurons, but detected in almost all

chordotonal sensory units (Figure 6), indicating that the nompC-

GAL4 driver does not represent the whole repertoire of nompC-

Figure 2. NOMPC localization in abdominal bristles from wild
type or nompC mutants. Abdominal cuticles from wild type (A) or
nompC mutants (B–C) pharate adults were doubly stained with anti-
NOMPC (magenta) and anti-EYS (mAb 21A6, green) antibodies. Focal
anti-NOMPC signals at bristle bases (arrowheads in A) were seen in wild
type, but not in nompC null (B). In nompC4 (C), reduced NOMPC foci are
present in the bristle bases (arrow heads in C), distal to the EYS foci, as
in wild type; but a significant amount of signal is also seen in the cell
body region (outlined by dotted lines in C). Scattered non-specific
signals are seen in both wild type and mutant cuticles. The arrows
indicate anti-EYS staining at the basal end of the sensory cilia. Note: the
gain of magenta channel in B and C is much higher than that in A.
Scale bars represent 10 mm.
doi:10.1371/journal.pone.0011012.g002

Figure 3. Localization of NOMPC and segregation from TRPV
channels in chordotonal cilia. Whole-mount staining of antennal
chordotonal organs from late pupae, labeled with anti-NOMPC and
counterstained either with mAb 21A6 (A–B), which labels the scolopale
space, or with 22C10 (C), which labels the neuronal cell bodies and
inner dendritic segments, but not cilia. The different labelled structures
are shown in a schematic (D). NOMPC labeling coincides with the
dendritic caps, which are labeled with expressed GFP-NOMPA (green in
A). NOMPC is restricted distal to the ciliary dilation, labeled with IFT140/
REMPA-YFP (green in B). A ciliary TRPV channel, labeled with expressed
IAV-GFP (green in C), is restricted to a zone proximal to the NOMPC
label. cap: dendritic cap; CD: ciliary dilation; DZ: distal ciliary zone; PZ:
proximal ciliary zone. Scale bars represent 5 mm.
doi:10.1371/journal.pone.0011012.g003
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expressing cells. This also suggests that NOMPC may have a role

in both sound- and gravity-sensitive neurons.

Discussion

The focal and zonal signals labeled by our antiserum represent

endogenous NOMPC gene products, as evidenced by their

absence from nompC null mutants and reduction in nompCf00642

mutant, and by the mislocalized label in the nompC4 missense

mutant. They may represent any or all of the predicted alternate

spliceforms, all of which include the peptide sequence used as an

antigen. The data support a role for NOMPC as a primary

transducer channel, because it is located at sites where mechanical

signals impinge on the sensory cilia in both external and

chordotonal organs. In both receptor types, this is at a site where

the ciliary membrane is contacted by the extracellular matrix of

the dendritic cap or sheath. This could mean that matrix elements

are direct ligands for the TRPN channel. Indeed, nompA mutations

detach the cilium from the matrix and eliminate transduction [17].

This is not seen in nompC null mutants [1], so the channel cannot

be the only connection between the cilium and cap. This is also

consistent with the limited extracellular exposure of the NOMPC

channel’s predicted topology. However, no direct interaction has

been demonstrated between any identified mechanosensory

channel and an extracellular protein or matrix; it is also possible

that the sensory transducers are basically stretch-activated

channels and that the specialized extracellular and cytoskeletal

structures are required to activate the channel indirectly by locally

increasing membrane tension.

From a detailed analysis of antennal mechanics, sequential roles

for TRPN and TRPV in fly auditory transduction have been

proposed [13]. In this model, TRPN is the primary transduction

channel that triggers the mechanical amplification of the antennal

vibrations, while TRPV functions as a secondary channel required

for the generation of action potentials but also downregulates the

antennal vibrations [for review see ref. 6]. A puzzle is how two

TRP channels, both probably cation-selective, have distinct effects

in the same cell. Their spatial separation provides one possible

explanation: the CD may divide the sensory cilium into two

functionally distinct zones in chordotonal neurons. In support of

this idea, the two zones also differ in their axoneme structures:

axonemal dynein-like arms are found only in the proximal zone

[19,22]. It seems likely that the non-motile distal segment is the

place where the initial mechanotransduction current occurs,

whereas the potentially motile proximal segment amplifies the

sound stimuli by actively vibrating the cilium in response to the

initial transduction current. TRPV in proximal segment may act

as a secondary channel that generates depolarizing current needed

Figure 4. Altered localization or expression of NOMPC in JO
from nompC mutants. Pupal antennae in wild type (A) or nompC
mutants (B–D) were stained with anti-NOMPC (magenta) and anti-EYS
(green) antibodies. In wild type (A and A’), NOMPC is detected in the
chordotonal cilia of JO in the 2nd antennal segment (a2). No NOMPC
signals are seen in any antennal region of the nompC null mutant (B
and B’). Dotted rectangles in A and B indicate the enlarged areas
shown in A’ and B’, respectively. In nompC4 mutant (C), the ciliary
NOMPC pattern is eliminated; NOMPC signals are detected only in the
region of the cell bodies. In nompCf00642 mutant (D), NOMPC is still
localized at the distal cilia (arrows in D), but greatly reduced. Note: the
gain of magenta channel in D is much higher than in other panels. EYS
surrounds the proximal zone of the cilia. a2: 2nd antennal segment; a3:
3rd antennal segment. Scale bars represent 5 mm.
doi:10.1371/journal.pone.0011012.g004

Figure 5. NOMPC is mislocalized in btv mutant cilia. Antennal
chordotonal neurons of wild type (A) or btv mutant (B) were stained
with anti-NOMPC antiserum (red). Cilia were labeled with a functional
GFP-tagged NOMPB/IFT88 [24] (green). The neuronal cell bodies and
inner segments were counter-stained with mAb 22C10 (blue). NOMPB/
IFT88 is normally detected only in the proximal segment, whereas
NOMPC is only in the distal segment of the sensory cilia (A). In btv,
however, NOMPB/IFT88 and NOMPC distributions overlap along the
whole cilia, especially accumulating at the base of cilia (arrow heads)
(B). NOMPC signal is also seen in cell body regions (yellow bracket in B).
Note: the ciliary accumulation of NOMPB/IFT88 is much higher in btv
mutant than wild type. Scale bars represent 5 mm.
doi:10.1371/journal.pone.0011012.g005
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to trigger the action potentials. Opening of TRPV may also

negatively regulate the active vibration of the proximal segment.

In this study, the antibody staining showed that NOMPC is

expressed in almost all sensory units of JO, although it is unclear

whether every neuron in each sensory unit expresses NOMPC.

This result contrasts with the previous report that argued the

subgroup-specific expression of NOMPC on the basis of the

expression pattern of GAL4 under the control of nompC promoter

[20]. But the promoter-fusion construct does not necessarily

represent the whole expression pattern of the endogenous gene.

Indeed, the nompC-GAL4 does not express GAL4 in sensory

neurons of abdominal bristles (Figure S2) in which NOMPC is

required for mechanosensory transduction [1,7]. Thus it is

reasonable to conclude that NOMPC is expressed in all sensory

units of JO, and participated in sensing not only sound but also

gravity and wind. Further functional analyses are required to

confirm this.

In some vertebrates, TRPN channels also have an essential role

in sensory hair cell function [3,4]. Most hair cells include both a

true cilium, the kinocilium, and a bundle of actin-based sterecilia

that are the probable site of mechanosensory transduction. In

Xenopus, TRPN1 localizes only to kinocilium, particularly to its

bulbous tip [3]. This suggests that the essential role for frog

TRPN1 is in the kinocilium instead of main transduction channel.

However, the precise role of TRPN1 in the frog kinocilium is

unclear. In zebrafish, TRPN1 is also required for hair cell function

[4]; but its precise role and subcellular localization in hair cells is

not determined yet. It is of interest to note that some fish kinocilia

can beat spontaneously or in response to tip stimulation [23]. It

will be interesting to examine whether the ciliary motility in

vertebrate hair cell transduction requires TRPN1.

Materials and Methods

Flies
Transgenic lines expressing NOMPA::GFP and IAV::GFP were

described previously [9,17]. Flies expressing REMPA::YFP and btv

mutant flies expressing NOMPB::GFP (btv5P1/Cy GFP; GFP-

NOMPB) were obtained from M. Kernan (Stony Brook University,

NY, USA). nompC-null flies were generated by selecting nompC1/

nompC2 transheterozygotes from the cross: nompC1/Cy 6 nompC2/

Cy. M. Kernan also provided the nompC mutant lines including

nompC1, nompC2 and nompC4. The missense point mutation in

nompC4 was confirmed by sequencing. The nompCf00642 flies were

provided by M. Welsh (University of Iowa, IA, USA). The subset-

specific JO GAL4 lines described in the previous paper [20] were

obtained from Bloomington (Bloomington, IN, USA) or DGRC

(Kyoto, Japan) stock centers.

Antibodies
A cDNA fragment encoding the N-terminal region of Drosophila

NOMPC (amino acids 14–117) was amplified by PCR and cloned

into pGEX4T3 vector to produce GST-fusion protein. Cloning,

expression and purification of the GST-fusion protein were

according to the GST Gene Fusion System Handbook (GE

healthcare, Buckinghamshire, UK). The purified fusion protein

was injected into two rabbits to produce anti-NOMPC antisera.

One of the antisera, after affinity purification, was used in this

study. For immunostaining, tissue samples were stained with the

purified anti-NOMPC antiserum at 1:50 , 1:100 dilution. The

monoclonal antibodies used in this study (21A6 and 22C10) were

purchased from the Developmental Studies Hybridoma Bank

(DSHB, http://dshb.biology.uiowa.edu/), and used at 1:50 ,
1:100 dilution.

Immunostaining and confocal microscopy
Embryos, pupal antennae and pharate adult abdominal cuticles

were prepared for whole mount staining as described previously

[17]. This included fixation in 4% formaldehyde in PBS (10 mM

NaPO4 (pH 7.2), 150 mM NaCl) for 15 min, three 10-minutes

washes in PBT (PBS + 0.1% Triton X-100), blocking for 1 hr in

2% normal goat serum + 2% BSA in PBT, and incubation with

primary antibodies overnight at 4uC in the blocking solution.

Then, after three 10-minute washes in PBT, samples were

incubated with secondary antibodies for 2 hrs at room tempera-

ture, washed three times in PBT for 10 minutes each, and

mounted in 80% glycerol. Samples were imaged with a laser

scanning confocal microscope (Carl Zeiss, LSM510). The

following secondary antibodies were obtained from Invitrogen

(Carlsbad, CA, USA) and used at the dilutions indicated: Alexa-

633 conjugated goat anti-mouse (1:2,000), Alexa-543 conjugated

goat anti-rabbit (1:500).

Supporting Information

Figure S1 NOMPC localization in developing chordoto-
nal organs. A: A pentascolopidial chordotonal organ in a stage

14 embryo. NOMPC immunoreactivity (magenta) is detected both

in cell bodies and in sensory cilia at this stage. B: At late

embryonic stage (stage 17), NOMPC signals are enriched in the

distal zones of sensory cilia, but only faint signals are seen in cell

Figure 6. NOMPC is expressed by almost all Chordotonal
organs of JO. Confocal projection images of antennal chordotonal
organs from late pupae expressing CD8::GFP driven by JO subgroup-
specific GAL4 drivers. In JO-all flies in which almost all antennal
chordotonal neurons express GAL4-driven GFP, almost every GFP-
expressing neuron has NOMPC signal (magenta) at its distal cilium (A).
In flies expressing GAL4-driven GFP only in JO subgroups AB (B) or CE
(C) neurons, however, NOMPC signals are not only restricted in GFP-
expressing cilia but also detected outside of GFP-expressing neurons
(dotted ovals in B and C). Genotypes: UAS-CD8::GFP/+; f-GAL4/+ (A),
UAS-CD8::GFP/+; JO15/+ (B), UAS-CD8::GFP/+; NP6250/+ (C). Scale bars
represent 10 mm.
doi:10.1371/journal.pone.0011012.g006
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body. Sensory neurons were also labeled with mAb 22C10 (green),

which stains neuronal cell bodies and inner dendritic segments,

but not cilia. C: Interpretive schematic drawing of a larval

chordotonal organ, showing NOMPC (magenta) in the distal zone

of the sensory cilium, but not in the proximal zone. cap: dendritic

cap; CD: ciliary dilation; DZ: distal ciliary zone; PZ: proximal

ciliary zone; SC: sensory cilium. Scale bars represent 10 mm.

Found at: doi:10.1371/journal.pone.0011012.s001 (0.30 MB JPG)

Figure S2 The nompC-GAL4-driven GFP is not ex-
pressed in the sensory neurons of tactile bristles. A:
Adult abdominal bristles expressing CD8::GFP under the control

of elav-GAL4, which expresses GAL4 in every neuron. The GFP

signals (Green) are detected in all the sensory neurons (arrow

heads) that innervate the bristles (arrows). In each bristle, only a

single sensory neuron is associated with the base. B: Adult

abdominal bristles expressing CD8::GFP under the control of

nompC-GAL4. No GFP-expressing neurons are seen in the bristles

(arrows). The GFP signals are detected only in some non-neuronal

cells (asterisks). Scale bars represent 10 mm.

Found at: doi:10.1371/journal.pone.0011012.s002 (0.25 MB JPG)
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11. Göpfert MC, Humphris AD, Albert JT, Robert D, Hendrich O (2005) Power
gain exhibited by motile mechanosensory neurons in Drosophila ears. Proceedings

of the National Academy of Sciences of the United States of America 102:
325–330.
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