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Abstract

There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent
transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains
challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific
information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and
identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used
published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery
and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection
and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter
infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than
LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of
50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young
birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas,
because the presence of immunologically naı̈ve young birds is predicted to cause higher HPAI prevalence and bird losses
during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related
processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop
disease control strategies to reduce potential transmission to domestic birds and/or humans.
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Introduction

Avian influenza (AI) became a significant human and domestic

animal health issue in 1996 when highly pathogenic (HP) H5N1

virus was isolated from domestic geese in southern China. Since

2002, HPAI H5N1 strains have emerged in both wild and

domestic birds and spread throughout the Old World [1–2].

Concern for interspecies transmission and adaptation of AI viruses

to mammalian hosts has renewed interest in the epidemiology of

AI in wild and domestic birds to predict disease risk and spread,

and prevent further transmission to human and domestic

populations.

Historically, HPAI viruses in domestic poultry, and subsequent-

ly humans, likely arose by the introduction and mutation of low

pathogenic (LP) AI strains from wild birds. Extensive field surveys

reported the continuous worldwide circulation of LPAI in wild

birds, primarily Anseriformes and Charadriiformes, which are

considered the natural reservoir of all 16 HA and 9 NA subtypes of

influenza A viruses [3–5]. Prevalence and distribution of LPAI

virus subtypes markedly differ among species, years, and places.

Within bird migratory flyways, a seasonal decline in LPAI

prevalence has been typical, with higher prevalence in naı̈ve

young birds [6–9]. The components underlying spatial and

temporal heterogeneity in AI prevalence are still unclear.

Epidemic dynamics may be influenced by ecological factors that

influence habitat use by waterfowl species, species differences in

susceptibility, age- and species-related differences in virus

shedding, environmental conditions that influence virus persis-

tence in wetlands [10], and immunity (or cross-immunity) from a

previous exposure to influenza viruses [11].

There is currently little scientific information about the basic

epidemiology of AI in wild and domestic birds, the role of the

environment as a reservoir for AI, the mechanisms underlying AI

immunity, and the potential role of wild birds as carriers of HPAI

viruses. The impact of HPAI in wild birds is species-specific and

some migrating species shed large amounts of virus without

exhibiting clinical disease [12–17], suggesting that they could serve

as long-distance carriers. Assessing the temporal and spatial

dynamics of AI viruses, the potential impact of HPAI on wild

birds, and the risk of HPAI transmission and spread by migratory

birds is challenging because HPAI research is restricted to high

security laboratories and natural epidemics are rare; typically

discovered after epidemiological dynamics have occurred and/or

affected wild birds have migrated.

Understanding AI dynamics in wild bird populations can be

facilitated by using models that evaluate and integrate diverse
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scientific information from laboratory and field studies. In addition,

models of disease systems can help to assess the potential

effectiveness of alternative management strategies [18], identify

critical gaps in our knowledge, and determine relative importance of

different parts of the system [19]. We developed an epidemiological

SEIR model (Susceptible, Exposed, Infected, Recovered) that

describes the dynamics of AI infection in individual birds. AI

viruses are transmitted by bird-to-bird contact or through the

environment. After infectious contact, a susceptible (S) bird becomes

exposed (E) or infected. During the latent period, AI virus develops

within the host until the host becomes infectious (I) by shedding

virus. LPAI viruses replicate preferentially in the gastrointestinal

tract and are excreted at high levels in the feces. In contrast recent

HPAI viruses, and in particular H5N1 viruses isolated since 2002,

replicate primarily in the upper respiratory tract of wild ducks [15].

Ultimately, the host will recover (R) or die (D) depending on the

interaction between its immune system and the virus.

Parameters for the SEIR model, including rate of infection, latent

period, recovery and mortality rates are estimated from analyses of

published laboratory infection trials for different Anseriform species

and AI viruses. In our assessment, we evaluate age-related

differences in disease parameters to compare AI dynamics in post-

breeding populations composed of hatch-year (,1.5 months) and

adult birds, and wintering populations (adult birds only). We also

consider the effect of virus pathogenicity on epidemiological

parameters. We extended this model to wild bird populations by

estimating the rate of infectious contact with virus (bird-to-bird or

environmental contact) using prevalence data from waterfowl

surveys. We use the SEIR model to evaluate the sensitivity of

parameter estimates on dynamics during AI outbreaks, compare

LPAI and HPAI outbreak predictions to field observations, and

consider the potential for bird mortality and disease spread

depending on the age-composition of the population.

Results

SEIR transition rates and times
Exponential rates of transition from susceptible (d) or exposed

(s) to the infectious state were estimated from published

laboratory challenge data (Table 1; see Figure S1 for exponential

curve fit to the data). Susceptible birds exposed by contact to

LPAI-inoculated birds became infectious at a slower rate (median

time = 1.50 days) compared with HPAI-inoculated birds (0.76

day). LPAI-inoculated birds also have a longer latent period (1.21

days) than HPAI-inoculated birds (0.28 day). Subtracting the

latent time (i.e. ERI) from the time for susceptible individuals to

become infectious (SRI), we estimated the median time required

for susceptible birds to become exposed/infected (SRE), which

was slightly longer for HP than LP viruses (0.48 vs. 0.28 day,

respectively). We believe calculating SRE as a difference between

other parameters combined with the scarcity of LPAI data

produced an imprecise estimate for the LPAI infection rate, with a

large SD. In HPAI laboratory challenges, the median time to

become infectious was longer in young than adult birds for both

contact (0.91 vs. 0.23 day, respectively) and inoculated birds (0.62

vs. 0.28 day, respectively). Similarly, in LPAI experiments, it took

longer for susceptible young birds to become infectious compared

to adults (1.83 vs. 0.89 days, respectively). Low sample size

prevented the estimation of infection rates for young and adults

with LPAI and for adults with HPAI. Overall, the infection process

(SRI) was rapid, about a day with HPAI and two days for LPAI

because of a longer latent period (ERI).

All birds recovered from LPAI infection, so the mortality rate

was nil in LPAI-infected birds. Among parametric survival models,

the loglogistic model provided the best fit (lowest AIC) to the

HPAI time to mortality data (Table S1 and Figure S2). The

median time to death was significantly shorter (P,0.001) in young

Table 1. Estimated transition rates and median time periods between epidemiological states for AI in waterfowl.

HP LP

Parameter Adult Young Both ages Adult Young Both ages

d (SRI) rate6SD 2.9861.98 0.7660.07 0.9260.10 0.7860.41 0.3860.15 0.4660.11

median time (day) 0.23 0.91 0.76 0.89 1.83 1.50

n = 6 n = 69 n = 75 n = 3 n = 3 n = 6

s (ERI) rate6SD 2.4760.40 1.1260.15 2.4760.37 0.5460.13 { 0.5760.13

median time (day) 0.28 0.62 0.28 1.28 1.21

n = 28 n = 78 n = 106 n = 7 n = 1 n = 8

t (1) (SRE) rate6SD n/a 2.3960.99 1.4660.29 n/a n/a 2.4463.96

median time (day) 0.29 0.48 0.28

c (IRR) scale6SD 4.6261.17 5.3261.07 9.8161.30 11.2861.19

shape 2.46 2.46 2.46 2.46

median time (day) 4.62 5.32 9.81 11.28

n = 23 n = 96 n = 8 n = 5

d (IRD) scale6SD 17.9061.29 5.1661.09 n/a n/a

shape 2.26 2.26

median time (day) 17.90 5.16

n = 23 n = 96

Rates estimated from published laboratory challenge trials, see methods for details.
n, number of laboratory challenges; n/a, not applicable; {, non-convergence of the model.
(1)By subtracting the latent period (1/s) from the period for susceptible birds to become infectious (1/d), we estimated the time for susceptible to become exposed (1/t)

and the infection rate t.
doi:10.1371/journal.pone.0010997.t001
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than adult HPAI-infected birds (Table 1). The loglogistic was also

the best model for the time to recovery data (Table S1 and Figure

S2). The median recovery period was markedly shorter in HPAI-

than LPAI-infected birds (P,0.001). Recovery tended to be

shorter in adult birds than young (P = 0.13, Table 1); however,

there was substantial overlap in the estimated confidence intervals

between adults and young for both HPAI and LPAI. For infectious

individuals, mortality and recovery are competing outcomes which

simultaneously influence the length of the infectious period.

Although median recovery times from HPAI are similar between

young and adult waterfowl (4.62 vs. 5.32 days), the median

mortality period was four times longer in adults than young (17.90

vs. 5.16 days). As a result, the median infectious period is slightly

longer in adult (4 days) than young HPAI-infected birds (3 days),

and more fatalities are expected in young than adult birds.

Moreover, the longer recovery period for LPAI results in a longer

median infectious and shedding period (about 10 days) than for

HPAI (3.5 days).

Sensitivity and AI dynamics
Sensitivity analysis using Latin hypercube sampling indicated

that peak prevalence (maximum proportion of infectious birds) was

most sensitive to the rate of infectious contact h and rate of

infection t (Table S2). Higher infectious contact or infection rates

produced more rapid epidemics with higher peak prevalence.

However, the amount of population mortality caused during AI

epidemics was most sensitive to recovery and mortality rates.

Lower recovery rates or higher mortality rates for individual birds

produced an increase of the number of dead birds.

We investigated LPAI and HPAI dynamics in post-breeding and

wintering waterfowl populations, using mean estimates for epide-

miological parameters (Table 1). Because recovery and mortality

rates from the loglogistic model depend on the time since infection,

we implemented our model using 30 daily sub-stages of the

infectious period, each with a corresponding loglogistic hazard rate,

to estimate rates of recovery (or mortality) at each day since

infection. LPAI prevalence predicted by the model was similar to

field prevalence estimates reported in young wild ducks (15–61%)

for h values ranging from 0.01 to 0.08 (Figure 1A). In our model, h
represents the daily probability that any susceptible wild bird in the

population will have an infectious contact. Peak prevalence when all

birds were exposed on day one (h= 1) reached 85%. We used a

mean rate of infectious contact of 0.04 to further investigate disease

dynamics in waterfowl populations. Our model predicted rapid

LPAI epidemic curves with peak prevalence of about 45% 13 days

after the initial infection (Figure 1B). There was no difference in

Figure 1. Predicted prevalence and disease dynamics in wild birds. A: LPAI peak prevalence for hatch-year waterfowl and estimated rate of
infectious contact h; h values between 0.01 and 0.08 corresponded with LPAI prevalence observed in young waterfowl at post-breeding areas (15–
61%, delimited by dotted lines). B and C: Predicted dynamics during LPAI and HPAI outbreaks, respectively, for Susceptible (blue), Exposed (green),
Infectious (black), Recovered (red), and Dead (purple) birds in post-breeding (dashed lines) and wintering populations (solid lines). Graphs based on
mean epidemiological parameters (Table 1) and an infectious contact rate (h) of 0.04. D. Comparison of prevalence dynamics during LPAI (red) and
HPAI (black) epidemics in post-breeding (dashed lines) and wintering populations (solid lines).
doi:10.1371/journal.pone.0010997.g001
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predicted seasonal LPAI dynamics because of the lack of

information on age-specific infection rates (t and s; Table 1). The

median duration of a LPAI epizootic was about 50–60 days with no

fatalities. HPAI dynamics, in contrast to LPAI, were characterized

by a shorter epidemic curve, lower peak prevalence, and high bird

losses particularly in the post-breeding population (Figure 1C). The

post-breeding population had peak prevalence of 20% at day 7 and

30% of individuals were dead 60 days after the onset of the HPAI

outbreak. In the wintering population, HPAI prevalence reached

19% at day 8 but the proportion of susceptible birds that died

during the epidemic was lower (about 9%) than at post-breeding

areas (Figure 1D). The median duration of HPAI epizootics was

about 40–50 days.

Discussion

Based on a comprehensive analysis of published data on HPAI

and LPAI for waterfowl, we estimated transition rates between

disease states including the rates of infection, disease progression

within the host (latent period), host mortality and recovery. We

implemented disease transition rates using an epidemiological

model that provides the foundation for understanding and

predicting the dynamics of AI outbreaks in bird populations. In

individual birds, contact with AI-infectious birds and/or a

contaminated environment leads to rapid progression of infection

and virus shedding within 1–2 days, followed by relatively slower

periods of recovery or mortality. We found a higher mortality rate in

young than adult HPAI-infected waterfowl, but similar recovery

rates. Age-related difference in the outcome of infection has

previously been observed in ducks infected with AI [20–21] or other

viruses [22]. Hypothesized mechanisms for age-related differences

include maturation of the immune system or links between host cell

maturation and the capacity for virus replication [22].

To predict disease dynamics in wild birds, we approximated the

rate of infectious contact h from LPAI prevalence data in wild

populations of young (naı̈ve) ducks. Our model facilitates a

comparison of AI dynamics and showed substantial differences in

the dynamics of LPAI and HPAI infections, with shorter HPAI

epidemics, lower prevalence of infectious birds, and higher

mortality than LPAI epidemics. Because we used similar rates of

infectious contact h, the non-mortality differences likely reflect a

longer latent period (ERI) and longer recovery period (IRR) for

LPAI (Table 1). Although we assumed infectious contact rates

were constant over time and similar in both LP and HPAI

outbreaks, the rate of infectious contact likely depends on the

relative importance of bird-to-bird and environmental transmis-

sion, number of infected birds, abundance of virus in wetlands,

and inherent characteristics of the host and virus. LPAI viruses

multiply primarily within the digestive tract, are shed into the

environment where they persist for an extended period of time

[10], and become a critical reservoir for sustaining LPAI virus in

waterfowl populations [23]. In contrast, HPAI viruses are shed via

both oral and cloacal routes (due to replication in the respiratory

and digestive tracts), but have rarely been isolated from the

environment [24]. Consequently, the role of environmental

transmission in HPAI epidemics remains unknown. Although we

found a longer recovery period (longer infectious period) for LPAI

than HPAI, we speculate that oral and cloacal shedding of HPAI

viruses may help increase transmission in spite of the relatively

short infectious period. Given the significant effect of h on

epidemic dynamics (Table S2), determining the relative impor-

tance of alternative transmission routes, rates of infectious

contacts, and factors that influence contact rates will enhance

our understanding of AI dynamics in wild bird populations.

We found few differences in predicted epidemic dynamics based

on time of year (i.e. mix of adult and young waterfowl in the

population; Fig. 1B and C). Although the lack of age-specific

challenge trails for LPAI prevents a reliable evaluation of seasonal

differences in susceptibility to AI viruses, we found age-related

differences in disease processes for HPAI, indicating faster disease

progression (SRI and ERI) in adult than young birds. Our

sensitivity analysis also demonstrated that the rate of infection

(SRE) plays a key role in AI epidemic dynamics. We acknowledge

that uncertainty in LPAI infection rate may have affected our

sensitivity analysis; however, we found infection rate was also a key

parameter affecting peak prevalence in HPAI dynamics (Table

S2). Additional laboratory challenges clarifying age-related

differences in the LPAI infection processes, the source of virus

exposure (by fecal/oral transmission or environmental transmis-

sion), and the level of exposure (with dose-response experiments)

would expand our understanding of infection rates under various

conditions.

Because little is known about AI immunity in wild birds our

model assumed the entire population is susceptible to infection,

and that recovery confers immunity for the duration of an

epidemic (.50–60 days). It has been observed that Pekin ducks

(Anas platyrhinchos) have sufficient immunity to clear a secondary

LPAI-infection without shedding virus for at least 12 weeks after

initial infection with the same LPAI subtype [11]. It has also been

demonstrated that birds with preexisting LPAI antibodies have a

lower probability of developing HPAI infection, but may shed HP

virus [16,25–28]. The predicted effect of immunity (or cross-

immunity) is a decline in the proportion of susceptible birds and an

increase in the proportion of recovered and resistant birds as LPAI

viruses spread in the population during fall migration. However,

the length of these effects also depends on the length of immunity

(e.g. 3 months vs. one year) and extent of cross-immunity among

AI viruses. The consequence is a decline in epidemic curve by

decreasing the proportion of infectious birds (Figure 1A). A similar

conclusion was illustrated in a previous simulation model of annual

LPAI dynamics in dabbling ducks [29]. An improved understand-

ing of the processes underlying immunity and cross-immunity

among LP and HPAI viruses is important in assessing the

susceptibility of wild bird populations to HPAI viruses, predicting

when epidemics are likely to occur, and developing effective

surveillance programs for HPAI.

Extensive surveillance programs for AI viruses have reported

the presence of LPAI asymptomatic carrier birds all around the

world (at various levels of prevalence depending on season, bird

species, and virus strain). On the other hand, HPAI viruses have

been detected in only a few healthy wild birds [30], and in most

HPAI outbreaks, only a few dead individuals have been found. In

a general sense, these observations agree with our model

predictions of short epidemics for HPAI and much higher

prevalence and longer duration of infection in birds with LPAI.

Using the infectious contact rate for LPAI to predict HPAI

dynamics, our model predicts a low epidemic curve on wintering

areas, with negligible or scattered mortalities, which will likely be

difficult to detect. In addition, we suspect that HPAI outbreaks

may be even less conspicuous on wintering grounds because a

large proportion of waterfowl would likely have immunity from

previous LPAI infections. In contrast, our model predicts a higher

HPAI prevalence (and mortality) in post-breeding areas. Because

surveillance programs have primarily relied on swabs to detect AI

in wild birds (e.g. [8,31–32]), it is not surprising that HPAI, with a

shorter length of infection than LPAI, has been much harder to

detect. Our results suggest that serological surveys to determine

circulation of AI viruses in avian populations [33] may be much

Avian Influenza Epidemiology
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more effective because AI antibodies appears to last considerably

longer than infection. Overall, our model suggests intensifying AI

surveillance in post-breeding areas, which have a large number of

immunologically naı̈ve birds, to increase the probability of

detecting HP viruses, given the expected higher prevalence and

fatalities in these areas.

Methods

Epidemiological model
We mathematically modeled AI dynamics for a closed biological

system with no changes in bird demographics (no immigration,

emigration, or natural mortality), where all of the initial

population is susceptible, and birds that recover have long-term

(. length of the epidemic curve) immunity. We used ordinary

differential equations to model changes in the number of birds in

each SEIR state with time t:

dS

dt
~{lS

dE

dt
~lS{sE

dI

dt
~sE{cI{dI

dR

dt
~cI

dD

dt
~dI

where l is the force of infection, s is the rate that latent birds

become infectious, c is the recovery rate (i.e. the instantaneous

probability of recovering, conditional on survival to that time), and

d is the disease-related mortality rate. The force of infection l, the

rate at which susceptible birds transition to the infected state (E), is

the product of the rate of infectious contact h (by bird-to-bird

contact and environmental route) and the rate t at which

susceptible birds that contact virus become infected (E). We

implemented the model using a daily time step (t = 1 day).

Laboratory challenge trials
AI laboratory challenge data published over the three last

decades were used to estimate model parameters [11,13–

17,21,25,34–46]. We analyzed experiments where birds were

‘‘naturally’’ inoculated (i.e. via the nares or throat) and excluded

data from intramuscular and intravenous challenges. We consid-

ered inoculated birds as exposed (latent) individuals, assuming that

virus inoculation represented infectious exposure. In some

experiments, susceptible birds were housed in direct contact with

inoculated birds. We considered birds to be infectious when they

began shedding virus (detected by virus isolation in oral or cloacal

samples). Recovered birds were individuals which no longer shed

virus. We only considered experiments where the course of the

disease (i.e. disease state) was measured at least once within four

days post-challenge.

We evaluated disease dynamics in waterfowl (i.e. Anseriformes)

infected with viruses isolated from birds or humans. We

considered two age classes, ,1.5 month (young) and $1.5 month

(adult), to evaluate age-related differences in disease parameters

and to compare AI dynamics in post-breeding and wintering

populations. We also considered viruses as HP or LP, based on

their ability to cause disease in chickens [47].

SEIR transition rates
We estimated the rate s at which exposed birds become

infectious from the cumulative proportion of infectious birds

through time (number of infectious birds/number of birds in the

experiment) from challenge trials with inoculated birds. Similarly,

we estimated the rate d at which susceptible birds become

infectious from challenge trials where susceptible birds had contact

with infected birds. We estimated s and d using nonlinear mixed-

effects models in R 2.1.1 [48–49] assuming a constant transition

rate, which produces an exponential distribution of the proportion

infected:

f t,rateð Þ~1{e{rate�t,

where rate denotes the transition rates s or d. From laboratory

studies we found $97% of the contact birds become infected. We

estimated the period for susceptible birds to become exposed

(transition rate t) by subtracting the latent period (transition E to I)

from the period for susceptible birds to become infectious (S to I).

Because recovery and death are competiting events, we used

survival analyses to estimate recovery c and disease-related

mortality d rates for infectious birds. The time to recovery or

mortality was right-censored when the individual was still

infectious at the end of the experiment or was removed (in an

infectious state) before the end of the experiment. We evaluated

several parametric hazard models including the Exponential,

Gaussian, Logistic, Loglogistic, and Weibull [50] using Akaike

Information Criterion (AIC [51]). Goodness-of-fit for the selected

model was assessed using the Grønnesby and Borgan [52] test,

which compares the number of observed events with those

expected from the model, within four risk-score groups for the

recovery data (206 events) and two risk-score groups for the

mortality data (72 events). We incorporated covariates in the

hazard rate using the model scale parameter:

scale~exp n0zn1x1z:::znnxnð Þ,

with n0 the coefficient of the intercept, and nn the coefficient of the

covariate xn [53].

AI dynamics and sensitivity
We tested the potential importance of epidemiological param-

eters on model predictions using Latin Hypercube Sampling [54].

This stratified Monte Carlo sampling procedure identifies the key

parameters which affect model outputs. In this method, the

assumed probability distribution of each model parameter is

divided into N equal probability intervals and one random value is

selected from each interval. The N values obtained for each

parameter are paired randomly with the N values from all other

parameters. In our sensitivity analysis, we used N = 30, a uniform

distribution U(0,1) for the rate of infectious contact h, and

Gaussian distributions N(mean, SD2) for the infection rate t, the

transition rate s, and scale parameters of the recovery rate c, and

disease mortality rate d. Mean parameter estimates and SD are

given in Table 1. Given the large SD for the LPAI infection rate,

we used a uniform distribution U(0, 10) for this parameter. We

quantified parameter sensitivity on model predictions for the

number of infectious birds at peak prevalence (peak of the

epidemic curve) and cumulative number of dead birds during the

Avian Influenza Epidemiology
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epidemic. We measured sensitivity using the semipartial correla-

tion coefficient, SPC, which measures the linear correlation

between a model parameter and output, corrected for other

correlated parameters [55]. Sensitivity was based on 100 model

runs for 60 days.

In laboratory challenges, susceptible (contact) birds were

exposed to AI virus by close contact with infectious individuals

and a contaminated environment. Therefore, the rate of infectious

contact h is assumed to be 1. To model AI dynamics in wild bird

populations with a realistic h value, we estimated the range of h
which predicts LPAI prevalence reported in young wild ducks (all

assumed susceptible) at post breeding areas (15–61% [56–59]). We

assumed that field estimates correspond to peak prevalence. We

used the mean value for h in our model to investigate LPAI and

HPAI dynamics in waterfowl populations of 10000 birds,

composed of 50% adult and 50% young birds (approximate

post-breeding population composition; [60 p. 230]) or of adult

birds only (wintering population). Scarcity of challenge trials

prevented us from estimating age-related infection rates (LPAI and

HPAI) and latent period (LPAI); therefore, we used mean

estimates from both age classes (Table 1) in model projections

and sensitivity analyses.

Supporting Information

Figure S1 Estimated LP and HPAI infection rates. Proportion of

young (black) and adult (grey) birds which become infectious by

exposure to infected birds or a contaminated environment (top), or

after inoculation with AI (bottom). Lines represent exponential

curves for mean infection rates provided in Table 1. Marker size is

proportional to the number of experimental challenges (1 to 70).

Note different time scales among graphs.

Found at: doi:10.1371/journal.pone.0010997.s001 (0.23 MB TIF)

Figure S2 Cumulative recovery and mortality probabilities after

infection. Lines with markers are cumulative probabilities of young

(black) and adult (grey) birds from laboratory challenges.

Corresponding lines without markers are the predicted cumulative

probabilities for the loglogistic model based on mean recovery and

mortality rates provided in Table 1.

Found at: doi:10.1371/journal.pone.0010997.s002 (5.76 MB TIF)

Table S1 Comparison of alternative parametric models for time

to recovery and time to death. Akaike Information Criterion (AIC)

values and number of model parameters (K) for alternative models

of time to recovery and time to death from LP and HPAI

laboratory challenge trials. Recovery data was modeled using an

additive effect of age and virus pathogenicity (LP vs. HP). Time to

death models only included HPAI-infected birds because LPAI

infection did not cause mortality; these models also included the

effect of age.

Found at: doi:10.1371/journal.pone.0010997.s003 (0.04 MB

DOC)

Table S2 Sensitivity of epidemiological parameters for peak

prevalence and proportion of the population dying from AI. The

model describes disease dynamics in a population of 10000

individuals during 60 days. We used Latin Hypercube Sampling

(N = 30, 100 runs) and a semi partial correlation coefficient (SPC)

to measure the relative influence of model parameters. See text for

additional information.

Found at: doi:10.1371/journal.pone.0010997.s004 (0.09 MB

DOC)
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