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Abstract

Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring.
Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a
consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-
induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is
fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal
infection can affect the offspring’s dopamine function. Using a rat model of localized injury induced by turpentine, which
triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on
the offspring’s dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine
indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of
dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial
prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection
and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring.
These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its
metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by
maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted
in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are
characteristic of schizophrenia symptoms in humans.
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Introduction

Environmental factors, combined with genetic predisposition, are

now recognized as key events underlying a number of psychiatric

disorders of neurodevelopmental origin, including schizophrenia. Of

the environmental events, maternal infection during critical stages

of human gestation has been associated with increased incidence of

schizophrenia in the adult progeny [1–4]. Studies in animal models

of maternal infection have demonstrated a plethora of behavioral,

molecular and structural alterations relevant to schizophrenia in the

adult offspring [5–16]. The mechanisms responsible for these

alterations are unknown. However, because a wide variety of viral

and bacterial pathogens are implicated [2,17], it is thought that a

response common to all forms of infection is involved in the etiology

of the disorder [1,18]. One such response is hypoferremia, a cytokine-

mediated reduction of circulating non-heme iron [19–22]. In normal

individuals, this response is triggered to limit the availability of this

essential nutrient to the invading pathogens and is thus considered an

inherent protective mechanism [23–25]. Hypoferremia results from

the hepcidin (HAMP)-mediated interruption of iron trafficking into

the blood from body stores such as macrophages, hepatocytes and

from duodenal enterocytes, which mediate dietary absorption of iron

[25,26]. Hypoferremia during pregnancy may have serious reper-

cussions for the developing fetus. Sufficient iron supply is necessary

for neurodevelopmental processes; in fact, reduction in iron supply at

several stages of development results in enduring changes in

dopamine (DA) neurotransmission [27–30] that outlast the iron

deficient periods [28,31].

We hypothesized that inflammation-induced hypoferremia

causes a disruption of fetal brain development, which leads to

functional defects in adulthood, synonymous with psychiatric

disorders such as schizophrenia. The goal of this study was,

therefore, to investigate whether changes in iron traffic induced by

maternal inflammation would have an impact on DA function and

DA-related behaviors in the adult offspring. To this end, we

conducted studies using a rat model of localized injury and

inflammation induced by an intramuscular (i.m.) injection of

turpentine (TURP). In contrast to the more commonly used

models of systemic bacterial [lipopolysaccharide (LPS)] or viral

(poly I:C) infection, TURP remains localized at the injection site

[32]. This feature allows us to study the role of endogenous

inflammatory mediators on fetal development, in the absence of
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possible confounding factors triggered by systemically injected

immunogens, which could act directly on the fetal compartment

[33–37] and often lead to high maternal mortality [7]. In recent

studies, we demonstrated that treatment of pregnant rats with

TURP induces reproducible behavioral changes in the adult

offspring, similar to those induced by maternal LPS or poly I:C

treatments [7]. The aim of the present study was to investigate

whether these effects are due to alteration in DA function resulting

from reduced iron levels during a critical neurodevelopmental

period (i.e. gestational day [GD] 15). Our results strongly support

a major role for inflammation-induced hypoferremia in the

development of enhanced DA function in the offspring.

Results

TURP induces an acute-phase response and
hypoferremia in GD 15 pregnant dams

In order to characterize the maternal inflammatory response to

TURP and the alterations that this may induce in systemic iron

trafficking, we determined the kinetics of several inflammatory

markers and maternal serum iron levels at GD 15. TURP induced

a significant increase in core body temperature at 10 hours, with a

1.9uC difference in comparison to the saline (SAL) group and

returned to basal 24 h after injection (Fig. 1A; treatment by time

interaction, F(4, 48) = 7.74, p,0.001, simple effect of treatment at

10 h: F(1, 53.84) = 37.82, p,0.0001). Serum pro- [interleukin (IL)-6)]

and anti- [IL-1 receptor antagonist (IL-1ra)] inflammatory

cytokines were significantly induced at the same time point (10

h) after TURP injection and no longer detectable by 24 h (GD 16;

Fig. 1B and C, respectively; IL-6: treatment by time inter-

action, F(5, 60) = 3.98, p = 0.004, simple effect of treatment at 10 h

F(1, 69.28) = 17.5, p,0.0001; IL-1ra: treatment by time interaction

F(6, 62) = 11.04, p,0.0001, simple effect of treatment at 10 h

F(1, 71.39) = 52.2, p,0.0001).

TURP treatment dramatically reduced serum non-heme iron

levels, 10 and 24 h after injection (Fig. 1D; treatment by time

interaction, F(6, 72) = 14.10, p,0.0001; simple effect of treatment at

10 h, F(1, 78.88) = 12.34, p = 0.0007; at 24 h, F(1,78.88) = 69.26,

Figure 1. TURP induced a maternal inflammatory response and hypoferremia in pregnant rats at GD 15. (A) Sterile saline (n = 6) or TURP
(n = 8) was injected (i.m., 100 ml/rat) and core body temperature determined immediately before (0 time point) and 8, 10, 24 and 48 h after. TURP
induced a significant increase in core body temperature 10 h after TURP injection, which receded 24 h after injection. p,0.0001: *** SAL vs. TURP (B
and C) Serum IL-6 and IL-1ra levels were determined by ELISA from samples collected 6, 10, 24 and 48 h after SAL or TURP injections in the same rats
as in (A). TURP induced a significant increased in the levels of both cytokines 10 h after injection and returned to baseline by 24 h. p,0.0001: *** SAL
vs. TURP (D) Non-heme iron levels were also measured in the serum samples from the same animals used in (A-C). TURP induced significant reduction
in non-heme levels 10 and 24 hours after TURP injection, returning to control levels by 48 hours. Non-heme iron levels decreased as pregnancy
progressed, independently of treatment. p,0.0001: *** SAL vs. TURP (E) Hepatic gene expression in dams sacrificed at the peak of fever and cytokine
induction, 10–11 hours after i.m. injection. SOCS3 (left panel), HAMP (middle panel) and zip14 (right panel) mRNAs were significantly induced in the
TURP treated dams (n = 7 per group). p,0.0001: *** SAL vs. TURP.
doi:10.1371/journal.pone.0010967.g001
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p,0.0001), returning to control levels at 48 h (GD 17) after

treatment. No further differences in non-heme iron levels were

observed between TURP and control groups. However, there was

a reduction in the serum levels of iron with the progress of

pregnancy towards term, with non-heme iron levels at GD 19

becoming significantly lower than those at GD 15, 16, 17 and 18

(Fig. 1D; main effect of time, F(6, 72) = 16.36, p,0.0001, 96 h vs. 0,

24, 48 or 72 h Fisher’s LSDs p, 0.05). This decrease in maternal

serum non-heme iron towards term is in fact normally observed, as

iron is used to sustain increased requirement for this nutrient due

to expansion of the maternal erythrocyte mass and the high

demand of the growing fetus [38,39].

TURP’s effect on circulating iron levels was accompanied by an

induction of hepatic expression levels of HAMP mRNA by 25-fold

(Fig. 1E; t(12) = 5.27, p = 0.0002) and zip14 mRNA by 5.5-fold

(Fig. 1E; t(12) = 4.48, p = 0.0007). Zip14 is a dual iron/zinc

importer involved in the cellular uptake of iron [40]. In addition,

we observed an 11.6-fold increase in the expression levels of

suppressor of cytokine signaling (SOCS) 3 mRNA after TURP

treatment (Fig. 1E; t(12) = 7.6, p,0.0001), indicating the activation

of the JAK/STAT signaling pathway, most likely by IL-6 [41],

which is involved in the induction of HAMP and zip14 mRNA

expression.

Maternal iron supplementation reverses hypoferremia,
but has no effect on other inflammatory responses

We determined if parenteral iron supplementation had any side

effect on the inflammatory responses induced by TURP, namely

cytokine production or fever. Maternal febrile response, as well as

induction of IL-6 and IL-1ra by TURP remained intact following

the iron supplementation schedule, with no significant effects of

iron supplementation detectable on all three parameters (Fig. S1A-

C in Supporting Information). Maternal serum non-heme iron

levels, analyzed as transferrin (Tf) saturation, were differentially

affected by TURP, depending on the maternal supplementation

(Fig. 2A). Tf saturation was strongly diminished by TURP

treatment in vehicle (VEH) co-treated animals (Fig. 2A; prenatal

treatment by maternal supplementation interaction, F(1, 23) = 7.85,

p = 0.01; simple effect of maternal treatment for VEH supple-

mented animals, F(1, 23) = 24.40, p,0.0001), supporting the effect

seen by analyzing raw serum non-heme iron levels (Fig. 1D).

Importantly, TURP treatment did not have any effect on serum Tf

saturation in the animals supplemented with iron (Fig. 2A; simple

effect of maternal treatment for iron supplemented animals,

F(1, 23) = 0.95, p = 0.33), suggesting a blockade of the TURP effect

on serum iron levels when mothers were over-loaded with this

micronutrient. Basal Tf saturation among the iron supplemented

animals was significantly lower than VEH mothers (supplemen-

tation by time interaction, F(5, 115) = 4.91, p = 0.0004, simple effect

of supplementation at 0 h, F(1, 135.6) = 10.8, p = 0.0013), which may

be due to the induction of hepatic HAMP mRNA expression, as

observed in both SAL-IRON and TURP-IRON groups at GD

19 (96 h after i.m. injections; Fig. 2C; effect of treatment,

F(3, 21) = 5.89, p = 0.044; SAL-IRON or TURP-IRON vs. SAL-

VEH or TURP VEH Fisher’s LSDs, p,0.05). Accordingly, there

was an accumulation of non-heme iron in the maternal liver of

iron-supplemented dams at this same time point (Fig. 2B; effect of

treatment, F(3, 22) = 23.18, p,0.0001; SAL-IRON or TURP-

IRON vs. SAL-VEH or TURP VEH Fisher’s LSDs, p,0.0001),

in the absence of all the other TURP-induced effects, which

returned to basal/control levels [maternal serum non-heme iron

(Fig. 1D); hepatic non-heme iron content (Fig. 2B) and maternal

hepatic HAMP mRNA expression (Fig. 2C)].

TURP induces long-term effects on fetal iron content,
which are prevented by maternal iron supplementation

We performed fetal iron content and HAMP mRNA expression

measurements 96 h after TURP treatment. This time point was

chosen since the acute inflammatory responses to TURP (i.e.

maternal fever, cytokine induction and decreased serum non-heme

iron) had returned to basal/control levels, enabling us to study the

extended effects of the inflammatory challenge on fetal tissue in the

absence of the maternal immune responses. In the placenta, non-

heme iron content was significantly reduced in the TURP-VEH

Figure 2. TURP effect on maternal serum Tf saturation was
prevented by parenteral iron supplementation. (A) Serum Tf
saturation levels were significantly reduced 10 and 24 h after TURP
injection, this effect was absent in TURP-IRON treated dams. Baseline Tf
saturation levels in iron supplemented animals was significantly
reduced. (B and C) Hepatic non-heme iron levels, 96 h after i.m.
injection, were unaffected by TURP treatment, but dramatically
increased in iron supplemented dams. In parallel, iron supplementation
led to a strong induction maternal hepatic HAMP mRNA expression.
p,0.05 * vs. SAL-VEH, & vs. TURP-VEH.
doi:10.1371/journal.pone.0010967.g002
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treated group (effect of treatment, F(3, 71) = 4.36, p = 0.007; SAL-

VEH vs. TURP-VEH Fisher’s LSD, p,0.05), and this effect was

reversed by iron supplementation in TURP-IRON treated dams

(Fig. 3A; TURP-VEH vs. TURP-IRON Fisher’s LSD, p,0.05).

HAMP mRNA expression levels in this organ paralleled the effects

seen in iron content, with a reduction induced by TURP

treatment (effect of treatment, F(3, 22) = 6.37, p = 0.0029; non

significant SAL-VEH vs. TURP-VEH Fisher’s LSD, p = 0.07) and

a recovery of HAMP mRNA expression in the TURP-IRON

group, to levels significantly greater than those of SAL-VEH

(Fig. 3D; TURP-IRON vs. SAL-VEH or TURP VEH or SAL-

IRON Fisher’s LSDs, p,0.05).

There were no effects on fetal liver iron content (Fig. 3B; effect

of treatment, F(3, 68) = 0.71, p = 0.55). However, fetal hepatic

HAMP mRNA levels were significantly increased in the fetuses

from TURP- and SAL-IRON treated mothers (Fig. 3E; effect of

treatment, F(3, 21) = 4.17, p = 0.018; SAL-VEH vs. TURP-VEH or

SAL-IRON Fisher’s LSD, p,0.05), whereas in fetal livers from

TURP-IRON treated mothers, HAMP mRNA levels were back to

control levels (Fig. 3E; TURP-IRON vs. SAL-IRON or TURP-

VEH Fisher’s LSDs, p,0.05).

In the fetal brain, non-heme iron content was significantly

reduced in the fetuses of TURP-IRON treated dams, compared to

the fetal brains from SAL-VEH and TURP-VEH treated mothers

Figure 3. Fetal non-heme iron and HAMP mRNA levels are modulated by maternal TURP treatment and iron supplementation. (A)
Non-heme iron levels in the placenta were lower in the TURP-treated dams, and this effect was reversed in the TURP-IRON treated dams. p,0.05: * vs.
SAL-VEH, & vs. TURP-VEH, @ vs. SAL-IRON. SAL-VEH n = 6, TURP-VEH n = 8, SAL-IRON n = 7 and TURP-IRON n = 6. (B) Fetal liver non-heme iron content
was unaffected by maternal treatments. (C) In the fetal brain, the only significant effect was a significant decrease in the non-heme iron content of
TURP-IRON treated mothers. p,0.05: * vs. SAL-VEH, & vs. TURP-VEH. (D) Placental HAMP mRNA expression was decreased in TURP-VEH mothers,
whereas this effect was significantly reversed in the TURP-IRON treated dams. p,0.05: * vs. SAL-VEH, & vs. TURP-VEH, @ vs. SAL-IRON. (E) In the fetal
liver, HAMP mRNA expression was significantly increased by TURP and by iron supplementation alone, whereas when both treatments were given
together these effects is blocked. p,0.05: * vs. SAL-VEH, & vs. TURP-VEH, @ vs. SAL-IRON. (F) HAMP mRNA expression was not significantly altered by
any treatment in the fetal brain.
doi:10.1371/journal.pone.0010967.g003
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(Fig. 3C; effect of treatment, F(3, 73) = 2.96, p = 0.038; TURP-

IRON vs. SAL-VEH or TURP-VEH Fisher’s LSDs, p,0.05).

However, there were no effects on HAMP mRNA expression

(Fig. 3F; effect of treatment, F(3, 23) = 0.46, p = 0.71).

Maternal inflammation and iron supplementation
differentially alter sensitivity to the effects of AMPH on
locomotor activity in the adult offspring

We first assessed the effects on litter size and body weight at

birth, and found that none of the prenatal treatments had a

significant effect on these variables (data not shown), suggesting

that neither TURP and/or iron supplementation induced fetal

mortality nor gross physical changes at birth.

In the adult offspring, locomotion in basal conditions or in

response to amphetamine (AMPH, 2 mg/kg of body weight) or

saline injection was determined. AMPH or saline were adminis-

tered to animals of each experimental group for 5 consecutive

days. No effects were observed in basal locomotion (Fig. 4A) or in

response to injection of saline throughout the 5 days of pre-

treatment (Fig. 4B) for individuals born to TURP and SAL-treated

mothers, supplemented with either VEH or iron. However, when

treated with AMPH, animals born to TURP-VEH mothers

showed significantly greater locomotion throughout the 5 pre-

treatment days, in comparison to their SAL-VEH counterparts

(Fig. 4B; prenatal treatment by supplementation interaction,

F(1, 62) = 4.84, p = 0.032; simple effect of treatment in the VEH

condition, F(1, 62) = 6.96, p = 0.01). In contrast, there was no

difference in AMPH-induced locomotion between the offspring of

TURP and SAL-treated, iron-supplemented mothers (simple effect

of treatment in the iron condition, F(1, 62) = 0.22, p = 0.64), which

exhibited locomotor responses to AMPH statistically similar to

those of the SAL-VEH group (Fig. 4B; simple effect of

supplementation in the SAL condition, F(1, 62) = 2.32, p = 0.13).

During days 1 and 2, iron supplemented animals presented a trend

for enhanced response to AMPH in comparison to SAL-VEH,

which disappeared from day 3 onwards; this effect did not reach

statistical significance.

In the test for behavioral sensitization (7 days after last pre-

treatment injection), all animals were challenged with a single

injection of AMPH (1 mg/kg). As expected, all AMPH pre-treated

rats exhibited sensitized response to the AMPH challenge in

comparison to those pre-treated with saline (Fig. 4C; main effect of

pre-treatment, F(1, 129) = 63.9, p,0.0001). However, among the

AMPH pre-treated animals, offspring of dams exposed to TURP-

VEH showed a significantly greater sensitized response than the

offspring of the SAL-VEH group (Fig. 4C; three-way prenatal

treatment by maternal supplementation by pre-treatment interac-

tion, F(1, 129) = 7.83, p = 0.006; simple effect of prenatal treatment

for the AMPH pre-treated VEH animals, F(1, 129) = 10.39,

p = 0.0016). In contrast, offspring of TURP-IRON treated dams

were sensitized to AMPH similar to the SAL-VEH offspring

(Fig. 4C; simple effect of maternal supplementation for the AMPH

pre-treated TURP animals, F(1,129) = 12.17, p = 0.0007). Intrigu-

Figure 4. Prenatal TURP treatment increased acute and sensitized AMPH-induced locomotion, which are prevented by maternal
iron co-administration. (A) Basal locomotion in the adult offspring of SAL-VEH (n = 45), TURP-VEH (n = 50), SAL-IRON (n = 23) and TURP-IRON
(n = 26) treated dams was not affected by any treatment when animals were introduced to the behavioral chambers for the first time. (B) AMPH
administration (i.p. 2 mg/kg) for 5 consecutive days induced a progressive enhancement of the locomotor activating effects, which was overall grater
among the offspring of TURP-VEH treated dams compare to their SAL-VEH counterparts. This effect was completely prevented by iron co-treated,
with the offspring of the TURP-IRON and SAL-IRON groups showing identical levels of locomotor behavior, which were also indistinguishable from
those of the SAL-VEH group. Saline pre-treated: SAL-VEH n = 24, TURP-VEH n = 26, SAL-IRON n = 12 and TURP-IRON n = 12. AMPH pre-treated: SAL-VEH
n = 21, TURP-VEH n = 24, SAL-IRON n = 11 and TURP-IRON n = 14. (C) Seven days after the last saline or AMPH injection, all animals were tested for
sensitization, with a lower dose of AMPH (i.p. 1 mg/kg). All AMPH pre-treated animals showed significantly greater response to this dose of AMPH
(dashed bars) than the saline-pretreated animals (white bars). Among the AMPH pre-treated animals, those born to TURP-VEH and SAL-IRON
presented significantly greater sensitization response, whereas in the offspring of TURP-IRON dams, sensitization response was comparable to control
animals. p,0.01: # vs. saline pre-treated counterpart, * vs. AMPH pre-treated SAL-VEH, & vs. AMPH pre-treated TURP-VEH, @ vs. AMPH pre-treated
SAL-IRON.
doi:10.1371/journal.pone.0010967.g004
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ingly, iron supplementation alone during pregnancy, also resulted

in enhanced behavioral sensitization in the adult offspring (Fig. 4C;

simple effect of maternal supplementation for the AMPH pre-

treated SAL animals, F(1,129) = 9.94, p = 0.02; simple effect of

treatment for the AMPH pre-treated IRON animals, F(1, 129) =

8.77, p = 0.0037).

Maternal inflammation leads to biochemical alterations
in the adult DA system, which are partly reversed by
maternal iron supplementation

We analyzed baseline tyrosine hydroxylase (TH) expression in

DA rich regions by Western blotting (Fig. 5). Consistent with

our behavioral results, nucleus accumbens (NAcc) TH expres-

sion was significantly increased in the adult offspring of the

TURP-VEH group compared to the saline controls (Fig. 5A).

This effect was not observed in the offspring of iron

supplemented mothers (TURP-IRON and SAL-IRON groups),

whose levels of TH were comparable to those of the control

group (Fig. 5A; effect of treatment, F(3, 23) = 3.63, p = 0.028;

TURP-VEH vs. SAL-VEH or TURP-IRON Fisher’s LSDs,

p,0.05). These changes were region specific, as levels of TH

expression in the dorsal striatum (dSTR; Fig. 5B; effect of

treatment, F(3, 22) = 0.62, p = 0.60), medial prefrontal cortex

(mPFC; Fig. 5C; effect of treatment, F(3, 21) = 0.88, p = 0.46),

ventral tegmental area (VTA; Fig. 6A; effect of treatment,

F(3, 23) = 0.58, p = 0.63) and substantia nigra (SN; Fig. 6B; effect

of treatment, F(3, 23) = 0.04, p = 0.96) were not significantly

altered by any prenatal treatment.

We also measured tissue content of DA, 3,4-dihydroxypheny-

lacetic acid (DOPAC) and homovanillic acid (HVA) in DA

terminal regions (Fig. 7). Consistent with effects seen in TH

expression, NAcc levels of DA in the TURP-VEH group were

elevated (Fig. 7A; effect of treatment, F(3, 18) = 3.83, p = 0.028;

SAL-VEH vs. TURP-VEH Fisher’s LSD, p,0.05), as well as those

of DOPAC (effect of treatment, F(3, 18) = 18.27, p,0.0001; SAL-

VEH vs. TURP-VEH Fisher’s LSDs, p,0.05) and HVA (effect of

treatment, F(3, 18) = 3.83, p = 0.041, SAL-VEH vs. TURP-VEH

Fisher’s LSDs, p,0.05). Intriguingly, DA levels in the SAL-IRON

and TURP-IRON groups were also increased (Fig. 7A; SAL-VEH

vs. SAL-IRON or TURP-IRON Fisher’s LSDs, p,0.05); the

same was true for NAcc HVA and DOPAC (SAL-VEH vs. SAL-

IRON or TURP-IRON Fisher’s LSDs, p,0.05), with DOPAC

levels in TURP-IRON animals being even greater than the

TURP-VEH or SAL-IRON groups (Fig. 7A; TURP-IRON vs.

SAL-IRON and TURP-VEH Fisher’s LSDs, p,0.05). As for TH,

effects of prenatal treatments appeared to be specific to the NAcc

since neither dSTR (Fig. 7B) nor mPFC (Fig. 7C) DA and HVA

were altered and dSTR DOPAC was significantly increased only

in the offspring of SAL-IRON treated dams (Fig. 7B; effect of

treatment, F(3, 20) = 3.26, p = 0.043; SAL-VEH vs. SAL-IRON

Fisher’s LSD, p,0.05).

Discussion

In the current study we provided the first evidence, to our

knowledge, that localized maternal inflammation during gestation

renders adult offspring significantly more sensitive to the

locomotor activating effects of a single AMPH injection, and to

the behavioral plasticity following repeated exposure to this drug.

In addition, we demonstrated increased baseline expression of TH

and tissue levels of DA, DOPAC and HVA, which were specific to

the NAcc. The fact that TURP does not enter the circulation

suggests that the effects observed in the offspring in the current

study, are most likely due to secondary downstream mediators and

not to direct effects on the fetal compartment, as reported for poly

I:C [12,42–45] and LPS [6,14,15,33,46,47].

Figure 5. Iron supplementation prevented increased NAcc TH levels induced by prenatal TURP treatment. (A) Basal TH levels in the
NAcc were measured by western blotting from adult animals’ protein extracts. These were significantly greater in the offspring of TURP-treated dams,
which was prevented by maternal iron supplementation. SAL-VEH n = 5, TURP-VEH n = 7, SAL-IRON n = 5 and TURP-IRON n = 6. p,0.05 * vs. SAL-VEH,
& vs. TURP-VEH. (B and C) TH protein levels from dSTR (B) and mPFC (C) were not significantly affected by any prenatal treatment.
doi:10.1371/journal.pone.0010967.g005
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We demonstrated that maternal iron supplementation, which

counteracts inflammation-induced hypoferremia, effectively pre-

vented the prenatal TURP-induced increased sensitivity to the

behavioral effects of single and repeated AMPH administration in

the adult offspring. These results suggest that maternal hypofer-

remia, induced by the TURP injection, causes long-lasting

behavioral alterations in the offspring. Remarkably, prenatal

TURP-induced increase in NAcc TH expression was also

completely abrogated by maternal iron supplementation.

Increased levels of TH and DA, restricted to the NAcc, have

also been reported by others in the offspring of mothers treated

with poly I:C [42] and LPS [46]. As with the effect of TURP,

there is no clear explanation on how these prenatal inflammatory

insults, leads to changes in TH, DA and metabolites that are

restricted to this brain region. One possibility may be linked to the

differential distribution of iron in the brain. Iron is particularly

abundant within DA-rich regions of the brain, where it has been

shown to have a role in DA metabolism and function [28,30,48].

Of these regions, the NAcc and the dSTR are among the most

enriched areas of the brain [30], and they are sensitive to systemic

variations in iron (i.e. dietary restriction or supplementation),

which in turn affect DA neurotransmission. Likewise, iron

deficiency during gestation has been shown to affect DA

neurotransmission in the whole striatum, including the NAcc

[30,48–51]. Interestingly, although less studied, mPFC DA

neurotransmission seems largely unaffected by early manipulations

in iron [28]. This is supported by our findings which show that the

effects of TURP on DA was restricted to the NAcc, and that iron

supplementation alone affected DA metabolites only in the NAcc

and the dSTR, whereas neither treatment affected the mPFC TH,

DA or HVA levels. These results suggest that the anatomical

localization of iron may underlie the effects of maternal TURP

and/or iron supplementation to modulate striatal DA transmis-

sion, as opposed to cortical DA function, although it does not fully

explain the differential effect between NAcc and dSTR.

Increased NAcc TH, which is consistent with augmented basal

NAcc DA concentration, may result from either a change in

expression level per neuronal terminal, or from structural

reorganization within the mesolimbic circuitry, the latter resulting

in axonal sprouting of NAcc DA terminals. Prenatal inflammation

may therefore lead to profound presynaptic alterations in NAcc

DA synthesis. However, additional effects on DA receptors,

transporter [42] and/or catabolic enzymes cannot be excluded, as

baseline levels of DOPAC and HVA were also increased by

prenatal TURP. Our findings of increased DA function in the

NAcc at baseline are likely to contribute to increased behavioral

response to acute AMPH injection and perhaps, to the enhanced

AMPH-induced behavioral plasticity following repeated treatment

[52,53]. Intriguingly, altered levels of basal NAcc DA, DOPAC

Figure 6. TH expression in the somatodendritic DA regions is not
affected by maternal treatments. (A and B) TH protein levels were not
significantly altered by maternal manipulations in VTA (A) and SN (B).
doi:10.1371/journal.pone.0010967.g006

Figure 7. Prenatal inflammation and iron supplementation increase NAcc levels of DA, DOPAC and HVA. (A) In the NAcc prenatal TURP
induced a significant induction in the content of DA, DOPAC and HVA. These effects were also present in the offspring of SAL-IRON-treated dams and
in the TURP-IRON offspring, who also showed DOPAC levels greater that all of the other groups. SAL-VEH n = 5, TURP-VEH n = 7, SAL-IRON n = 5 and
TURP-IRON n = 6. p,0.05 * vs. SAL-VEH, & vs. TURP-VEH, @ vs. SAL-IRON. (B) In the dSTR only DOPAC content was significantly greater in the offspring
of SAL-IRON dams, whereas no other significant effect was found on the metabolite or in DA and HVA levels. (C) In contrast, in the mPFC no changes
were detected in DA and HVA (DOPAC was under detection limits of the assay for this region).
doi:10.1371/journal.pone.0010967.g007
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and HVA remained increased in the offspring of TURP-IRON

treated mothers, despite normalization of TH expression. This

suggests additional alterations in the synthetic and/or catabolic

pathways of DA that may account for the observed alterations. It is

important to note however, that prenatal TURP treatment caused

two mechanistically differentiable effects in the offspring. One was

the increased response to a single AMPH injection, which may

stem from changes in the release of DA in the NAcc [54], therefore

is more directly related to increased basal expression of TH and to

the increased basal content of DA in the NAcc. In contrast,

behavioral plasticity after repeated AMPH administration is a

phenomenon that requires long-term neural adaptations that

occur in several brain structures, notably the VTA, where the cell

bodies of the mesolimbic DA neurons lie [55–57], therefore

TURP may affect additional cellular and molecular targets. In this

regard, iron supplementation to TURP-treated mothers seems to

have prevented only some of the effects of TURP that impact the

response to acute AMPH injection (i.e. increased NAcc TH

expression, but no greater DA and metabolites) as well as those

mechanisms underlying the sensitized response after repeated

AMPH administration.

Interestingly, iron supplementation alone (i.e. SAL-IRON

group) induced several behavioral and biochemical changes in

the offspring, which resembled the effects of prenatal inflammation

(i.e. enhanced sensitivity to acute and repeated AMPH injection

and increased basal levels of DA, DOPAC and HVA in the NAcc).

SAL-IRON group also exhibited a greater AMPH-induced

stereotypy during the pre-treatment phase (data not shown) and

increased basal levels of DOPAC in the dSTR. This surprising

finding is most likely due to iron overload in iron sufficient animals

[58], although the doses of iron used in our study were chosen to

be below those that cause toxic side effects [59,60]. This is further

exacerbated by the fact that parenteral administration of iron

bypasses the regulatory mechanisms that control its dietary

absorption [26], therefore iron administered through dietary

supplementation, which normally does not cause overload [61],

may spare the offspring from the undesired effects described in the

present study. To the best of our knowledge, there are no studies

on the effects of maternal-iron supplementation on the DA

function of the adult offspring, however it is normally considered

that excess of iron results in toxic effects due to oxidative stress

[26]. These findings, although unexpected, nevertheless emphasize

the critical importance of this micronutrient to normal develop-

ment of mesolimbic DA neurons.

Given that maternal circulation constitutes the only source of

iron to the developing fetus [38], and that HAMP down-regulates

FPN1 [62], which is essential for the transport of iron through the

materno-fetal interface [63–67], we rationalized that the inflam-

mation-induced reduction in maternal iron will restrict the

amounts being transported through the materno-fetal interface.

To confirm this, we measured iron levels in the placenta, fetal liver

and brain collected from all the treatment groups. As expected,

placental iron levels were dramatically reduced, paralleling the

maternal supply of this nutrient and completely recovered by iron

replenishment in TURP treated dams. The TURP-induced

reduction in placental iron content may reflect either the reduced

availability of maternal serum iron and/or the demand to sustain

the fetal development during the hypoferremia [68].

The changes in iron levels in the placenta were very closely

paralleled by the levels of HAMP expression, which may be

merely responding to the tissue’s fluctuation in iron concentration

[69] or conversely, responding to a signal from outside the

placenta, and in turn modulating iron export rates from this tissue

to the fetal compartment [68]. Interestingly, regulation of HAMP

mRNA expression in fetal liver was the reverse of that seen in the

placenta. In this tissue, TURP-treatment resulted in induced

expression of HAMP mRNA at a time point when TURP-induced

maternal circulating cytokines are no longer elevated, suggesting

that mediators other than cytokines may be involved in this effect.

One likely possibility is that iron flow from the placental stores into

the fetus resulted in higher than normal iron levels in the fetal

circulation, thus triggering fetal liver HAMP mRNA expression

[68]. In fact, fetuses of iron supplemented (SAL-IRON) dams also

showed increased fetal liver HAMP mRNA expression, which is

presumably due to a direct effect of the supplemented micronu-

trient [68], as no inflammatory pathways were activated in this

condition.

Iron levels in the fetal brains taken from all four treatment

groups did not show any alteration, other than a small but

significant reduction in TURP-IRON group. This latter observa-

tion is rather puzzling and it possibly reflects a lower than normal

supply of iron in the TURP-IRON group. The latter effect can be

mediated by the increased placental HAMP in the TURP-IRON

group, which would lead to iron trapping within this organ, at the

expense of the fetal brain, similar to the effects of maternal hepatic

HAMP on maternal liver iron content [70]. However, it is

important to note that in the present study we measured whole

brain iron levels, and that marked regional differences in iron

acquisition capabilities of the brain are possible and have indeed

been reported [30,71,72]. In fact, brain DA regions are known to

be enriched in iron [73,74] and susceptible to systemic variations

of this nutrient [75], suggesting that specific effects of inflamma-

tion and iron supplementation may be found in the mesolimbic

DA neurons, which would then be involved in the induction of the

marked effects on DA function observed in the adult offspring.

Altogether our data are consistent with a scenario where

inflammation-induced maternal hypoferremia leads to placental

deficiency in this nutrient. This could be due, at least partly, to a

putative increase in iron transport to the fetal compartment that

keeps whole-tissue levels of iron normal. In addition, placental iron

deficiency may in turn result in altered function of this tissue. For

example, dietary iron deficiency leads to increased cytokine

expression in the placenta [76] and altered transport of amino

acids towards the fetal compartment [77,78]. This may, along with

direct restriction of iron supply in specific brain areas, impact

aspects of neuronal development, resulting in the effects observed

in the adult offspring.

Hypoferremia has long been recognized as one of the main

components of the host’s response to infection/inflammation, and

the mechanisms involved in the induction of this process are fairly

well understood. The strongest evidence to date suggests that the

pro-inflammatory cytokine IL-6, which is readily detectable in the

circulation of infected individuals regardless of the pathogenic

trigger, is the main circulating mediator of hepatic HAMP mRNA

expression [19–22]. IL-6 has been suggested to be strongly

involved in the etiology of the offspring alterations induced by

maternal inflammation [79]. We cannot rule out the direct

involvement of either other cytokines [45] or other mediators, such

as inflammation-induced alteration in zinc homeostasis (hypozin-

cemia) [80]. However, our results strongly indicate that during

prenatal inflammation, hypoferremia plays a fundamental role in

the developmental effects of this maternal insult on the mesolimbic

DA function, and that the effect of IL-6 on the developing fetus

may be mediated trough this mechanism.

Our results clearly demonstrate that a localized inflammatory

insult during gestation has profound affects on DA function,

which may be relevant for schizophrenia, where increased

striatal DA is proposed to underlie the so-called positive
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symptoms of the disorder [81–84]. In addition, we showed for

the first time that this risk factor for schizophrenia also increased

the animal’s vulnerability to develop sensitized behavioral

response to an AMPH challenge given one week after repeated

exposure. Repeated administration of drugs of abuse, including

AMPH, has been shown to also result in sensitization to the

rewarding effects of these drugs [52]. Thus, our findings further

strengthen the link between these two psychiatric disorders,

whose co-morbidity has been proposed to stem from DA

dysfunction [85]. Finally, we provided new evidence for the

involvement of fetal/maternal iron homeostasis in the develop-

mental processes that render the offspring more susceptible to

enhanced DA function.

Materials and Methods

Animals
Time pregnant primiparous Sprague-Dawley rats (Charles

Rivers, QC, Canada) were used in all experiments. On GD 7 or

8 animals were individually housed in a controlled environment at

an ambient temperature of 2161uC on 12:12 h light-dark cycle

(lights on at 0800 hours) with free access to food and water. Only

male offspring were used, which were housed under the same

environmental conditions. Mothers were treated with the

inflammatory stimulus at GD 15. This day of pregnancy was

used since it has been proposed to be roughly equivalent to the late

1st trimester of human pregnancy [86], which has been

significantly linked with the increased risk of developing

schizophrenia in the offspring of infected mothers [1]. Important-

ly, our previous studies in pregnant rats treated with TURP at GD

10, 15 or 18, suggested a window of vulnerability for the adult

offspring treated at GD 15 [7].

Ethics statement. Experimental procedures were approved by the

Animal Care Committee from the Douglas Mental Health

University Institute and McGill University pursuant of the

Canadian Council of Animal Care (Animal Use Protocol #
4306). All efforts were made to minimize the number of animals

used.

Treatments and experimental protocols
Pregnant dams were handled daily from GD 11 onwards and

habituated to a rectal probe to determine core temperature

(Physitemp Instruments, NJ, U.S.A.). Some animals (13 dams)

received an intraperitoneal (i.p.) injection of 10 mg/kg of the

aqueous complex of poly-nuclear iron (III)-hydroxide in sucrose

(Venofer, American Reagent, NY, U.S.A.) or an equivalent

volume of vehicle (either saline [7 dams] or 30% sucrose [7 dams])

at GD 13 and 14. Iron was administered to the dams from GD 15

until GD 18 at larger doses (i.p., 20 mg/kg). At GD 15 basal core

temperature was recorded and a small sample of tail blood was

collected to determine basal levels of cytokines and serum iron.

Subsequently, a maternal inflammatory response was elicited by

injecting intramuscularly with 100 mL of purified TURP (Riedel-

deHaën, Sleeze, Germany); control dams received an equivalent

volume of saline. All injections were administered between 0900

and 1000 hours. Using a rectal probe core body temperature was

measured at 8, 10, 24, 48 and 72 hours after i.m. treatment and

tail blood collected at each time point. The animals were then

sacrificed at GD 19 (96 hours after the i.m. treatment) with a lethal

dose of pentobarbital sodium (i.p., 60 mg/kg) and a final blood

sample was collected via cardiac puncture. Maternal liver,

placentas, fetal livers and brains were excised and immersed in

2-methylbutane (Fisher Scientific, Hampton, NH, U.S.A.) and

chilled with dry ice. Serum cytokine, iron and Tf saturation levels

were determined, as well as maternal liver, placenta, fetal liver and

brain tissue iron levels.

In a separate experiment, SAL and TURP treated dams (i.m., 7

rats per group) were sacrificed 10–11 hours after i.m. treatment,

which represents the peak of fever and cytokine responses [87],

and livers collected to measure mRNA expression of molecules

involved in iron homeostasis.

To determine the effects of prenatal TURP and iron

supplementation on DA function and related behaviors in the

adult offspring, pregnant dams (6–12 per group) were treated as

described above, with the exception that tail blood collection was

not performed. The male offspring from each mother were

marked, weighed and cross-fostered with surrogate dams in mixed

litters [6,7]. Offspring were weaned from their foster mothers at

postnatal day (P) 22 and used at P 60–62, for either behavioral

testing or biochemical analyses. Behavioral sensitization to AMPH

was used to gauge midbrain DA function and plasticity in the adult

offspring. In addition, protein expression levels of TH were

determined by Western blotting from extracts obtained from the

VTA, SN, NAcc, dSTR and mPFC. Tissue levels of DA and

metabolites (DOPAC and HVA) were determined by High

Performance Liquid Chromatography (HPLC) from NAcc, dSTR

and mPFC.

Behavioral testing
We measured locomotor responses to either single or repeated

injections of d-amphetamine sulphate salt (AMPH, Sigma-Aldrich,

Dorset, UK) in adult male offspring, using our well-established

protocol [57]. Briefly, locomotor activity was quantified with an

infrared activity-monitoring apparatus for rats (AccuScan Instru-

ments, Columbus, OH, U.S.A.). On day 1 all rats (n = 23–50 per

group) were habituated to the boxes for 30 minutes (basal

locomotor activity). On day 2 all animals received a saline

injection (1 ml/g, i.p.) and were placed back in the boxes for 30

minutes. Immediately after, one half of the animals (saline pre-

treatment group, 11–26 per group) received another saline

injection, and the other half was injected with AMPH (2 mg/kg,

i.p.); locomotor activity was monitored for an additional 90

minutes. On days 3, 4, 5 and 6, animals received an injection of

either saline (saline pre-treatment group) or AMPH (2 mg/kg,

AMPH pre-treatment group) and their locomotor activity was

measured for 90 minutes. Finally, on day 14, a week after

termination of saline or AMPH pre-treatment, a test for

behavioral sensitization was conducted, where all animals,

regardless of the pre-treatment condition, received a single

injection of AMPH (1 mg/kg, i.p.). Locomotor activity was

monitored for 90 minutes. This lower dose of AMPH for the

sensitization test was chosen to avoid stereotypy. All behavioral

measurements were performed between 0900 and 1600 hours.

Serum cytokine and iron determination
All blood samples were allowed to cloth at room temperature

for 1 hour, spun at 4000 rpm for 20 min at 4uC to obtain serum

and stored at 280uC until used. Maternal serum samples were

analyzed for IL-6 and IL-1ra (the main cytokines released into the

circulation by TURP treatment [87]) using species specific ELISA

(NIBSC, Potters Bar, UK) as described previously [88]. Serum

iron (SI) was measured using an iron kit (RANDOX, Mississauga,

ON, Canada). In parallel, a direct measure of total iron binding

capacity (TIBC) of the serum was determined using a TIBC kit

(RANDOX). For both procedures the manufacturer’s protocols

were followed. Once both measurements were obtained (expressed

as mg/dL of serum), serum T) saturation was calculated by
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expressing the serum iron content as percentage of TIBC (Tf

saturation = SI/TIBC6100).

Three fetuses per dam were collected, and the results from

their individual measurements averaged to obtain one value per

mother. For tissue iron content, maternal liver, placenta, fetal

liver and brain were homogenized in 1:10 (w/v) high-purity

water. One volume of protein-precipitation solution (1 N HCl

and 10% (v/v) trichloroacetic acid in high purity water) was then

added to the samples, blank and iron standards and incubated for

1 hour at 95uC. The samples were then allowed to cool at room

temperature for 2 min, vortex mixed and centrifuged at 10

0006g for 10 min at room temperature [89,90] and assayed for

iron content.

Quantitative RT-PCR
Total RNA was extracted and reverse transcribed from

maternal livers, placenta, fetal liver and brain as described

previously [91]. Real-time PCR was performed in duplicate using

pre-optimized primer/probe mixture (TaqMan Gene Expression

Assays, Applied Biosystems, ON, Canada) and TaqMan universal

PCR master mix (Applied Biosystems). The housekeeping gene

18S was used to normalize levels of cDNA expression for each

sample. Levels of gene expression were calculated as the X-fold

difference from the control groups (SAL-VEH group). The mRNA

levels of the following genes was assessed: SOCS3, used as a

marker of activity of the JAK/STAT3 signaling pathway activated

by IL-6 [92]; HAMP and zip14, a dual iron/zinc importer that has

been shown to be induced by TURP and may be involved in the

cellular sequestration of iron [40,93]. The assay ID for each gene

is as follows: SOCS3: Rn00585674-s1, HAMP: Rn00584987-m1,

zip14 (slc39a14): Rn01468335-g1 and 18S: EUK-18S-

rRNA4352930.

Western blotting and HPLC
We explored biochemical markers of DA neurons, including

protein expression of TH and tissue levels of DA and its

metabolites, DOPAC and HVA. Brains collected from adult male

offspring (P 60–62) by decapitation were immersed in 2-

methylbutane (Fisher Scientific, Hampton, NH, U.S.A.) and

chilled with dry ice. 300 mm thick cryostat sections were obtained.

There were no behavioral differences between the animals born to

mothers supplemented with either SAL or sucrose. Thus, to

minimize the number of animals used, only SAL-SAL and TURP-

SAL groups were included. Bilateral punches from the VTA, SN,

NAcc (including core and shell), dSTR and mPFC (including

cingulated areas 1 and 2) were excised using our previously

described procedures [57] using the Paxinos and Watson rat brain

atlas [94].

Western blots were conducted as previously described [57,87].

Membranes were incubated with antibodies against TH (1:5000,

Chemicon, Temicula, CA, U.S.A.) and actin (HRP-coupled,

1:5000, Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.). Data

are expressed as a ratio of TH over actin optical densities.

HPLC analysis was conducted as we recently reported [95].

Briefly, tissue punches were re-suspended in 100 mL 0.1 m

phosphate buffer, pH 7.0, and filtered using 0.45-mm syringe

filters. A 10-mL volume of this filtrate was loaded onto a 15-cm C-

18 reverse-phase column via manual injection ports (20-mL loop).

Dual-channel coulometric III detectors (model 5100A; ESA, Inc.,

Bedford, MA, U.S.A.) were used to measure the reduction and

oxidation currents for DA and DA metabolites (one channel was

used for DA and the other for DA metabolites). EZChrom Data

Chromatography Data System (Scientific Software, Inc., San

Ramon, CA, U.S.A) was used to analyzed and quantify DA,

DOPAC and HVA concentrations.

Data analyses
All data were analyzed as raw values, except for HPLC results,

where the data were analyzed as percentage of the average value

for the SAL-VEH group, due to large inter-assay variability

between two different batches of samples assayed. All data are

presented as mean values 6 s.e.m. p values,0.05 values were

deemed significant.

Maternal fever, serum cytokines and iron: data were analyzed

using a repeated measures 2-way ANOVA, with time as a within-

group variable and pre-natal treatment (SAL vs. TURP) as a

between-groups variable.

Maternal liver PCR data: data from the 10–11 hours

experiment were analyzed using two-tailed Student’s t-tests to

compare data from the SAL-VEH and TURP-VEH groups.

Maternal serum Tf saturation: data were analyzed using a 3-

way ANOVA with prenatal treatment (SAL vs. TURP) and

maternal supplementation (VEH vs. IRON) used as between-

groups variables in all cases and time point used as a within-group

variable. When the interactions of main effects were significant,

analysis was followed by performing simple-effects ANOVA and

Fisher’s LSD post hoc tests.

Tissue iron content, HAMP mRNA levels (96 h time point),

western blotting and HPLC: data were analyzed using 1-way

ANOVA, with maternal treatment (SAL-VEH vs. TURP-VEH vs.

SAL-IRON vs. TURP-IRON) as between-groups variable and

furthered with Fisher’s LSD post hoc tests when ANOVA was

significant.

Offspring’s basal and AMPH-induced locomotion: data were

analyzed using 3-way ANOVAs, with prenatal treatment (SAL vs.

TURP) and maternal supplementation (VEH vs. IRON) as

between-groups variables and time as a within-group variable.

When interactions were significant, analyses were followed by

simple-effects ANOVA and Fisher’s LSD post hoc tests.

AMPH sensitization test: data were analyzed using a 3-way

ANOVA, with prenatal treatment (SAL vs. TURP), maternal

supplementation (VEH vs. IRON) and pre-treatment (saline vs.

AMPH) used as a between-groups variables, followed by simple-

effects ANOVA and Fisher’s LSD post hoc tests when interactions

were significant.

Supporting Information

Figure S1 Inflammatory response remained intact in iron

supplemented mothers. (A) Febrile response followed the same

kinetics in vehicle and iron supplemented mothers, peaking at 10 h

after TURP injection and returning to baseline 24 h later. Basal

temperature was not affected by iron supplementation. (B and C)

Serum IL-6 and IL-1ra levels followed the same kinetics in the

TURP-IRON group compared to the TURP-VEH group.

Found at: doi:10.1371/journal.pone.0010967.s001 (4.70 MB TIF)
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