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Abstract

Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-
independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport
to the endoplasmic reticulum and toxicity but also activates signaling through the tyrosine kinase Syk. We previously
described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx.
Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment with Stx
results in an increase in the number of clathrin-coated profiles as determined by electron microscopy and on the number of
structures containing the endocytic AP-2 adaptor at the plasma membrane determined by live-cell spinning disk confocal
imaging. These responses to Stx require functional Syk activity. We propose that a signaling pathway mediated by Syk and
modulated by Stx leads to an increased number of endocytic clathrin-coated structures, thus providing a possible
mechanism by which Stx enhances its own endocytosis.
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Introduction

The bacterial toxin Shiga toxin (Stx) binds via its pentamer of B-

subunits to the glycosphingolipid receptor Gb3 on the cell surface

and is endocytosed both by clathrin-dependent and clathrin-

independent mechanisms (reviewed in [1]). The toxin then follows

the retrograde pathway to the endoplasmic reticulum [2] and is

translocated to the cytosol, where the A-subunit inhibits protein

synthesis. Stx is internalized partially via clathrin-coated pits, and

the clathrin-dependent uptake increases with higher concentra-

tions of Stx [3,4]. Upon binding to its receptor, Stx activates

signaling cascades leading to apoptosis, as well as more rapid

signaling through the Src family kinases Lyn [5] and Yes [6], the

MAP kinase p-38 [7], the serine/threonine kinase PKCd [8], and

the tyrosine kinase Syk [9,10]. We have previously demonstrated

that Syk regulates Stx uptake and that Stx induces activation of

Syk, which in turn phosphorylates clathrin heavy chain (CHC). In

addition, Stx promotes the formation of a complex between

clathrin and Syk [9,10].

There is evidence that some types of cargo that bind to

transmembrane protein receptors and are taken up via clathrin-

coated pits and vesicles may affect recruitment of clathrin to the

plasma membrane. Binding of epidermal growth factor (EGF) to

its tyrosine kinase receptor has been reported to increase clathrin

phosphorylation through a downstream activation of Src kinase

[11] and also to induce the formation of clathrin-coated pits

[11,12]. Similarly, neuronal growth factor (NGF) has been found

to augment clathrin phosphorylation and clathrin recruitment to

the plasma membrane in neuronal cells, presumably through

phosphorylation of its receptor tyrosine kinase TrkA [13,14].

Although studies in fixed cells indicate that ligands may promote

recruitment of clathrin, live-cell imaging is needed to determine if

there is indeed an increased formation of endocytic clathrin-coat

structures or just an accumulation of coated pits due to altered

signaling.

Motivated by our previous findings that Stx can mediate its own

uptake and affect signaling, we set out to investigate if Stx,

although binding to a glycolipid, was able to increase the

formation of endocytic clathrin coat structures at the plasma

membrane and if such increase in clathrin coats might be

mediated by signaling through the Syk kinase. We used a

combination of live-cell spinning disk confocal imaging and

electron microscopy to study if and how Stx might affect the

formation of clathrin-coated structures. We observed a significant
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increase in the number of clathrin-coated pits upon incubation

with Stx, and their lifetime and intensity distributions were shifted

towards higher values. Presence of the Syk inhibitor piceatannol

prevented the formation of new clathrin-coated structures induced

by StxB, indicating a role for Syk in the formation of clathrin-

coated pits. Taken together our data suggest that Stx can increase

the efficiency of clathrin-coated pit formation through a Syk-

dependent mechanism.

Results

Stx and StxB increase recruitment of clathrin and AP-2 to
the plasma membrane

Based on the previous findings that Stx can induce signaling in

cells and promote its own uptake through a clathrin-mediated

pathway, we investigated if Stx was able to influence the formation

of clathrin-coated pits and vesicles. Electron microscopy was used

to quantify the number of clathrin-coated pits per mm of plasma

membrane before and after incubating cells with Stx for 10 min at

37uC. Both HeLa and HEp-2 cells were tested, and we observed

an increase in the number of clathrin-coated profiles upon Stx

stimulation of 2864% and 3862% (mean 6 SE), respectively

(fig 1B–C). Electron microscopy of Stx immunogold-labeled HeLa

cells reveals that Stx is present in clathrin-coated pits as well as on

non-specialized regions of the plasma membrane (fig 1A).

All following experiments were performed in HeLa cells stably

expressing the s2 subunit of the adaptor complex AP-2 fused to

EGFP. Like in previous studies, we used AP-2 as a fiduciary for

endocytic clathrin-coated structures because AP-2 is exclusively

recruited to all clathrin-coated structures forming at the cell

surface whereas it does not mark endosomal clathrin-containing

structures [15–18]. It is also well established that AP-2 recruitment

dynamics accurately reflects the properties of endocytic clathrin

coats and that the accumulated fluorescence signal within a spot is

proportional to the size of the clathrin-coated structure [15,17].

These experiments were all carried out using StxB subunit (StxB-

Sulf2), which is sufficient for both binding to the lipid receptors at

the cell surface and for inducing signaling. Similar to what we

observed by electron microscopy, we also found an increase in the

number of clathrin-coated structures as determined by spinning

disk confocal live-cell imaging. First, 3 min control movies on

chosen groups of cells were recorded, followed by addition of

Alexa Fluor 568-labeled StxB. Time-series (3–10 min) of the same

group of cells as used for the control movies were then recorded,

starting at different times after the addition of StxB. The number

of clathrin-coated structures identified by s-EGFP AP-2 spots at

the bottom surface of each cell in direct contact with the glass

coverslip was determined at different time points. StxB internal-

ization was established by the appearance of perinuclear staining

of StxB-Alexa Fluor 568 following 20–30 min of incubation (data

not shown). Only cells found to internalize StxB were included in

the analysis.

The number of AP-2 spots from 16 independent experiments is

shown in table 1. In most cells, there was a rapid increase in the

number of endocytic AP-2/clathrin-coated structures within 3–

7 min after addition of StxB, reaching a maximum value after 10–

13 min (fig 2 and table 1). These results are in agreement with

earlier reports on the fast effect of Stx-induced signaling [9]. Out

of 16 cells analyzed, 2 cells had no detectable increase in the

number of clathrin-coated pits, 6 cells had a maximum increase of

20–50%, whereas 8 cells showed a maximum increase of 60–190%

with respect to their own controls (determined immediately before

StxB addition). The mean increase 6 SE in the number of

clathrin-coated pits/vesicles after 10 min of StxB addition was

57616% (p = 0.002).

The new AP-2-containing structures formed upon StxB
addition behave like canonical clathrin-coated pits

To further understand the behavior of AP-2/clathrin-coated

structures in cells exposed to StxB, we followed the kinetics of AP-2

recruitment in living cells with time series acquired using spinning

Figure 1. Stx increases formation of clathrin-coated pits. (A)
Representative electron micrographs of immunogold-labeled HeLa cells
showing Stx associated with clathrin-coated profiles (arrows in a–d) as
well as associated to non-specialized regions of the plasma membrane
(a–e). Bar 200 nm. (B) Exposure of HeLa cells to Stx for 10 min increased
the number of clathrin-coated pits at the plasma membrane with
statistical significance by 2864% (mean 6 SE, p = 0.008, n = 3). (C)
Exposure of HEp-2 cells to Stx for 10 min resulted in a 3862%
statistically significant increase in the number of clathrin-coated pits at
the plasma membrane (mean 6 SE, p = 0.004, n = 3). Data were
obtained from 20–30 cell profiles, containing from 38 to 63 pits
altogether, per experiment and condition. Data are displayed in the
plots as mean 6 SD.
doi:10.1371/journal.pone.0010944.g001
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disk confocal microscopy. Representative examples obtained

towards the periphery of a HeLa cell before and after addition

of StxB are presented in fig 3 (white spots; arrow heads highlight

selected examples) and Movie S1 (green and red correspond to the

AP-2 spots in the same cell before and after addition of StxB).

There was an increase in the number of AP-2 structures detected

after StxB treatment. In general they had a lifetime in the range

between 30 and 90 s, and their fluorescence intensity increased

gradually as expected for the behavior of canonical endocytic

clathrin-coated pits in HeLa cells [17]. Significantly longer-lived

AP-2 structures (lasting more than 2 min) corresponding to coated

plaques were not included in the analysis. These structures were

relatively sparse in the region of observation located towards the

periphery of the plasma membrane of the HeLa cells attached to

the glass coverslip.

Lifetime is increased and maximum fluorescence
intensity distributions of AP-2 are shifted upon StxB
stimulation

The effect of StxB on the lifetime and maximum fluorescence

intensity distributions of the canonical clathrin-coated pits was

determined using an image analysis package (IMAB) developed in

MATLAB [19]. In three independent experiments, time series of

3 min in duration were obtained in the same cells before and after

10 min incubation with StxB. Depending on the time series and the

region covered for observation, we detected anywhere between 50

and 162 AP-2 spots whose behavior correspond to the criterion of

canonical clathrin-coated pits [15,18]. The data presented in fig 4

displays a representative outcome from one such experiment. As

expected, there was an increase in the overall number of AP-2 spots

observed upon StxB incubation (74% increase) and most of the new

ones had longer lifetimes (fig 4A; mean lifetime 6 SD of 43611 s

before and 49614 s after addition of StxB). It has been demonstrated

that longer lifetimes correlate well with larger maximum intensities

[15]. Indeed, incubation with StxB also leads to an increase in the

maximum fluorescence intensity of the AP-2 spots (fig 4B). Similar

results were observed in the other cells analyzed.

Figure 2. The number of AP-2-containing structures increases
after incubation with StxB. Time-series obtained by spinning disk
confocal microscopy of the ventral surface of HeLa cells stably
expressing s2-EGFP were recorded before and after addition of StxB.
The s2-EGFP positive spots are fiduciaries of endocytic clathrin-coated
structures. The number of clathrin-coated structures obtained from 9
independent experiments was determined as described in Materials
and Methods. The maximum number of AP-2 spots in each cell was set
equal to 100%, and the number of AP-2 spots at other time points was
then calculated as fractions of the maximum number. Results are
displayed 6 SE or average deviation. The raw data for each cell are
displayed in table 1 (cells 1 to 9).
doi:10.1371/journal.pone.0010944.g002

Table 1. Number of AP-2 spots in 16 cells before and after incubation with StxB for different periods.

Cell Control Number of AP-2 spots at different times after addition of StxB

0 min 3 min 5 min 7 min 10 min 13 min 20 min 25 min

1 31 65 64 61 77 79

2 7 19 20 20 19 28

3 62 51 64 72 84 55

4 75 74 72 79 111 71

5 75 46 63 115 79 54

6 90 83 88 96 95 87

7 49 93 107 107 115 97 78

8 54 76 71 84 93 84 75

9 76 98 64

10 195 302

11 70 86

12 59 80

13 21 33

14 38 96

15 61 95

16 51 56

Time-series obtained by spinning disk confocal microscopy of the ventral surface of 16 different HeLa cells stably expressing s2-EGFP were recorded before and after
addition of StxB. The s2-EGFP-containing spots correspond to the recruitment of AP-2 adaptors to the plasma membrane and are considered fiduciaries of endocytic
clathrin-coated structures [15,17,19]. The numbers of clathrin-coated structures before (control) and at different time points after addition of StxB are shown for 16
independent experiments.
doi:10.1371/journal.pone.0010944.t001
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StxB-incubation does not alter the extent of transferrin
endocytosis

Since transferrin (Tf) is internalized mainly via clathrin-

dependent endocytosis, we tested whether the extent of Tf uptake

was affected upon treatment of HeLa cells with StxB. We found no

significant increase in the extent of Tf uptake in two independent

experiments done by following the internalization of 125I-Tf for 2,

5, 10, and 15 min after its addition to the medium (fig 5).

The increase in the number of AP-2 structures induced
upon StxB incubation is prevented by the Syk inhibitor
piceatannol

We have previously demonstrated that the Syk kinase is

activated by Stx/StxB and that this activation is important for

Stx uptake. In addition, Stx/StxB stimulate the formation of a

complex between Syk and clathrin [9,10]. These findings led us to

investigate if Syk might be important for the increased clathrin/

AP-2 recruitment caused by StxB. HeLa cells stably expressing

s2-EGFP were pre-incubated with the Syk inhibitor piceatannol

(50 mM) for 30 min followed by the acquisition of a spinning disk

confocal time-series of 1–2 min duration. StxB was then added

followed by the acquisition of a second time series 10 min

thereafter. Six independent experiments were conducted, and the

number of AP-2 spots from 1–4 cells shown to internalize StxB was

determined (fig 6). In contrast to the stimulation of AP-2

recruitment by StxB alone (fig. 2, table 1) we do not find any

significant increase in the number of AP-2 spots in cells first

incubated with piceatannol and then with StxB (p = 0.2).

Control experiments indicate that the formation of AP-2

containing structures was not affected by treatment with

piceatannol or carrier (DMSO) only. After 30 min of incubation

with piceatannol the amount of AP-2 spots relative to the control

(100%) was 10463% (mean 6 average deviation, 4 cells analyzed

per experiment; two experiments). Likewise, treatment of cells with

DMSO for 30 min in 2 independent experiments did not affect the

number of AP-2 spots (103610%; mean 6 average deviation)

relative to the control (100%).

Discussion

Stx was the first lipid-binding ligand shown to induce its own

uptake through a clathrin dependent pathway [3]. Our data

provide evidence that Stx/StxB, upon binding to its glycolipid

receptor at the cell surface, is able to increase the formation of

endocytic clathrin-coated structures directly detected by electron

microscopy and indirectly by the appearance of AP-2 spots at the

plasma membrane. Furthermore, data obtained using live cell

spinning disk confocal imaging indicates that the new coated

structures tend to have longer lifetimes and higher maximum

fluorescence intensities, presumably reflecting slightly larger coats.

The tyrosine kinase Syk seems to be important for this activation,

although the mechanism responsible for this process remains to be

established.

We first used electron microscopy to demonstrate an increase in

the number of clathrin-coated pits in HeLa or HEp-2 cells exposed

to Stx. We then confirmed this finding for HeLa cells exposed to

StxB by using live-cell spinning disk confocal imaging. We note

that our data might underestimate the full extent of the effect

because we did not include in the analysis clathrin/AP-2 coated

plaques, corresponding to endocytic structures lasting more than

2–3 min [17]. We noticed differences in the response of given cells

that we interpret to be due to the existence of cells that poorly bind

Stx, probably because of differences in the expression level of the

Stx glycosphingolipid receptor Gb3.

It is presently unclear whether the increase of AP-2 structures

mediated by Stx is explained by activation of initiation events

leading to an increase in the number of the de novo formed coated

pits or whether Stx activation stabilizes abortive pits allowing them

to become fully formed coated vesicles [15,18,20–22]. Stx can

induce non-apoptotic signaling cascades in cells, but the

mechanism behind this rapid signaling, induced by binding of its

B-moiety to Gb3, remains to be established [3–10]. It has been

proposed that the lipid tail of glycosphingolipids can interact with

the inner membrane leaflet, and signaling may also be mediated

through a membrane protein interacting with the Stx/Gb3-

complex. It has recently been shown that the extra-cellular domain

of the trans-membrane receptor Fas interacts strongly with Gb3

through a glycolipid-binding motif [23]. This motif is important

for Fas-induced apoptotic and non-apoptotic signaling as well as

clathrin-mediated internalization of Fas [23]. Moreover, Stx has

been shown to interact with two non-identified, possibly signaling

proteins at the cell surface [24]. We have previously demonstrated

that increased concentrations of Stx, as opposed to StxB, lead to

higher uptake of TAG/biotin-labeled Stx [4]. Thus, the A-moiety

seems to be required for the concentration-dependent toxin

uptake, yet StxB is sufficient for signaling and increased clathrin-

coated pit formation.

Our data show that the Stx-induced formation of the AP-2-

containing clathrin-coated structures reached its maximum value

Figure 3. StxB increases the activity of AP-2 structures. Representative time-series were obtained by live-cell spinning disk confocal imaging
of a HeLa cell stably expressing s2-EGFP before (upper panel) and after (lower panel) exposure to StxB for 10 min. Arrows point to examples of
diffraction-limited AP-2 spots appearing and disappearing within the time-series. Images were acquired every 3 s, and are shown with 9 s between
images. Laplacian 2D and Gaussian filtering were applied on all images in order to facilitate their graphical display. The time series corresponding to
this experiment is available as Supporting Information (Movie S1).
doi:10.1371/journal.pone.0010944.g003
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after about 10–13 min of incubation with the toxin. This

observation coincides with the timing of clathrin heavy chain

phosphorylation induced by Stx that peaks at around 10–15 min

after toxin addition [9]. Of note, activation of Syk by Stx is faster

and can be detected already 2.5 min after addition of Stx [9].

Clathrin and Syk can associate with each other, and they form a

complex upon induction by Stx [10]. Syk is not only important for

Stx endocytosis [9,10] but it also seems to be involved in the

uptake of human rhinovirus [25]; interestingly, virus binding

induces Syk recruitment to the plasma membrane and co-

association with clathrin. We found that inhibition of Syk activity

by piceatannol prevented the increase in the number of clathrin-

coated structures that formed upon addition of StxB. Although

these observations clearly indicate a connection between Syk

Figure 5. Rate of Tf internalization in HeLa cells is not affected
by the addition of StxB. At different time points 125I-labeled Tf was
added to all wells in the presence or absence of StxB. The 125I-signals
corresponding to endocytosed and surface bound fractions were
determined. Data are expressed as the mean 6 average deviation of
results from two independent experiments done in duplicate.
doi:10.1371/journal.pone.0010944.g005

Figure 6. Inhibition of Syk by piceatannol inhibits the Stx-
induced increase in the number of AP-2 spots. HeLa cells stably
expressing s2-EGFP were pre-incubated with piceatannol (50 mM) for
30 min. A time-lapse series was acquired by spinning disk confocal
microscopy with an image obtained every 3 s for 1–2 min. The cells
were then exposed to StxB for 10 min, followed by the acquisition of a
second time-lapse series of 1–2 min. Six independent experiments, with
1–4 cells per experiment, were analyzed, and the result is expressed
relative to piceatannol only. There was no statistically significant
increase (p = 0.2) in the number of AP-2 spots when adding StxB upon
piceatannol treatment. For comparison, the number of AP-2 spots
before (control) and after 10 min incubation with StxB is shown as
determined from table 1; the result is expressed relative to the control
and shows a statistically significant increase of 57616% (mean 6 SE,
p = 0.002).
doi:10.1371/journal.pone.0010944.g006

Figure 4. Lifetime and maximum intensity distributions of AP-2
spots are shifted upon StxB treatment. Representative results
obtained from a HeLa cell stably expressing s2-EGFP are shown. A
control time-lapse series was first recorded for 3 min, and then another
3 min time-lapse series was acquired after 10 min of incubation with
StxB. Images were acquired every 3 s. A total of 92 (control) and 162
(after StxB-treatment) AP-2 spots were recorded and analyzed. Only
spots appearing and disappearing within the time-lapse period of
3 min and typically lasting between 7 and 30 timeframes (21 to 90 s)
were included in the analysis. (A) Effect of StxB on the lifetime
distribution of the AP-2 spots. White and grey bars represent the
number of AP-2 clusters in the different lifetime intervals of the
histogram for the control and the StxB-data set, respectively. Lifetime
was defined as the period from appearance to disappearance of the AP-
2 spot. (B) Effect of StxB on the distribution of maximum fluorescence
intensity for AP-2 spots. White and grey bars represent the number of
AP-2 spots in the different maximum intensity intervals of the
histogram for the control and the StxB data set, respectively. Maximum
fluorescence intensity is expressed in arbitrary fluorescence units and
was measured just prior to dissolution of the AP-2 signal due to un-
coating of the clathrin/AP-2 coat.
doi:10.1371/journal.pone.0010944.g004
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activation and regulation of the clathrin endocytic pathway, the

detailed mechanism responsible for this process remains to be

determined. These observations also seem to rule out a simple

model of clathrin coat activation that could be based on changes in

the physical properties of the lipid bilayer at the site of coat

formation due to local clustering of glycosphingolipids induced by

binding to the pentameric StxB.

Materials and Methods

Materials
Stx was provided by JE Brown (USAMRIID, Fort Detrick, MD)

and StxB (StxB-Sulf2) was prepared as described in [26]. StxB was

labeled using an Alexa Fluor 568 protein labeling kit from

Invitrogen (Carlsbad, CA) and purified on an Illustra NAP-5

Column (GE Health Care, Waukesha, WI) following the

manufacturers’ instructions. Degree of labeling was calculated to

3 mole dye per mole protein. Horse anti-Stx serum was obtained

from Bureau of Biologics, Food and Drug Administration

(Bethesda, MD). Piceatannol came from BIOMOL (Plymouth

Meeting, PA) and was re-suspended in DMSO. DMSO concen-

trations in experiments never exceeded 0.2%. All other chemicals

were from Sigma-Aldrich (St. Louis, MO) unless otherwise stated.

Cell culture
All cells were cultured in DMEM supplied with 10% fetal calf

serum, 2 mM L-glutamine, penicillin (50 units/ml), and strepto-

mycin (50 mg/ml) at 37uC and 5% CO2. For live imaging

experiments HeLa cells stably expressing s2-EGFP [27] were

seeded at a density of 105 cells on glass cover-slips 25 mm in

diameter (No. 1.5, Warner Instruments, Hamden, CT) in 6-well

plates two days prior to the experiment. For electron microscopy

HeLa and HEp-2 cells were seeded the day before the experiment

at a density of 46105 cells per 25 cm2.

Electron Microscopy
Two types of ultrastructural experiments were performed. The

cells were starved in MEM supplemented by Hepes at 37uC for 4 h.

In the first experiment HeLa and HEp-2 control cells and cells

exposed to Stx (250 ng/ml for 10 min at 37uC) were washed 3 times

in cold buffer (0.14 M NaCl, 2 mM CaCl2, 20 mM Hepes, pH 7.0),

fixed (0.1 M cacodylate buffer, pH 7.2, and 2% glutaraldehyde),

dehydrated, and embedded in Epon. Sections from the four samples

were examined by EM without knowing the specific experimental

setup, and 20–30 cell profiles from each experiment were selected at

random and photographed. The length of the plasma membrane

was measured on these images. In addition, the number of CCPs at

the plasma membrane of the same cell profiles was counted at high

magnification in the microscope. In the other experiment, HeLa

cells were incubated with Stx (10 mg/ml) for 10 min at 37uC, and

after washing further incubated with anti-Stx antibody for 60 min

on ice. Thereafter the cells were incubated with protein G-gold

(PGG) on ice (60 min), fixed and further processed for EM (pre-

immunogold labeling, see [28]).

Live-cell imaging
HeLa cells stably expressing s2-EGFP were seeded 2 days prior

to the experiment. The cells were serum-starved for 1K–2 h in

Hepes medium. The cover-slip was transferred to a chamber insert

(20/20 Technology, Wilmington, NC) containing Hank’s balanced

salt solution (HBSS) supplemented by 15 mM Hepes, 4.5 g/L

glucose, and 350 mg/mL Na2HCO3, and pH-adjusted to 7.6, and

the cells were maintained at 37uC and 5% CO2 throughout the

experiment. A Marianatm system (Intelligent Imaging Innovations,

Denver, CO) consisting of an Axiovert 200M epifluorescence

microscope (Carl Zeiss, Thornwood, NY) with a spinning disk

confocal head (CUX-22, Yokagawa, Japan) was used for spinning

disk confocal imaging. It was also equipped with a motorized

spherical aberration correction unit (Intelligent Imaging Innova-

tions, Denver, CO). Solid state 473 and 561 nm lasers were used to

excite EGFP or Alexa Fluor 568; the objective was a 636Plan Apo

DIC with numerical aperture 1.40 (Carl Zeiss, Thornwood, NY),

and the camera was a CCD Cascade II (Photometrics, CA). The

microscope was controlled by SlideBook 4.2 software (Intelligent

Imaging Innovations, Denver, CO). A typical experiment started

with the acquisition of control movies of 3 min recorded from the

plasma membrane at the bottom of the cell in contact with the glass

coverslip, with 30 ms exposure every 3 s. Then StxB-Alexa Fluor

568 (final concentration 5 mg/ml) plus StxB (final concentration

0.2–2 mg/ml) were added. New movies were captured of the same

areas in the same cells, starting 3–8 min after addition of StxB. After

30 min the medium was changed to fresh HBSS, and a 3D-stack

was acquired to test toxin uptake as reflected by the extent of

perinuclear StxB staining. For the experiments including piceatan-

nol, the cells were incubated in HBSS containing 50 mM

piceatannol for 30 min before control movies were acquired, and

piceatannol was present throughout the experiment.

Image processing
Images were processed using SlideBook 4.2; the number of AP-

2 structures (equivalent to endocytic clathrin-coated pits and

vesicles) observed at given time points was determined as follows:

The sum of 20 timeframes corresponding to a 1 min movie

starting at a specific time point was projected as a single image,

and the total number of AP-2 spots present in the time series

before and after addition of StxB was counted. Dynamics of coated

pit formation was determined with the aid of an image analysis

application (IMAB) for MATLAB 7 (Mathworks, Natick, MA) as

described in [19].

Tf uptake
HeLa cells were seeded in 6-well plates at a density of 26105

one day prior to the experiment. They were serum-starved for

2 hours in Hepes medium, and 125I-labeled Tf was added to all

cells with or without StxB (StxB-Alexa Fluor 568 (5mg/ml) plus

unlabeled StxB (2 mg/ml)) for the indicated times at 37uC. The

cells were then washed three times in Hepes buffer (0.14 M NaCl,

2 mM CaCl2, 20 mM Hepes, pH 7,2) at 4uC, followed by

addition of Pronase (Roche, Mannheim, Germany) in Hepes

buffer. After 1 h incubation on ice, cells were centrifuged, and

radioactivity in the pellet and in the supernatant was counted with

an LKB 1261 Multigamma counter (Wallac, Turku, Finland).

Statistical analysis. The paired Student’s t-test was used to

determine the level of statistical difference between the means of

two groups of data. Minimum level of significance was set at

p = 0.05.

Supporting Information

Movie S1 Live-cell spinning-disk confocal imaging of a HeLa

cell stably expressing s2-EGFP before and after addition of StxB.

The composite movie overlays two consecutive 3 min time-lapse

series acquired from the same cell area before (green) and after

(red) incubation for 10 min with StxB. The arrow points to a

representative diffraction limited AP-2 spot appearing and

disappearing within the time-lapse. Laplacian 2D and Gaussian

filtering were applied to the time-lapse series to facilitate the

graphic visualization [15] The last part of the movie compares the
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location at which new pits formed during the time series before

and after addition of StxB.

Found at: doi:10.1371/journal.pone.0010944.s001 (1.79 MB

MOV)
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