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Abstract

Background: Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study
genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for
interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that
obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several
algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral
LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal
contamination and somatic alterations, complicates analysis and interpretation of these data.

Methods: We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal
structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate
description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM
also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor
samples, where cancer cells are mixed with a proportion of stromal cells.

Conclusions: We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a
dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to
80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM.

Availability: The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.
yale.edu:8080/MixHMM.
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Introduction

Chromosomal structural abnormalities leading to copy num-

ber changes, including deletions and amplifications, are common

in cancer and certain regions are commonly altered, suggesting

their role in the pathogenesis of this disease [1,2]. Copy number

variation (CNV) in the germ line is increasingly recognized as

contributing to developmental defects and susceptibility to

diseases including cancer, similar to single nucleotide polymor-

phisms (SNP) [3,4]. Copy number somatic alterations (CNA, also

referred as CNV here after, as we use the same algorithm for

detection) have been reported as an important factor leading to

cancer [5]. Higher resolution detection of CNV contributes to

the basic understanding of tumor progression and to the

development of biomarkers for prediction of response to therapy

[6]. Advances in the understanding of the relationships of CNV

to basic genomic and epigenomic features of tumors make it

important to extract as much information as possible from the

data available.

The methods for identification of CNV have improved since the

first low resolution cytogenetic and comparative genomic

hybridization studies [7]. Array comparative genomic hybridiza-

tion (aCGH) uses arrays of bacterial artificial chromosome, cDNA,

or synthetic oligonucleotides to probe specific chromosomal

regions for differences in copy number [8,9]. The aCGH

hybridization signal is segmented by chromosomal location

[10,11], and changes in intensity over a region reflect changes in

copy number.

Compared to aCGH methods, whole genome genotyping arrays

based on SNPs (such as the Illumina BeadArray) allow for

combined copy number analysis and allelic imbalance analysis at

high resolution [12]. Starting from the signal intensities of two
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SNP alleles, the Illumina platforms yield two transformed

parameters after self normalization and comparison with reference

normal samples: log R ratio (LRR) derives from the total signal

intensity of both alleles and only depends on the copy number,

while ‘B’ allele frequency (BAF) derives from allele signal intensity

ratio and depends on the allele ratio (i.e. proportion of ‘B’ in a

genotype composed of ‘A’s and/or ‘B’s). The values of LRR and

BAF for each SNP can be plotted along the entire genome in the

position order. A LRR plot of a diploid chromosomal region

displays a band centered at 0, and a region with copy number

changes will be reflected by an upward or downward shift of the

band. A BAF plot of a sample which is either normal or contains

balanced amplifications (both alleles are amplified to the same

copy number) displays as a three-band pattern, with homozygous

genotypes clustering at 0 or 1 and heterozygous genotype

clustering at 0.5. A LOH region, representing the most

imbalanced form of CNV, lack any heterozygous bands, while

an allelic imbalanced region other than LOH will be reflected as a

split of the heterozygous band in the BAF plot. In tumor samples,

both alterations in copy number and ‘contamination’ of stromal

cells (which are typically seen) can contribute to the more complex

band patterns [12,13].

Most approaches to analysis of whole genome genotyping arrays

have used either segmentation or probabilistic approaches. A

number of segmentation algorithms have been developed to

combine BAF and the total DNA signal, generally by removing

homozygous SNPs from the BAF and transforming the BAF of the

remaining SNPs so they are independent of the specific allele,

using some relationship to the normal heterozygous position of 0.5

[13,14]. These methods require user defined or adaptively derived

thresholds and the biological assumptions are usually unrealistic;

for instance, Assie et al. [14] assumed that all the amplifications

are three copy. Hidden Markov models (HMM) are elegant and

powerful methods addressing the probabilistic approach. The

model proposed by QuantiSNP [15] and adapted by PennCNV

[16], was specifically devised to take advantage of the total DNA

and allele specific data that is provided by genotyping platforms.

They have provided valuable tools for the analysis of the

homogeneous samples. However, they were not designed for the

precise delineation of allelic imbalance (only copy-neutral LOH

can be detected), nor to take into account the fact that tumor

samples may frequently contain DNA that comes from a mixture

of tumor and stromal cells. dChip and overunder are two

algorithms which were designed to deal with tumor samples but

do not handle admixtures with stromal cells [17,18]. In a very

recent publication, Sun et al. [19] have addressed the problem of

stromal contamination, but the CNV assignment is inaccurate in

tumor samples with a considerable proportion of normal stromal

cells (see results).

Using a HMM with up to 20 states representing copy numbers

from 0 through 7, we developed a novel computational

framework (MixHMM) for detecting copy number and allelic

imbalance accurately. By combining with a novel sample mixing

model, we demonstrate that MixHMM can also detect the CNV

states of tumor cells in a heterogeneous sample contaminated

with normal cells (i.e. in a biopsy sample). The remainder of the

paper is structured as follows. First, we present the underlying

assumptions, the CNV states, our definition of allelic imbalance

and the HMM. Second, we present the sample mixing model

which allows us to detect copy number changes and allelic

imbalance in mixed tumor samples. We then validate the

algorithm on simulated data and illustrate the essential features.

Next, we show the results of dilution series in which tumor DNA

is mixed with normal DNA. Finally, we demonstrate that the

algorithm can be applied with either pure or mixed tumor

samples from patients.

Results

The CNV states and Hidden Markov Model
Copy number variation (CNV) events such as deletion and

duplication/amplification can be detected from genotyping array

data, which give BAF and LRR values for each SNP based on the

signal intensities of both SNP alleles [12]. Figure 1 is a schematic

representation of those CNV events up to copy number 4. We use

‘F’ and ‘M’ throughout to represent each of a pair of homologous

chromosomes inherited from parents. We make the assumption that

each CNV state originated from the underlying normal two copy

state (‘FM’) with one or both chromosomes deleted or amplified.

The upper part of Figure 1 demonstrates that there are nine

distinctive CNV states from 0 to 4 copies. We always use fewer or an

equal number of ‘M’s in a state name because a state like ‘FMM’ is

not distinguishable from ‘FFM’ by genotyping array data. Each

state defined as above is distinct from the other states based on the

combination of its copy number (CN) and its allelic imbalance (AI).

In Table 1, we list all the possible CNV states for copy number

up to seven. For a quantitative measurement, we define allelic

imbalance of a CNV state as 1=2{MCP, where MCP stands for

the proportion of the minor copy allele (i.e. the proportion of ‘M’s

in a state name in Figure 1 and Table 1). Thus, by definition, the

allelic imbalance is a value between 0 and K (including borders).

Allelic imbalance of the normal state (‘FM’) or a balanced

amplification states (containing equal numbers of ‘F’ and ‘M’, such

as ‘FFMM’) is 0; that of a LOH state (with only ‘F’s in name) is 1/

2; that of an imbalanced amplification (in which both alleles are

present in increased but unequal numbers, such as ‘FFM’) will be a

value between 0 and 0.5 (for state ‘FFM’, MCP~1=3 and allelic

imbalance AI~
1

2
{

1

3
~

1

6
). Therefore, by using the CNV states

defined above as the hidden states in the hidden Markov model

(HMM), we can detect forms of allelic imbalance other than LOH,

such as imbalanced amplification.

Using ‘A’ and ‘B’ to represent the two investigated alleles for

each SNP, the bottom track in Figure 1 shows that each CNV state

can include up to four different genotypes (each genotype should

be read vertically), with each genotype corresponding to a

characteristic horizontal band in a BAF plot for a homogeneous

sample. Each LOH state has exactly two distinctive genotypes;

each allele balanced state has three distinctive genotypes; and each

imbalanced state other than LOH has four distinctive genotypes.

As shown in Table 1, we classify genotypes of each state into four

classes based on the original germline genotypes (‘AA’, ‘BB’, ‘AB’):

derived from original ‘AA’ (oA), derived from original ‘BB’ (oB),
derived from original ‘AB’ with an equal number or more of ‘A’s

compared to ‘B’s (eA), and derived from original ‘AB’ with equal

number of or more of ‘B’s compared to ‘A’s (eB). Let pB be the

population frequency of ‘B’ allele at a SNP locus, then the

probabilities of observing each genotype in a normal state (‘FM’)

are (1{pB)2, p2
B, pB(1{pB), pB(1{pB) for genotypes oA,oB,eA,eB

respectively.

Under the assumption stated in the first paragraph (all the CNV

states originated from ‘FM’ states with only deletions and/or

amplifications), we can deduce that the probability of observing

each of the four genotype classes of a given SNP is exactly the

same as that in ‘FM’ state. Therefore, we use Equ. 4 (see methods

section for equations) to estimate the probability of observing a

BAF value, given a CNV state and the BAF distribution of each of

the four genotype classes; we use Equ. 3 to estimate the probability

Tumor Copy Number Analysis
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of observing an LRR value, given a CNV state and its LRR

distribution. Under the same assumption, we can also deduce that,

given that there is a state change between two adjacent SNPs, the

state of the second SNP is independent of that of the first one.

Therefore, we use Equ. 2 to estimate the state transition

probabilities, given the prior probabilities of state changing. These

estimates are subsequently used in the Viterbi algorithm to decode

the hidden states of each SNP locus in each chromosome.

Model update in tumor samples mixed with stromal DNA
To detect the CNV states in a non-homogeneous tumor sample

‘contaminated’ with a known proportion (p) of the stromal cells

(assumed to be in ‘FM’ state by default), we update the LRR and

BAF normal distributions using separate mixing models.

We use Equ. 6 and Equ. 7 to calculate the LRR distributions for

each CNV state mixed with normal state. Figure 2a shows the

results for five different copy number states (0 to 4 copies) mixed

with different proportions of normal (‘FM’) cells. When there is no

normal tissue included (p~0), the LRR distributions are exactly

the same as those of pure tumors. With the proportion of normal

cells increasing, the mixed signals are more influenced by the

normal DNA; thus, the LRR distributions (for both mean and

variance) of all other copy number states start to shift toward the

distribution of the diploid state (2n, the green line in Figure 2A). As

a consequence, the power to discriminate different states

decreases, especially for the states with a higher copy number.

Assuming that each CNV region in tumor cells is derived from

the corresponding region in the mixed stromal cells, we can

deduce that each compound ‘genotype’ in a mixed sample comes

from the genotypes of the same class in tumor and normal DNA

(see Table 1). For example, when a ‘FFM’ tumor state is mixed

with the ‘FM’ normal state, the BAF distribution of the mixed eA

‘genotype’ must come from a mixture of tumor eA genotype

(‘AAB’) and normal eA genotype (‘AB’). Thus the distribution

probabilities for the four genotypes stated in Equ. 4

(p2
A,p2

B,pApB,pApB) still applies.

However, the BAF normal distributions do change after mixing,

and we use Equ. 9 and Equ. 10 and to estimate the BAF

distribution of each of the four compound ‘genotypes’. Figure 2B

shows the results from nine CNV states (as columns), representing

copy number 0 through 4, mixed with four different proportions

(as rows) of normal cells. As expected, the BAF distributions for the

mixed samples for each state converge to the BAF distributions of

‘FM’ state as the proportion of the normal cells increases. Different

kinds of states are affected in different ways. Specifically, the

balanced states (‘FM’ and ‘FFMM’) stay the same and are not

affected by the presence of normal cells. The homozygous deletion

state (‘O’) approaches the normal state as normal cells are added to

the mixture. For the LOH states (‘F’, ‘FF’, ‘FFF’, ‘FFFF’), two

heterozygous bands emerge as the result of eA and eB genotype

mixing respectively. For example, eA in ‘F’ state (‘A’) is mixed with

eA in ‘FM’ state (‘AB’). Imbalanced amplifications (‘FFM’,

‘FFFM’), which already have two heterozygous bands, also

converge to the ‘FM’ state as the proportion of normal cells

increases.

Thus, it is evident that the predictive power of MixHMM

decreases with the increasing noise level in the data caused by

‘contamination’ of stromal cells. We will show below, however,

that in both simulations and real tumor samples, MixHMM can

reliably detect the CNV states up to seven copies in a sample

mixed with up to 0.6 proportion of normal cells. We can also see

from Figure 2 that the correct assignments of CNV states in tumor

can be negatively influenced by inaccurate estimation of the

proportion of cells in normal state. For example, ‘FFM’ mixed

with a 0.5 proportion of ‘FM’ has an identical BAF distribution as

that of ‘FFFM’ mixed with a 0.75 proportion of ‘FM’ (subplots

indicated by arrows in Figure 2); and the mixed copy numbers are

also identical, which is 2.5. Therefore if the proportion 0.5 is

inaccurately estimated to be 0.75, the ‘FFM’ state is likely to be

misassign ed to ‘FFFM’ state. Assuming that the mixed samples are

composed of homogeneous pure tumor cells and homogeneous

stromal cells, we use Equ. 11 to estimate the proportion of normal

Figure 1. Chromosome instability events as CNV states for copy number up to four. All nine possible CNV states and genotypes with copy
numbers up to 4 are presented here as a ‘‘pseudo chromosome’’. (See Table 1 for an alternative representation of 20 states with copy numbers up to
7). All states are assumed to be derived from the underlying normal two copy state (‘FM’) which has regions from both chromosomes (‘F’ in blue, ‘M’
in red). The top track indicates the composition of each state based on the source chromosomes. The second track gives a graphical representation of
the state composition along different regions. The third track gives the copy number for a region, from 0 to 4, which are separated by the vertical
bars. The fourth track shows an example set of haplotypes making up the region (‘A’ and ‘B’ are the alternate alleles). There are up to four distinctive
genotypes in each state, with each genotype for an individual SNP shown in a vertical column (for example, the SNP genotype indicated by the red
arrow is ‘AAB’). In the homozygous deletion state (‘O’), both regions are deleted (labeled in gray). In the LOH states (labeled with only ‘F’s), one of the
source chromosomes is deleted, while the other can be amplified one or more times. The normal state (‘FM’) has regions from both chromosomes.
The remaining states harbor regions from both source chromosomes with one or both regions amplified. States such as ‘MM’, ‘FMM’, etc are not
listed because they are not distinguishable from ‘FF’ and ‘FFM’ by genotying array data.
doi:10.1371/journal.pone.0010909.g001
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cells from the characteristic BAF value of the compound eA

genotype for a given tumor CNV state, and we found that the

CNV detection of MixHMM is pretty robust with proportion

estimation.

Evaluation with simulated data
To evaluate the performance of MixHMM, we simulated

regions of all states with a 20-state model using the SNP positions

and population ‘B’ allele frequencies (pB) of the Illumina

Human550K BeadChip (Illumina. http://www.illumina.com).

To evaluate the algorithm visually, we simulated each state (in

the same order as in Table 1) as a 300-SNP region on

chromosome 1. The results of CNV detection by MixHMM is

shown in Figure 3A. We show that both copy number and allelic

imbalance are detected accurately for all the 20 states in the

simulated pure tumor sample (p~0). Also, the CNV detection in

simulated tumor sample mixed with up to 80% normal cells are

almost as accurate. With this simulation data, incorrect state

assignments only occur in the bordering area between two

adjacent regions with different CNV states, especially between

regions with the same copy number, hence the same expected

LRR value (data not shown). As homozygous genotypes exist in all

the CNV states (see Table 1), and they have the same expected

BAF values (0/1), when several SNPs of such genotypes are in the

bordering region, it is not possible to draw an exactly correct

border line.

To compare MixHMM with other detection algorithms, the

results of PennCNV [16] and GenoCNA [19] for the same

simulation data as above are shown on the top tracks of Figure 3A.

They only detected the copy number from 0 through 4, and these

detections become inaccurate in samples with a considerable

proportion (p~0:4, p~0:8) of normal cells. For example, the four

copy (4n) regions and ‘FFFMMM’ (6n) regions tend to be

misassigned as three copy (3n) when p~0:4, all the deletion

regions and many amplicated regions have not been detected

when p~0:8.

To evaluate the CNV detection quantitatively, we simulated 20

states (with shuffled order and different chromosomal offset

position) on every autosomal chromosomes. We have used

different region lengths (50, 100, 200, 300 SNPs) in each

simulation. We define recovery rate as the proportion of SNPs

with detected value (copy number or allelic imbalance) exactly the

same as the underlining true value. Figure 3B shows the recovery

results from 100 simulations (220 duplications for each state) with

100-SNP CNV regions. We can see that the detection of copy

number is less accurate when the proportion of normal cells is very

high (p~0:8), especially for regions with a high copy number

(nw4). For states with high copy number, the differences of LRR

values between states are smaller (also see Figure 2A), so CNV

states with similar mixed BAF distributions are more likely to be

confounded with each other (for example, ‘FFFFMM’ and

‘FFFFFMM’). The detection of allelic imbalance is also less

accurate when p~0:8, especially for regions with a small allelic

imbalance. The BAF of these states look more like that of ‘FM’

state (also see Figure 2B), so the CNV states with similar mixed

‘copy numbers’ can be misassigned to each other (for example

‘FFFMMM’ and ‘FFFFMMM’). However, such misassignments

are almost always between high copy number states, and usually

Table 1. CNV states and Genotypes.

CNV Copy Minor Copy Genotype Classes

state number Proportion oA eA eB oB

O 0 NA - - - -

F 1 0 A A B B

FF 2 0 AA AA BB BB

FM 2 1/2 AA AB AB BB

FFF 3 0 AAA AAA BBB BBB

FFM 3 1/3 AAA AAB ABB BBB

FFFF 4 0 AAAA AAAA BBBB BBBB

FFFM 4 1/4 AAAA AAAB ABBB BBBB

FFMM 4 1/2 AAAA AABB AABB BBBB

FFFFF 5 0 AAAAA AAAAA BBBBB BBBBB

FFFFM 5 1/5 AAAAA AAAAB ABBBB BBBBB

FFFMM 5 2/5 AAAAA AAABB AABBB BBBBB

FFFFFF 6 0 AAAAAA AAAAAA BBBBBB BBBBBB

FFFFFM 6 1/6 AAAAAA AAAAAB ABBBBB BBBBBB

FFFFMM 6 1/3 AAAAAA AAAABB AABBBB BBBBBB

FFFMMM 6 1/2 AAAAAA AAABBB AAABBB BBBBBB

FFFFFFF 7 0 AAAAAAA AAAAAAA BBBBBBB BBBBBBB

FFFFFFM 7 1/7 AAAAAAA AAAAAAB ABBBBBB BBBBBBB

FFFFFMM 7 2/7 AAAAAAA AAAAABB AABBBBB BBBBBBB

FFFFMMM 7 3/7 AAAAAAA AAAABBB AAABBBB BBBBBBB

A CNV state is named using ‘O’ (for homozygous deletion) or a combination of ‘F’s and ‘M’s, with less or equal number of ‘M’s. Minor copy proportion (MCP) is the
proportion of the number of ‘M’s in a state name. The four genotype classes are defined by their germline origination: oA ,oB originate from germline homozygous
genotypes ‘AA’ and ‘BB’, respectivly; eA,eB originate from germline heterozygous genotype ‘AB’.
doi:10.1371/journal.pone.0010909.t001
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do not pose a problem for CNV conclusions. We also found that

even these trivial misassignments become less common with larger

CNV regions (regions with more than 200 SNPs). The recovery

results for 300-SNP regions are included in Figure S1.

Evaluation with dilution series of Cancer Celllines
To test the detection performance of MixHMM on real tumor

samples with known proportion of ‘FM’ cells, we used a dilution

series of breast cancer cell lines studied by [12]. The genomic

DNA from a cancer cellline (ATCC: CRL-2324D) was mixed with

0, 0.25, 0.5. 0.75, 1 proportion of DNA from a normal cellline

(ATCC: CRL-2325D) and hybridized to Illumina Human109K

BeadChips. A CNV detetion of the ‘normal’ cell line suggests that

chromosome 6 and chromosome 16 harbor large regions of

heterozygous deletion, so these two chromosomes are excluded in

the following analysis. After the estimation of the BAF value of ‘A’

genotype in each sample, we use Equ. 11 to estimate the

proportion of normal cells. We obtained 0, 0.25, 0.66, 0.86, 1

respectively, which is close to the proportion of normal DNA

decribed above. The slight overestimation probably stems from the

observation that such a cancer cell harbors more DNA than a

normal cell. For example, if equal numbers of such cancer cells

and normal cells are mixed, the proportion of normal cells is 0.5,

while the proportion of normal DNA is less than 0.5.

We performed a CNV detection for each pure and mixed

sample using a 20-state HMM. As detected from the (see Table

S1) pure tumor sample, the breast cancer cellline has a very

complex genotyping profile: the dominating regions are in LOH

states instead of the nomal ‘FM’ state, and more than half (0.52)

of the genome are amplified in various ways. In Figure 4, we

show examples of the copy number results from samples mixed

with different proportions of stromal cells. The left panel shows a

long run of homozygosity (LOH regions) with different regions

from chromosome 1p showing a variety of copy numbers. The

middle panel shows three amplified regions (balanced and

imbalanced) from chromosome 5p. The right panel includes a

highly amplified region from chromosome 14q. The underlying

truth about copy numbers in the cancer cellline is unavailable, yet

Figure 2. LRR distributions and BAF distributions in simulated mixed samples. A) Mixing of LRR. Each line represent a state of a certain
copy number (color code on right) mixed with a proportion of normal ‘FM’ cells (proportion on top), with ‘FM = 0’ corresponding to a pure tumor
sample. B) Mixing of BAF. Each subplot represent a certain CNV state (name on top) mixed with a proportion of ‘FM’ cells (proportion on left), with
‘FM = 0’ corresponding to a pure tumor sample.
doi:10.1371/journal.pone.0010909.g002
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Figure 3. CNV detection from simulated data. A) Detection of copy number (CN) and allelic imbalance (AI) from simulation of pure tumor and
mixed samples on Chromosome 1. Each of the 20 states are simulated to be a 300-SNP region. The numbers on the left side are proportions of ‘FM’
cells. The underlying truth simulated is depicted in the panels of ‘simu. CN’ and ‘simu. AI’. The BAF and LRR plots are of simulated pure tumor cells
(p~0:0). In the PennCNV and GenoCNA CN tracks, the copy number are from 0 to 4 with the baseline (gray) representing 2n, and flat box (the orange
fragment) is copy neutral LOH. The results of MixHMM are separated to copy number and allelic imbalance. In the CN tracks, the baseline (gray)
represents 2n, and the copy numbers range from 0n through 7n. In the AI tracks, the baseline represents 0, and it ranges from 0 through 0.5. B) Box
plots of recovery rates of copy number and allelic imbalance detected using MixHMM from the simulation. The numbers on the left side are
proportions of ‘FM’ cells. Values of each copy number/imbalance comes from the simulations of 220 regions with each region spaning 100 SNPs.
doi:10.1371/journal.pone.0010909.g003
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the copy numbers detected from tumor samples mixed with 25%,

66% and 86% of normal cells are consistent with those from pure

tumor sample. The copy numbers detected using GenoCNA are

also shown in Figure 4. The MixHMM are more advantagous

when the normal proportion is considerably high (greater than

50%).

For comparison with other algorithms (PennCNV and Gen-

oCNA) quantitively, we collapse the detected CNV states into six

states used by PennCNV, and calculated the recovery and false

discovery rates (FDRs) using the detection from the pure cancer

cellline as reference. The results are shown in Figure 5. When

mixed with a small proportion of normal cells (p~0:25), the

performance of GenoCNA is comparable with MixHMM except

for its low recovery (0.46) of states with more than three copy

numbers. When mixed with a larger proportion of normal cells

(p~0:66), however, MixHMM has a much better performance.

Note that the recovery of 1n (‘F’) state are higher for GenoCNA

but it has a very high FDR too (0.79). Considering the genomic

complexity of the cell line and the low density of the Human109K

BeadChips, the detection results using MixHMM in samples

mixed with up to 66% of stromal cells are satisfactory. The

recovery rate for the 1n (‘F’) state in the sample with 66% stroma

(0.56) is not as good as expected, because about half of regions

detected as ‘F’ in pure tumor have a considerably higher median

LRR value (an example of such a region is indicated with an arrow

head in Figure 4). A possible explanation is that this ‘pure’ tumor

sample is actually a mixture of two different clones, and their CNV

states in the troublesome regions are different (for example, one is

in ‘F’ and the other is in ‘FF’).

Analysis of tumor samples
We have also applied our MixHMM algorithm with real tumor

samples, both pure tumor samples and tumor samples ‘contam-

inated’ with stromal cells. In a melanoma pure tumor sample

(‘LAC_mel’, unpublished data from the Halaban Lab) hybridized

on Illumina’s Human1M BeadChip, we have identified typical

regions in each of the nine states for copy number up to 4 and

some highly amplified regions (CN.4) (see Table S1 for a

summary). In Figure 6A, we show examples of some detected

regions compared with results of PennCNV. The left panel shows

regions of total deletion (‘O’), one-copy deletion (‘F’), and three-

copy LOH (‘FFF’) from chromosome 11p. The middle panel, from

chromosome 5, shows a region of ‘normal’ state (‘FM’) and regions

of two different four-copy heterozygous states: balanced (‘FFMM’)

and imbalanced (‘FFFM’). The right panel, from chromosome 3p,

shows a region of four-copy LOH (‘FFFF’) and regions of highly

amplified states (CN = 5, 6, 7). Although the underlying truth

about the copy number and allelic imbalance are unavailable, the

assignments by MixHMM are consistent with manual annotation

by comparing with the expected LRR and BAF patterns. In

comparison with PennCNV, MixHMM detects more states. Not

only can it detect states with higher copy numbers (up to 7), but

different states with the same copy number can be distinguished by

allelic imbalance. For example, LOH states with high copy

Figure 4. CN detection in dilution series of a breast cancer cell line (CRL-2324D). The numbers on the left of each track are the proportion
of normal (‘FM’) cells, the BAF and LRR tracks are for pure tumor sample (p~0). Some putative CNV states as detected with MixHMM from pure tumor
sample are labeled below all tracks. The chromosome and approximate start and end location is labeled on top of each column. The arrow head in
the left panel point to a short region with LRR values between those of 1n and 2n. In the CN tracks, the baseline (gray) represents 2n, and the copy
numbers range from 0n through 7n.
doi:10.1371/journal.pone.0010909.g004
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numbers can be detected, which can be biologically important.

MixHMM detection is also more accurate because of the more

comprehensive state definitions. For example, some of the ‘FFF’

regions are misassigned as ‘FF’ and some of the ‘FFFM’ regions

are misassigned as 3n by PennCNV.

Breast cancer biopsy samples are rarely pure unless they have

been microdisssected. Here we use the published ‘BT5’ breast

cancer data [20] to demonstrate the power of MixHMM.

Following the procedure described in the methods, we estimate

the proportion of normal cells in this sample (Figure S2) to be

about 30%. In Figure 6B, we show the detection results using both

MixHMM and PennCNV. As expected, the CNV detection using

PennCNV in this heterogeneous dataset tend to be inaccurate. For

example, it tends to assign one copy deletion (‘F’ in first column) as

copy-neutral LOH, to assign 4n as 3n (‘FFFM’ in the last column).

MixHMM, however, detects copy number and allelic imbalance in

the cancer cells accurately (consistent with model and manual

annotation)., in spite of the considerable contamination of stromal

cells.

Discussion

High throughout SNP-based genotyping arrays have been

increasingly used to identify copy number variation and copy-

neutral loss of heterozygosity, and have provided invaluable

insight into the complexity of genomic variations, especially for

disease related variations. The accuracy and density of genotyping

arrays have improved rapidly, with current versions having a

density of over one million SNPs/probes. However, new detection

algorithms are needed to extract more detailed information about

genome complexity from these genotyping data. And new

algorithms are also needed to detect the genome complexity in

tumor samples mixed with stromal cells, which is almost

unavoidable in biopsy samples. Under the assumption that all

the CNV events originate from the underlying normal state, here

we present MixHMM, a novel HMM based algorithm, which can

detect copy number, allelic imbalance and genotype accurately,

from homogeneous samples or heterogeneous samples with tumor

cells mixed with a certain proportion of stromal cells. We validated

the technique using both simulation data and real tumor data

including breast cancer and melanoma.

Allelic imbalance revealed by the genotyping data includes not

only classical single copy LOH and copy-neutral LOH but, in

principle, can include other forms of imbalance such as high-copy

LOH and imbalanced amplification. Such information has not

typically been a focus of whole genome analyses, but may provide

insight into differing mechanisms of amplification at specific loci or

mechanisms differing among individual patients. Our preliminary

analyses suggest such events do occur in tumors. Only algorithms

which can utilize the available data to detect these events will be

able to identify how prevalent such changes are and lead to

determining their functional significance. MixHMM models

multiple states for a high-copy region, for example, three states

instead one are used for a 4-copy region (see Figure 1 and Table 1).

It is not only more genetically meaningful but also allows detection

of all forms of allelic imbalance. Still another benefit of this

Figure 5. Comparison of three algorithms in dilution series of a breast cancer cell line (CRL-2324D). Each subplot shows the recovery
(the upper row) and false discovery rates (the lower row) in a cancer sample with a certain proportion of normal cells (proportion labeled above each
column). The collapsed CNV states are labeled on x-axis, with copy number = 0 (‘0n’), 1 (‘1n’), 2 (‘FF’,‘FM’), 3 (‘3n’), . = 4 (‘4n’). The blue points
(connected with blue solid lines) are results using MixHMM, the red points (connected with red dotted lines) are for PennCNV and the green points
(connected with green dashed lines) are for GenoCNA. When there are no SNPs detected in a state, there will be no point in the plot.
doi:10.1371/journal.pone.0010909.g005
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Figure 6. Detection of copy number (CN) and allelic imbalance (AI) in tumor samples. A) A melanoma sample (‘LAC-mel’) composed of
almost pure tumor cells. B) A breast cancer sample (‘BT5’) with about 30% of normal cells. Choice state regions as detected by MixHMM are labeled
below all tracks.. The top panels are results of PennCNV detection. On top of each panel we show the chromosome arm and approxiate start and end
positions. The range of copy number (CN) is from 0 to 7 with the baseline represent 2n. The range of allelic imbalance (AI) is from 0 (for balanced
states) to 0.5 (for LOH states), the AI of total deletion (‘O’) is set to 0.5 in this analysis. In the PennCNV track, the solid organge fragments on baseline
represent copy-neutral LOH (‘FF’).
doi:10.1371/journal.pone.0010909.g006
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modeling strategy is that we can assign a more meaningful

genotype to each SNP, for example, instead of using ‘AB’ for a 4-

copy heterozygous genotype, we distinguish ‘AABB’ or ‘ABBB’ or

‘AAAB’ instead.

Similarly to other HMMs for copy number analysis, such as

wuHMM [21], MixHMM requires no training data. The six

model parameters for each hidden state (mean and SD of LRR,

mean and SD of eA BAF, characteristic length of regions,

proportion of SNPs) are provided with the package and can be

easily modified by the users to adapt to special samples. We found

that the CNV detection is robust to the transition parameters but

is sensitive to the emission parameters (distributions of LRR and

BAF).

Mismatches between data and model may cause inaccurate

state assignments. These mismatches can stem from three different

sources. The first type, which is the most common, stems from the

fact that normalization procedures for the original density data

were developed primarily for normal samples. In cancer samples

with complex CNV events, BAF and LRR values of suboptimal

quality are commonly found. The suboptimal quality can be

manifested as asymmetric heterozygous BAF bands, characteristic

LRR values for 2n considerably shifted from 0, genomic wave

effects in LRR values, etc., none of which are biologically. In these

cases, alternative normalization and preprocessing tools should be

applied before CNV detection (see method 4.7). The second type

of mismatch stems from a violation of our assumption that some

regions of the ‘contaminated’ stromal genome are not normal, for

example, in ‘F’ (one-copy deletion) state instead of ‘FM’ state, as

from for instance, inherited copy number variants. In this case, the

genotyping data from a paired stromal sample is needed for

accurate CNV detection. The third type of data-model mismatch

stems from the fact that the genome of tumor cells are sometimes

not homogeneous (i.e. cancer cells with different copy number

changes mix with each together), and this violates the model

assumption that the input data are from a mixture of two kinds of

genomes (see Figure 4 for an example). In this case, there will be

different apparent proportions of normal cells in different regions,

and small regions with alternating CNA states tend to be detected,

which can be considered as a signal of inaccurate detection. Our

model is not intended to distinguish among multiple clones

because the state and proportion of tumor component cannot

always be uniquely determined from the genotyping data of the

mixed sample. For example a mixture with 50% ‘FFFM’ and 50%

‘FM’ gives BAF and LRR distributions exactly the same as those

from 100% ‘FFM’ (germline CNV). Instead, we use the estimated

global proportion (corresponding to the dominant clone of tumor

cells) for CNV detection. Multiple regions of a tumor could be

analyzed to more accurately deal with heterogeneous tumors [22].

Very recently, Sun et al. [19] have developed GenoCNA to

detect the cancer CNV in a tumor samples contaminated with

stroma. We have shown, using simulated samples and dilution

series of cancer celllines, that MixHMM is significantly more

accurate in detecting CNV in samples with a considerable

proportion of stroma. In addition, CNV regions with copy

number up to 7 can be detected effectively with the 20-state

MixHMM model. Although detection of higher copy number will

inevitably be less accurate because of the saturation effects in both

hybridization and scanning, it is essential to detect the highly

amplified regions in some cancer samples. For example, detection

of patterns of high level amplification, termed ‘firestorms’ reported

in many breast cancer samples [6], may be relevant for

classification and prognostic significance.

MixHMM is designed to detect CNV states using BAF and

LRR values, which are the typical output of Illumina BeadStudio.

For other SNP array platforms such as the Affymetrix chip, the

original outputs need to be transformed to BAF and LRR values

beforehand. Fortunately, there are tools available for such tasks.

For example, the PennCNV site (http://www.openbioinformatics.

org /PennCNV) provides a protocol for that transformation.

Although MixHMM currently only works for CNV detection from

autosomes, it can be extended to cope with X, Y if the LRR values

are well normalized.

In conclusion, our novel algorithm offers several distinct

advantages over previous algorithms. MixHMM allows detection

of copy number variations in tumor cells from a heterozygous

sample contaminated with stromal cells, and it allows detection of

higher copy numbers and richer allelic imbalance. MixHMM

requires no training data, and the model can be easily adapted to

special set of samples. These features are critical components of

algorithms which will fully exploit the potential of the rapid

evolving genotyping platforms for the detection of genomic

variances and biomarkers.

Methods

Overview of the Model used by MixHMM
The CNV states listed in Table 1 are used as the hidden states in

the model (20 hidden states for copy numbers up to 7). The initial/

static state distributions (p) are estimated empirically. The state

transition matrix (A) is not assumed to be stationary, but is

estimated as a function of the distance between two SNP loci (d )

using Equ. 2. The emission probability (B) of an observation given

a state is calculated as a combination of emission probabilities of

both BAF signal and LRR signal using Equ. 3 and 4. For a pure

sample, the normal distributions for LRR and BAF are estimated

empirically. For a mixed sample, the proportion of stromal cells (p)

are estimated using Equ. 11, and the normal distributions for LRR

and BAF are updated Equ. 6, 7, 9 and 10.

The Viterbi algorithm is used to decode the hidden state for

each SNP, which are consequently converted into CNV regions.

The copy number (CN) and allelic imbalance are then calculated

from the state name (composed of ‘F’s and ‘M’s) of each CNV

region (CN = #F+#M, AI = 0.52#M/CN). To view the data

and result in IGB browser (HTTP://igb.bioviz.org), SGR files are

generated from BAF and LRR, and WIG files are generated from

copy number and allelic imbalance. Genotype for each SNP can

be optionally called after the state assignment: the genotype (one of

four) with the greatest probability density at the BAF value. The

population frequencies of ‘B’ allele (pB) are optional (it is only

important for accurate LOH detection), and we adapted them

from the files in the PennCNV package [16]. To detect CNVs with

a different model, just create a new model file using the provided

model file ‘FM20_0.hmm’ (using more or less states and/or

different model parameters). The time performance of the

algorithm is insensitive to the number of states used.

State transition probabilities
SNP loci are not evenly distributed in a chromosome. When

two SNPs are closely located, the state of one SNP may be

dependent on the other. However, as the distance becomes larger,

the correlation will become weaker. When two SNPs are far apart,

their states would be nearly independent. Here we use an

exponential function to approximate the transition probabilities

that have the above spatial property. Suppose the distance,

measured by the number of nucleotides, between two adjacent

SNPs is d. Let pi denote the probability of the stationary

distribution of state i, i.e., the proportion of SNPs in a state i.
And let li be the average length of regions in state i. Define the
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transition probability from state i to a state other than i as

ri~(1{pi)(1{e{d=Li ), ð1Þ

where Li~li(1{pi). This definition assumes that the lengths of

regions in state i and in states other than i have means equal to li

and li(1{pi)=pi, respectively. It has the following properties:

ri~
0, d~0

1{pi, d??

�

Here both pi and li can be estimated empirically from the data.

For simplicity, if there is a state change, we assume the next state is

independent of current state (this can also be derived from the

assumption and each CNV state originated from the ‘FM’ state).

Therefore, the transition matrix A between two hidden states i, j is

given by:

Aij~

1{ri, i~j

ri

pjP
j’=i

pj’

0
@

1
A, i=j

0
BB@ ð2Þ

Observation emission probabilities
Similar to PennCNV [16] and QuantiSNP [15], LRR and BAF

are assumed to be independent for estimation of emission

probabilities.

For LRR emission probabilities (the probability of observing a

LRR value r given a state i), following Wang et al. [16], we also

use a mixture of Gaussian and uniform distributions to reflect the

effect of fluctuation (caused by genotyping error) in experiments

P(rDi)~te(r)z(1{t)
1

si,R
w(

r{mi,R

si,R
) ð3Þ

where t is the probability that a fluctuation happens, e is the p.d.f.

of a uniform distribution defined on all possible LRR values, and w
is the p.d.f. of the standard normal distribution. mi,R,si,R are the

mean and standard deviation (SD) of LRR values in state i. Note

that different states with the same copy number share the same

LRR distribution.

Similarly, emission probability of BAF given a state is modeled

as a mixture of a uniform distribution and four normal

distributions, each of which corresponds to one of the four

genotype classes in Table 1. Recall that we denote the genotype

classes as oA,oB,eA,eB according the underlying germline

genotypes. Assuming that each state comes from the ‘FM’ state,

the four genotype classes must be derived from genotype AA, BB,

AB, AB respectively (see Table 1). So the probability of observing

each genotype class for a given tumor CNV state is the same as

that of each germline genotype, which is p2
A, p2

B, pApB, pApB,

respectively, where pA, pB means the population frequency of ‘A’

allele and ‘B’ allele (pAzpB~1). So we calculated the BAF

emission probability (the probability of observing a BAF value b

given a state i) as

P(bDi)~te(b)z(1{t)½p2
Af (b; mi,oA

,s2
i,oA

)zp2
Bf (b; mi,oB

,s2
i,oB

)

zpApBf (b; mi,eA
,s2

i,eA
)zpApBf (b; mi,eB

,s2
i,eB

)�
ð4Þ

where

f (b; m,s2)~

y(
{m

s
) if b~0,

1{y(
1{m

s
) if b~1,

1
s w(

b{m

s
) otherwise:

8>>>>><
>>>>>:

Here w and y are the p.d.f. and c.d.f. of the standard normal

distribution., and e is the p.d.f. of a uniform distribution on all

possible BAF values. mi,g,si,g are the mean and SD of the BAF

values of genotype class g, in state i.

Figure 7 shows the BAF emission probability distribution for all

the nine states with copy number up to 4. The value of pB can

significantly influence the distinction of a LOH state, in that it can

give the two homozygous genotypes (oA,oB) very different

implications. For example, when pB~0:5, the probabilities of

observing oA and oB are the same (0.25 for ‘FM’ state and 0.5 for

‘FF’ state); however when pB~0:9, the probabilities of observing

oA,oB are very different (0.01,0.81 for ‘FM’ and 0.1, 0.9 for ‘FF’).

Thus, LOH states will be much more distinguishable from other

states when pB is far from 0.5 and the minority allele is observed.

Estimation of model parameters for MixHMM
We provide a 20-state model for copy numbers from 0 through

7, as listed in Table 1. The t in Equ. 3 and 4 is platform specific,

and is set to be 0.01 for Illumina SNP BeadArray. The average

length of regions and proportion of SNPs in each state (li and pi in

Equ. 1) are sample specific. We set them empirically based on

manually annotated breast cancer data and found that the CNV

detection of MixHMM is relatively robust to these parameters

(data not shown).

In a homogeneous sample, the normal distributions of LRR and

BAF are set as follows. For the homozygous deletion state (‘O’), the

mean of LRR and BAF are set to be 24 and 0.5, repectively. For

another state, the mean of the LRR is calculated from the copy

number using the equation provided by [23] and the mean of the eA

BAF is set to be the MCP in Table 1. The standard deviation of LRR

and eA BAF of a state are determined empirically using manually

annotated cancer data. The normal distributions of BAF for other

genotype classes are calculated from that for eA: the distribution for

oA is set to be that for eA of the LOH state with the same copy

number; the distributions of eB,oB is calculated from those of eA,oA

considering the symmetric property of BAF distribution.

In a mixed sample with a proportion (p) of stromal cells, we

update the normal distributions of LRR and BAF with p as

described in the following two sections.

Calculation of normal distributions of LRR in a mixed
sample

We can derive the formulation for the R score in a tumor

sample mixed with a proportion (p) of normal cells with an

assumption of linearity:

RM~pRNz(1{p)RT ð5Þ

where RN and RT are the R scores contributed from the normal

and tumor DNAs in the mixed sample, and both of them follow

log-normal distributions. It can be shown that approximately the

log ratio of RM also follows a normal distribution [24], of which

the parameters can be estimated by:
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s2
M~log

e
2mN zs2

N (e
s2

N {1)ze
2mT zs2

T (e
s2

T {1)

(e
mN zs2

N
=2

ze
mT zs2

T
=2

)2
z1

" #
ð6Þ

mM~log e
mN zs2

N
=2

ze
mT zs2

T
=2

� �
{s2

M=2 ð7Þ

where

mN~mN0
zlog(p), mT~mT0

zlog(1{p)

s2
N~

s2
N0

p
, s2

T~
s2

T0

1{p

Here (mN0
,s2

N0
) and (mT0

,s2
T0

) are the parameters of the

normal distributions for LRR scores in pure normal and pure

tumor samples, respectively. Specifically, when p?0,s2
M?s2

T , we

have mM?mT asymptotically.

Calculation of normal distributions of BAF in a mixed
sample

Assuming that a CNV region in tumor cells is originated from the

corresponding region in the stromal cells, a mixed ‘genotype’ must

derives from the mixture of genotypes of the same class. Based on

the model of BAF described by Nancarrow et al. [23], we can derive

the mixed BAF of a given genotype class g (one of oA,eA,eB,oB as

described before) as a linear combination of BAFs contributed by

normal and tumor cells with the same genotype class as below:

bg,M~wNbg,NzwT bg,T ð8Þ

where wN~
pnN

pnNz(1{p)nT

, wT~
(1{p)nT

pnNz(1{p)nT

, p is the

proportion of normal cells, nN and nT are the copy number in

normal and tumor cells. bg,N and bg,T are BAF signals contributed

from the normal and tumor DNA. Thus bg,M follows a normal

distribution, of which the parameters can be estimated by:

s2
M~w2

Ns2
g,Nzw2

T s2
g,T ð9Þ

mM~wNmg,N0
zwT mg,T0

ð10Þ

where

s2
g,N~

s2
g,N0

p
, s2

g,T~
s2

g,T0

1{p

Here (mg,N0
,s2

g,N0
) and (mg,T0

,s2
g,T0

) are the parameters of the

normal distributions of BAF scores for genotype g in pure normal

and pure tumor samples, respectively.

Data preprocessing for tumor samples
The array designs and sample descriptions for the tumor

datasets can be found in the results section. For tumor samples, the

BAF and LRR directly exported from Illumina BeadStudio may

be problematic: the BAF are often asymmetric and the mean LRR

for diploid (CN = 2) are sometimes shifted considerably from 0. So,

we use the follow protocol for data preprocessing.

First, export X, Y from BeadStudio. Second, use tQN [20] to

adjust the asymmetric BAF bands. Next, genomic waves reflected

in the LRR values are (optionally) reduced by the GC regression

model [25] included in the PennCNV package.

Estimation of the proportion of normal cells and LRR shift
In order to estimate the proportion of normal cells in a mixed

sample, it is necessary to also adjust the LRR baseline if there is a

genome-wide LRR value shift (an upstream normalization error

leading to LRR value zero not mapping to copy number 2). We

provide a plotting tool to generate a genome-wide view of BAF

Figure 7. BAF emission probability. The blue lines represent the distributions when pB~0:5, the red lines represent the distributions when
pB~0:9. Here pB stands for the population frequency of ‘B’ allele. Each subplot represent the distributions of a certain CNV state (state names labeled
on top). The first track on top of the graphs are copy numbers of each state.
doi:10.1371/journal.pone.0010909.g007
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and LRR (Figure S2). First, detect the lowest consistent bands in

the LRR plot (ignore the total deletion regions as they are short

and rare, thus not consistent enough to be used.), and decide

whether they are from one copy or two copy by checking the

relevant BAF pattern: some of the two-copy regions (FM state)

have an obvious BAF band at 0.5, while others (FF) with the same

LRR will have no BAF band at 0.5. On the other hand, there will

be no one-copy regions (F) which have a BAF band at 0.5. If the

lowest band is one copy, the second lowest band corresponds to

two copy. Use the estimated median LRR value of 2-copy band

for ‘LRR_baseline’ value. All the LRR values are shifted

according to the ‘LRR baseline’ annotated above.

To estimate the proportion of normal cells (p) in a mixed sample

(and in which the LRR shift has been corrected), we detect the ‘A’

band in the F regions or the ‘AA’ band in the FF regions (identified

as described above) in the BAF plots. There will be no band

between 0 and 0.5 in a pure tumor sample and a single band up to

0.45 for tumor samples mixed with normal host cells. We annotate

the estimated median value of this single band (b) and apply the

following formula derived from SiDCoN [23] to calculate p:

p~
(BT{bnT )

(BT{bnT ){(BN{bnN )
ð11Þ

where BT ,nT is the B allele copy number and total copy number of

the tumor derived from the given genotype (‘A’ or ‘AA’) annotated

above; b is the annotated BAF value of the given genotype;

BN~1, nN~2 is the B allele copy number and total copy number

of the normal genotype (‘AB’). In the uncommon case that no F or

FF states are identified in the sample, higher copy states can also

be used with the same formula.

Simulation of a sample with MixHMM
To simulate a sample, we use the actual SNP locations and

population B allele frequency of Illumina Human550K. The 20-

state HMM represent states with copy numbers up to 7 is used for

simulation. We simulate a 100-SNP or 300-SNP region for each

CNV state on each chromosome. For each SNP, we sample

randomly from the BAF and LRR emission distributions of the

simulated state. Then the CNV state is detected using the same

HMM. To evaluate the performance of PennCNV on the

simulated sample, we use a 6-state HMM model (in PennCNV

format) collapsed from the 20-state HMM.

Detection of CNV states with other algorithms
For PennCNV [16], the 2008Nov19 version is used. PennCNV

default options to adjust the LRR and BAF are turned off (‘‘–

nomedianadjust –nobafadjust –nosdadjust’’), as the values are

already normalized in the preprocess steps. The ‘‘–loh’’ option is

enabled to compare with the MixHMM results.

The genoCNA function in the genoCN R package [19] is used

with default parameters.

Supporting Information

Figure S1 Recovery rates of copy number and allelic imbalance

from the simulated 300-SNP regions. The numbers on the left side

are proportions of ‘FM’ cells. Values of each copy number/allele

imbalance comes from the simulations of 220 regions.

Found at: doi:10.1371/journal.pone.0010909.s001 (0.19 MB EPS)

Figure S2 Estimation of the proportion of normal cells. This is

part of the BAF-LRR plot generated from the BT5 breast cancer

sample (chromosome 5 to 12). The chromosome numbers are

labeled below each track. A SNP is represented as a point in each

track. The range of BAF is 0 through 1, the range of LRR is -4

through 2. The highlighted (red lines) genotype is ‘A’ in state ‘F’

and the estimated BAF value is 0.25, so the p is calculated to be

0.33 using Equ. 11.

Found at: doi:10.1371/journal.pone.0010909.s002 (0.38 MB TIF)

Table S1 Summary of CNV states detected in tumor samples

using MixHMM.

Found at: doi:10.1371/journal.pone.0010909.s003 (0.03 MB

DOC)
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