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Abstract

Calcium-Response Factor (CaRF) was first identified as a transcription factor based on its affinity for a neuronal-selective
calcium-response element (CaRE1) in the gene encoding Brain-Derived Neurotrophic Factor (BDNF). However, because CaRF
shares no homology with other transcription factors, its properties and gene targets have remained unknown. Here we
show that the DNA binding domain of CaRF has been highly conserved across evolution and that CaRF binds DNA directly
in a sequence-specific manner in the absence of other eukaryotic cofactors. Using a binding site selection screen we identify
a high-affinity consensus CaRF response element (cCaRE) that shares significant homology with the CaRE1 element of Bdnf.
In a genome-wide chromatin immunoprecipitation analysis (ChIP-Seq), we identified 176 sites of CaRF-specific binding
(peaks) in neuronal genomic DNA. 128 of these peaks are within 10kB of an annotated gene, and 60 are within 1kB of an
annotated transcriptional start site. At least 138 of the CaRF peaks contain a common 10-bp motif with strong statistical
similarity to the cCaRE, and we provide evidence predicting that CaRF can bind independently to at least 64.5% of these
motifs in vitro. Analysis of this set of putative CaRF targets suggests the enrichment of genes that regulate intracellular
signaling cascades. Finally we demonstrate that expression of a subset of these target genes is altered in the cortex of Carf
knockout (KO) mice. Together these data strongly support the characterization of CaRF as a unique transcription factor and
provide the first insight into the program of CaRF-regulated transcription in neurons.
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Introduction

The function of any given transcription factor is determined in

large part by its DNA binding specificity, which defines its

potential target genes. Over 1000 gene products are annotated as

transcription factors in the mammalian genome, the vast majority

of which belong to large families classified by the homology of

their DNA binding domains (e.g., homeodomain, zinc finger,

bHLH) [1]. Individual transcription factors within a family often

serve related functions [2] and may compensate at least in part for

the loss of other family members [3]. This redundancy may have

supported the diversification of transcriptional mechanisms

during evolution and the development of increasing organismal

complexity [4].

Some of the most important recent insights into transcription

factor biology have come from the application of technologies that

capture the full complement of transcription factor binding sites

across the genome [5]. By using chromatin immunoprecipitation

followed either by hybridization to tiled genomic microarrays

(ChIP-chip) or high-throughput sequencing (ChIP-Seq) it is

possible to identify a large, unbiased set of transcription factor

binding sites, suggesting candidate target genes [6,7]. Studies of

this kind have been used to reveal unexpected sequence variation

between the individual binding sites selected by a single

transcription factor. Furthermore by elucidating large sets of

potential target genes, these data may suggest new functions for a

transcription factor in previously unanticipated cellular processes

[6,7,8].

Transcription factors are essential for accommodating intracel-

lular states to extracellular stimuli. In the nervous system,

transcription factors play an important role in coordinating

neuronal responses following changes in synaptic activity - a key

stimulus for shaping brain development, driving synaptic plasticity,

and promoting survival of mature neurons [9]. The importance of

this process is highlighted by the fact that mutations in a large

number of transcription factors and transcriptional co-regulators,

including MECP2, FOXP2, CBP, and GTF2I/GTF2IRD1, are

associated with cognitive impairment in humans [10]. Activity-

regulated transcription of the gene encoding the neurotrophin

BDNF is essential for the function of this gene product both in
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synaptic plasticity and brain development [11,12], thus substantial

effort has been devoted to understanding the specific mechanisms

that regulate transcription of this gene [13].

Calcium-Response Factor (CaRF) is a novel nuclear protein first

identified as a binding protein for a calcium-response element

(CaRE1) in Bdnf promoter IV [14]. In overexpression assays CaRF

acts as a CaRE1-dependent transcriptional activator, however

other than Bdnf none of CaRF’s target genes are known.

Surprisingly, CaRF shares no sequence similarity with any known

family of transcription factors, and it has no homologs in the

mammalian genome. Given this evidence that CaRF is a unique

transcription factor, we set out to characterize CaRF’s DNA

binding properties and identify its potential target genes that might

in turn suggest biological functions for CaRF beyond Bdnf

regulation.

Here we show that the DNA binding domain of CaRF has been

highly conserved over evolution, and we use both in vitro binding

site selection and genome-scale in vivo chromatin immunoprecip-

itation followed by sequencing (ChIP-Seq) as tools to identify and

characterize high affinity CaRF-binding DNA sequences. These

data reveal a large set of putative CaRF target genes in

mouse cortical neurons, providing the first insight into the CaRF

regulon.

Materials and Methods

Animals
Carf exon 8 KO mice were generated by homologous

recombination [15]. All animal procedures were approved by

the Duke University Institutional Animal Care and Use Commit-

tee. Veterinary care was provided by the staff of the Duke

University Department of Laboratory Animal Research, an

AAALAC accredited facility. Animals were euthanized following

procedures that are in accordance with the recommendations of

the Panel on Euthanasia of the American Veterinary Medical

Association.

Bacterial synthesis of CaRF protein
Full-length mouse CaRF was subcloned in the bacterial

expression vector pThioHisA (Invitrogen, Gaithersburg, MD) at

the EcoRI and XbaI sites. The construct was transformed into

Top10 E. coli and expression of CaRF was induced for 3 hours

with 0.1mM IPTG. Bacteria were lysed by sonication and CaRF

was purified over a ProBond nickel resin column. After washing to

remove unbound protein, binding was competed with 50mM

imidazole to remove nonspecific proteins and then CaRF was

eluted with 250mM imidazole. Fractions containing CaRF as

determined by Western analysis were pooled and concentrated to

a final concentration of 100ng/uL.

Electrophoretic Mobility Shift Assay (EMSA)
EMSAs were performed as described [14] using in vitro

transcribed and translated (TNT) protein (Promega, Madison,

WI) or bacterially expressed CaRF as described above. 2mL TNT

or purified CaRF protein was incubated with 50fmol 32P nick

labeled (Amersham/GE Healthsciences, Piscataway, NJ) or

polynucleotide kinase (New England Biolabs; Ipswitch, MA) end-

labeled annealed oligonucleotide probes prior to separation on 6%

non-denaturing acrylamide gels. In competition assays, unlabeled

probes were added to nuclear extracts in 100-fold molar excess

(unless otherwise noted) to the TNT protein for 30 min. prior to

addition of the radiolabeled probe. Gels were dried and visualized

by phosphorimager (GE Healthsciences). Mobility-retarded bands

were quantified relative to probe intensity in the same lane using

the ImageQuant image analysis program (Molecular Devices,

Sunnyvale, CA). Oligonucleotide probes are listed in Table S1.

Binding site selection screen
PCR-assisted binding site selection was performed essentially as

described [16]. Oligonucleotide sequences and PCR primers used

for the screen are listed in Table S1. Full length human CaRF

(hCaRF) was tagged at its N-terminus with the FLAG-epitope

(GACTACAAGGACGATGACGATAAA) and used for in vitro

TNT as above. For the binding selection, random 16mer

nucleotide sequences were synthesized (IDT DNA, Coralville,

IA) within a 66bp oligo, then made double-stranded by a single

round of PCR using primers against the flanking sequences. Oligos

were incubated with TNT hCaRF or a control TNT master mix

and immunoprecipitated with the M2 anti-FLAG epitope

antibody (Sigma, St. Louis, MO). Coimmunoprecipitated oligos

were purified and amplified by PCR, then used for an additional

three rounds of selection. A subset of the final samples were

radiolabeled and tested by EMSA for their ability to bind hCaRF.

The remaining samples were ligated into pBSK (Stratagene, La

Jolla, CA), the inserts were sequenced and 62 were aligned using

ClustalW (http://www.clustal.org/) [17] to reveal the consensus

CaRF binding motif. The cCaRE logo was generated using the

WebLogo program (http://weblogo.berkeley.edu/) [18].

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation (ChIP) was performed as

described [19]. For CaRF ChIP-Seq, separate cultures of cortical

neurons from newborn Carf+/+ (WT) or Carf2/2 (KO) pups were

plated at a density of 10 million cells/10cm dish. 50 million

neurons of each genotype were used for ChIP. Because the Carf

mice are on a mixed C57BL6/129SvJ background, WT and KO

siblings were crossed (WTxWT and KOxKO) to generate the

pups for this experiment in order to minimize genetic background

variations. At 4DIV, cultured neurons were treated overnight with

tetrodotoxin (TTX, 1mM; Calbiochem, La Jolla, CA), then on

DIV5 protein-DNA complexes were processed for ChIP. 4mL

purified anti-CaRF antibody (#4510)[15] was added to each

lysate (WT and KO) and incubated overnight with rotation at

4uC. For ChIP on the Carf promoter, striatum was dissected from

brains of Carf WT or KO mice and snap frozen in liquid nitrogen.

3–5 independent samples were pooled, homogenized, and

processed for ChIP as above. Immunoprecipitations were

performed at 4uC overnight with 5–10mg of each specific antibody

and assayed by real-time PCR using SYBR green detection.

Antibodies used in this study include purified normal mouse

polyclonal IgG (Millipore, Billerica, CA cat. #12-371) and anti-

RNA polymerase II, clone CTD4H8 which recognizes the largest

subunit of RNA polymerase II (Millipore, cat. #05-623). For input

samples, 25ml (6–7% of the amount used for IP with specific

antibody) was added to 75ml of elution buffer, NaCl was added to

200mM final concentration, and samples were reverse crosslinked

at 65uC overnight. All ChIP pulldowns are displayed as % of input

for each sample (WT or KO). Data presented are the result of two

independent experiments, and statistical significance was evaluat-

ed by a Student’s two-tailed unpaired t-test.

ChIP library construction and sequencing
DNA fragments coimmunoprecipitated with CaRF were

repaired using the End-It DNA End Repair Kit (Epicentre

Biotechnologies, Madison, WI), purified using the MinElute

Reaction Cleanup Kit (Qiagen, Valencia, CA) and eluted in

20ml EB buffer. The resulting DNA fragments were ligated to

adaptors for the SOLiD sequencer (Life Technologies, Carlsbad,

Neuronal Gene Targets of CaRF
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CA) for 20 minutes at RT using the Quick Ligase Kit (NEB),

followed by purification using the MinElute Reaction Cleanup

Kit. Sequences of adaptor and barcodes can be found at http://

www.appliedbiosystems.com. The purified adaptor-ligated ChIP

DNA fragments were subject to 6% native-PAGE for In-Gel PCR

reaction. A gel slice containing 175,200bp adaptor-ligated ChIP

DNA fragments was cut and shredded. Then to add bar codes,

PCR Platinum Supermix (100,200mL, Invitrogen), 50pmol of

PCR primers containing bar codes, 0.5ml Taq DNA polymerase

(NEB), and 0.15ml Pfu Turbo DNA polymerase (Stratagene) were

added into the shredded gel slice. The adaptor-ligated ChIP DNA

fragments were amplified by 15 cycles of In-Gel PCR reactions.

After the PCR reaction, gel pieces were filtered out by 0.45mm

filter spin column and the amplified ChIP-Seq library was purified

by MinElute PCR purification kit (Qiagen). The library was

purified by one more round of 6% PAGE. A gel slice containing

200,250bp PCR products was cut and shredded, and the

amplified library was extracted out of the gel by passive elution

in elution buffer (1.5M ammonium acetate in 16TE). Gel pieces

were filtered out by filter spin column and both ChIP-Seq libraries

were purified by Qiaquick PCR purification kit (Qiagen). Samples

were affixed to a slide and sequenced on a SOLiD sequencer

version 2. After filtering with 3bp mismatches allowed in 35bp

reads, just over 5 million uniquely mapped reads (about 40% of

total reads) were obtained for each library (WT and KO). The

resulting sequences were formatted for alignment in the UCSC

genome browser.

CaRF Wildtype ChIP Peak Finding
To determine CaRF-specific binding sites, we developed an

algorithm to identify the sequences specifically enriched in the

ChIP samples from Carf WT neurons relative to the negative

control ChIP samples from Carf KO neurons. First we determined

the false detection ratio by using a sliding window with a width of

240bp for every 10bp in the mouse genome. Repetitive regions are

excluded from our analysis since it is impossible to assign 35bp

reads uniquely to such regions [20,21]. For each window, we

calculated the statistic D = R2N where R is the number of reads

in the WT sample, and N is the number of reads from the negative

control KO sample. By considering the marginal distributions of R

and N, we note that they both can be well approximated by a

Poisson distribution with parameters lR and lN, respectively. It

follows that D is a Skellam distribution [22]

Pr D~dð Þ*Ske d; lR,lNð Þ

~exp { lRzlNð Þð Þ lR=lNð Þd =2 Id (2
ffiffiffiffiffiffiffiffiffiffiffiffi
lRlN

p
),

ð1Þ

where Id is the modified Bessel function of the first kind of order d.

The construction of the null distribution from Eq. (1) takes

unequal numbers of reads in the two samples into account by

shifting the mode of the distribution. To determine the number of

reads required for a 240bp window to be significant, we use the

local false detection rate (locFDR) framework [23]. Using this

methodology, we assume that the density of D, f(D), can be written

as the mixture f(D) = p0f0(D)+p1f1(D), where f0 is the null density, f1
is the density of windows corresponding to true peaks and

p0+p1 = 1 with p0§0.9. The locFDR, fdr(d) is related to the more

familiar FDR [24] through

FDR dð Þ~E½locFDR dð ÞDD§d�, ð2Þ

where E is the expectation with respect to the mixture density f.

For a fixed threshold fp = 0.01 and empirically estimated

lR = 0.15273 and lN = 0.21607, we find that the critical difference

is d0 = 6 fragments. Inserting the empirical distribution and the

Skellam null distribution from Eq. (1), we find that the FDR is

,161027.

Motif Discovery
Regions of the genome determined to be specifically bound by

CaRF were downloaded using the GALAXY [25] platform based

on genome coordinates. Due to noise in the exact positioning of

the sequence, when significantly bound sequences were found to

be within 100bp of each other, the coordinates were expanded to

produce one larger region. In addition, very short identified

regions ( 20bp) were discarded from the analysis because these

are too short to meaningfully search for 10–15bp motifs. The

remaining 144 sequences had a mean length of 112bp, a median

of 100bp, and standard deviation of 79bp. These sequences were

fed into the PRIORITY motif finder, which uses a Gibbs sampling

strategy [26,27]. A uniform prior was used to search across CaRF

bound regions on the positive and negative strand. The default

parameters of 20 trials and 10,000 iterations per trial were used. A

third order background model was used, although the results were

robust to the use of both first and second order. Varying motif

lengths were attempted to identify the correct consensus length. At

motif lengths lower than 10bp, only a part of each motif resembled

the CaRF consensus site. At motif lengths larger than 10bp, the

information content was low at peripheral base pairs. Consistently,

a significant motif was identified with score 131. As a control, a

motif discovery was performed on the same number of sequences

with the same length, but from nearby genomic regions. The

maximum score of an identified motif in this data set over many

trials was only 15, suggesting that the motif discovered in the

CaRF ChIP-Seq data is highly significant.

Quantitative PCR
For evaluation of CaRF target gene expression, brains from

single P0 pups from a Carf heterozygote (HET6HET) cross were

removed, the cortex was dissected and rapidly frozen on liquid

nitrogen, then the thawed tissue was used for RNA harvesting. For

evaluation of Carf mRNA expression, brains from single P0 pups

from a Carf HET6HET cross were used for neuron culture as

described above. Tail biopsies were clipped during dissection and

genotyped prior to sample harvesting to identify WT and KO

pups. On day 5 in culture, RNA was harvested, and cDNA was

synthesized as above. All primers used in this analysis are listed in

Table S1. To measure Carf mRNA we used primers against exons

11–12, distal to the Carf exon 8 deletion. Samples were normalized

to Gapdh as a control for sample handling. Data shown for Carf are

the result of measurements in 8 individual pups of each genotype.

Data for other Carf target genes are the result of measurements in

4–6 individual pups of each genotype. For quantitation of

chromatin immunoprecipitation of RNA polymerase II on the

Carf gene, the primers listed in Table S1 were used to amplify a

173bp region flanking the ChIP peaks in Carf exon 1. Statistical

significance was determined by a Student’s unpaired 2-tailed t-test,

and p,0.05 was considered significant.

Results

CaRF is an evolutionarily conserved, sequence-specific
DNA binding protein

Showing that a protein domain is conserved over evolution is

one way of suggesting its importance for function of the protein.

Sequence analysis of CaRF against build 37 of the Mus musculus

Neuronal Gene Targets of CaRF
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genome reveals no significant homology of this protein to any

other gene product. However we find gene products with

significant similarity to CaRF at the amino acid level in 37

different species (Table S2), including 35 vertebrates and the

deuterostome Branchiostoma floridae [28]. In all species only one

gene product with similarity to CaRF can be identified.

Interestingly, despite the absence of any gene products with

significant similarity to CaRF in the Drosophila melanogaster or

Caenorhabitas elegans genomes, a conserved CaRF ortholog is

present in the genome of the cnidarian starlet sea anemone

Nematostella vectensis, which diverged from the vertebrate lineage

over 700 million years ago [29] (Figure 1a). Sequence

Figure 1. The CaRF DNA binding domain is highly conserved across evolution. CaRF amino acid sequences were obtained from the NCBI
and Ensembl databases by BLAST similarity to mammalian CaRF (Table S2). Sequences were aligned using ClustalW. a) Phylogram representing the
evolutionary distances between CaRF sequences in six species. b) Percent identity and similarity among amino acids in each domain of CaRF. The
diagrams are drawn to scale and show four distinct domains of CaRF [14]. From left to right these are the N-terminus (corresponding to human
coding exons 1–5), the DNA binding domain and nuclear localization signal (DBD/NLS, coding exons 6–7), an intermediate domain (coding exons 8–
10), and the transcriptional activation domain (TAD, coding exons 11–14). The numbers between each pair of sequences show the percent of amino
acids within that domain that are identical/conserved between that pair within each domain. Identity and conservation of amino acids were called by
ClustalW, and insertions were scored as non-conserved amino acids. c) Sequence alignment of the DBD/NLS domain across all six species. Identical
amino acids are highlighted black, conserved amino acids are gray and nonconserved changes are white.
doi:10.1371/journal.pone.0010870.g001

Neuronal Gene Targets of CaRF
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conservation of CaRF orthologs is greatest within the domain

required for DNA binding [14], in which 59% of the amino acids

are identical across species (Figure 1b,c). A second highly

conserved region aligns with amino acids 292–472 of mouse CaRF

(Figure 1b), although the functions of this domain are not known.

Because CaRF does not belong to a previously known DNA

binding domain protein family, we wanted to verify that CaRF is

capable of binding directly to DNA in the absence of other

eukaryotic cofactors. We find that His-tagged CaRF purified from

E. coli binds Bdnf CaRE1 by EMSA and is competed with the same

specificity as FLAG-tagged CaRF synthesized using a eukaryotic

in vitro transcription and translation system (Figure 2). Specif-

ically, the binding of CaRF to CaRE1 can be competed by

addition of an excess of unlabeled wildtype CaRE1 probe, but not

by the addition of a mutant CaRE1 sequence (mCaRE) that does

not support calcium-dependent Bdnf transcription [14]. These data

establish that CaRF is a conserved, sequence-specific, direct DNA

binding protein, strongly supporting its proposed role as a

transcriptional regulator.

Characterization of a high-affinity CaRF binding motif
Although we demonstrated previously that CaRF can bind the

CaRE1 element of Bdnf promoter IV [14], the full range of

sequences that can be bound by CaRF was not known. To identify

DNA sequences with high affinity for CaRF, we performed a

PCR-assisted binding site selection screen. Following four rounds

of binding site selection, EMSA analysis of the oligonucleotide

pool coimmunoprecipitated with CaRF reveals a strong CaRF-

binding band, whereas there is no significant binding to CaRF in a

control oligonucleotide pool (Figure 3a). The oligos that

coimmunoprecipitated with CaRF were cloned and sequenced,

then 62 sequences (Table S3) were aligned, revealing a 12bp

consensus CaRF binding motif (cCaRE) with the sequence 59-

YSANAACGAGGC - 39 (Y = C/T, S = C/G, and N = any base;

Figure 3b). This sequence shares significant similarity with the

CaRE1 element from the Bdnf gene (Figure 3c) strongly

supporting our previous identification of CaRF as a CaRE1

binding protein. However in competition EMSAs, CaRF shows

higher affinity for the cCaRE compared with CaRE1 (Figure 3d).

Because the cCaRE motif aligns in many of our oligos with a

sequence that was used to flank one side of the random 16mer

sequence, it is possible that our selection does not fully represent

the sequence variability that may be tolerated by CaRF.

Nonetheless, these studies indicate that the cCaRE defines a

new high affinity CaRF consensus binding site.

ChIP-Seq identifies genomic binding sites of CaRF in
neurons

Given this evidence that CaRF is a direct sequence-specific

DNA binding protein, we wanted to find endogenous gene targets

of CaRF. To identify CaRF binding sites genome-wide, we

performed chromatin immunoprecipitation with an anti-CaRF

antiserum from cultured Carf WT postnatal mouse cortical

neurons followed by sequencing of the coimmunoprecipitated

genomic DNA fragments (ChIP-Seq). Mapping these fragments to

the reference genome gives a profile of the DNA regions that are

enriched in the pulldown, however the challenge is to determine

which of the enriched regions (‘‘peaks’’) are statistically significant

at a given threshold and which correspond to the genomic

background. Thus a peak is defined as region that contains

significantly more reads from an experimental pulldown than from

a negative control. In this case, for our negative control we

performed ChIP with the same anti-CaRF antiserum from

neuronal cultures made from Carf KO mice, which are null for

Figure 2. CaRF binds DNA directly. Human CaRF was expressed in bacteria (E. Coli hCaRF) or synthesized in vitro by TNT (hCaRF). Rabbit
reticulocyte lysate without CaRF expression was used as control. 2mL of CaRF protein or TNT control was incubated with radiolabeled CaRE1 oligos in
the absence (-) or presence of a 50-fold molar excess of competing unlabeled wildtype (W) or mutant (M) CaRE1 probe. Unbound probe is at the
bottom of the gel. Arrowhead indicates the complex between CaRF and CaRE1.
doi:10.1371/journal.pone.0010870.g002

Neuronal Gene Targets of CaRF
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CaRF protein. Independent libraries were constructed from the

genomic DNA coimmunoprecipitated from the WT and KO cells,

and genomic regions specifically bound by CaRF (CaRF ChIP

peaks) were identified using the statistical algorithm described in

detail in the Methods section.

176 CaRF ChIP peaks ranging in size from 10–630bp were

identified genome-wide (Table S4). 128 of the 176 peaks (73%)

are within 10kB of an annotated gene, and 60/128 (47%) of these

are within 1kB of the annotated transcriptional start site (TSS).

Graphing the position of each of these peaks relative to the TSS

shows an enrichment in the 200bp just 59 to the TSS (Figure 4).

This positional information demonstrates a highly significant

enrichment of proximal gene promoters in the CaRF ChIP peaks

relative to their overall representation in the genome, raising the

possibility that CaRF may contribute to transcriptional regulation

of nearby genes.

Figure 3. Identification of a consensus CaRF binding element. hCaRF synthesized by TNT (hCaRF) or control rabbit reticulocyte without CaRF
(control) was used to coprecipitate oligonucleotides from a library of random 16mers. a) After four rounds of enrichment and amplification, the final
pulldown from each sample was radiolabeled and mixed with hCaRF for evaluation by EMSA. Equal amounts of radiolabeled oligos are present in
each pool (gray arrowhead), however a CaRF binding band is retarded only from the pool that was isolated by coprecipitation with hCaRF (black
arrowhead). b) WebLogo (http://weblogo.berkeley.edu/) representation of the cCaRE consensus motif derived from the 62 sequences in Table S3.
The position of the bases is indicated along the bottom from 1–16, and the height of the letters indicates the enrichment of that base at each
position. If all four bases were equally likely to be present at any position, no base is indicated. c) Alignment of the cCaRE and CaRE1 motifs. Black
indicates bases that are conserved between the elements, and gray shows bases that vary. Y = C/T, S = C/G, and N = any base. d) Comparison of the
affinity of CaRF for CaRE1 and cCaRE. A constant amount of hCaRF was bound to radiolabeled CaRE1 (B) or cCaRE (C) probes and the relative affinity
of the interactions were assessed by competition EMSA upon the addition of a 150, 100, or 50-fold molar excess of unlabeled CaRE1 probe. The band
retarded upon CaRF binding is indicated by the arrowhead.
doi:10.1371/journal.pone.0010870.g003

Neuronal Gene Targets of CaRF
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To determine if the ChIP peaks contain a CaRF binding motif,

we extracted the sequences of the 176 CaRF ChIP peaks and

subjected them to analysis using the PRIORITY motif finder,

which can be used to detect statistically significant common short

sequences within a set [26,27]. 32 ChIP peaks smaller than 20bp

were eliminated from the analysis because they are too short to be

searched. This analysis found a common 10bp sequence motif in

138 of the 144 sequences examined (Table S4). The motif

extracted from this set of sequences (chCaRE) has the sequence 59-

RRARYGAGGC-39, (R = A/G, and Y = C/T) (Figure 5a). This

sequence is strikingly similar to the high affinity cCaRE (59-

YSANAACGAGGC-39) and the CaRE1 (59-CTATTTC-

GAGGC-39) CaRF binding sequences (Figure 5d), strongly

suggesting that the ChIP peak regions contain high affinity binding

sites for CaRF.

To characterize CaRF binding to the chCaRE sequences, we

first tested the ability of CaRF to bind the specific chCaRE motif

(59-AAAGCGAGGC-39) found in a CaRF ChIP peak from the

promoter of the Camk2n1 gene (camCaRE, Figure 5d). Recom-

binant CaRF binds the camCaRE as evidenced by retardation of

the radiolabeled camCaRE probe by EMSA (Figure 5b). This

association is fully competed by addition of an excess of unlabeled

camCaRE or cCaRE but not by addition of excess unlabeled

Figure 4. CaRF ChIP-Seq peaks are enriched near transcription
start sites. The ChIP peaks from Table S4 were viewed in the UCSC
genome browser (http://genome.ucsc.org) and the distance from the
center of each peak to the nearest annotated transcription start site
(TSS) was calculated. For the 60 peaks within 1kB of a TSS we tallied the
number within each 100bp. The arrow shows the position of the TSS.
doi:10.1371/journal.pone.0010870.g004

Figure 5. Identification and characterization of a conserved CaRF-binding motif in the CaRF ChIP-Seq peaks. a) WebLogo (http://
weblogo.berkeley.edu/) representation of the 10bp motif discovered by the PRIORITY motif finder in the ChIP peak sequences. The height of each
letter represents the enrichment of that base at each position. If all four bases are equally represented, no base is shown at that position. b)
Competition EMSA analysis of CaRF binding to the consensus chCaRE motif in the ChIP peak of the Camk2n1 gene (camCaRE). Arrow indicates the
CaRF-camCaRE complex, and the right triangles indicate increasing concentrations (50 or 100 fold molar excess) of the unlabeled competitor probes.
c) Competition EMSA analysis to examine the relative importance of each base across the 10bp chCaRE motif. Recombinant CaRF was incubated with
radiolabeled camCaRE in the absence (-) or presence of a 50 or 100-fold molar excess of unlabeled competitor probes. The right triangle indicates
increasing competitor concentrations. Competitor probes were based on the camCaRE sequence (AAAGCGAGGC) with the indicated changes at each
position (e.g. 1G has a G rather than an A at position 1 of the motif while the rest of the motif is unchanged). Degenerate code: Y = C/T, N = A,C,G, or T,
B = C,G, or T, R = A/G, H = A, C, or T, D = A, G, or T. d) Alignment of the cCaRE, mCaRE, chCaRE, and camCaRE sequences. The mCaRE, which fails to bind
CaRF, differs from the CaRF binding sequences at 5 positions, which are shown in gray. Degenerate bases are as described above along with S = C/G.
doi:10.1371/journal.pone.0010870.g005
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mutant mCaRE, demonstrating sequence-specific binding of

CaRF to the camCaRE probe. Importantly, the association of

CaRF with the camCaRE is also strongly competed by a probe

representing the chCaRE motif despite the presence of degenerate

bases at positions 1,2,4, and 5.

To further understand the relative importance for CaRF

binding affinity of specific bases at each position across the

chCaRE motif, we changed each base in the camCaRE motif one

at a time and tested the ability of the changed motifs to compete

CaRF binding to camCaRE by EMSA (Figure 5c). Consistent

with the evidence that there was little sequence variability in the

chCaRE sequence at positions 3, 6, 7, and 8 (Figure 5a) switching

the base at any of these positions essentially eliminated the ability

of the altered oligo to compete the binding of CaRF to the

camCaRE (Figure 5c). These data reveal that CaRF has a strong

requirement for an A at position 3, and GAG at positions 6, 7, and

8 of the chCaRE. Changing the bases at positions 1, 9, or 10

partially impaired the ability of oligos to compete with CaRF

(Figure 5c). These data suggest CaRF has a weak requirement

for specific bases at positions 1, 9, and 10, consistent with the fact

that the preference for a specific base at these positions in the

chCaRE motif was lower than at positions 3, 6, 7, and 8

(Figure 5a). Finally, changing the bases of the camCaRE at

positions 2, 4, and 5 had a limited effect on the ability of these

oligos to compete for the binding of CaRF (Figure 5c), indicating

that CaRF has little preference for the specific bases at these

positions.

By comparing these sequence requirements at each position

across the camCaRE to the sequences of the individual chCaRE

sites identified in each of the ChIP peaks (Table S4), we estimated

the likelihood that CaRF would bind by EMSA to each individual

chCaRE motif. Strikingly, 45% of the peaks (62/138) contain a

chCaRE sequence that we predict would bind with high affinity to

CaRF, while an additional 19.5% (27/138) have sequences that

we predict would bind with lower affinity. Only 35.5% of the

chCaRE sequences (49/138) have sequences that we predict

would show no significant affinity for CaRF by EMSA. Whether

CaRF may bind to other sequence motifs in these ChIP peaks or

whether CaRF may bind these variant chCaRE motifs in

collaboration with a binding partner remains unknown. Nonethe-

less, taken together these data provide strong evidence to suggest

that the ChIP peaks represent sites of high affinity CaRF binding

to neuronal genomic DNA in vivo.

Functional analysis of CaRF ChIP targets
We next asked whether examination of the set of putative CaRF

target genes could suggest potential functions for CaRF in

neurons. Statistical analysis of the representation of Gene

Ontology (GO) terms for the genes on this list was conducted

using GOstat (http://gostat.wehi.edu.au). This analysis revealed

two statistically significant overrepresented GO categories

(Table 1). The first, proline translase activity, contained only

two genes from the list of putative CaRF targets and thus was not

considered further. By contrast, there are 15 genes from the list of

genes with CaRF ChIP peaks that fall into the second category,

phosphorous metabolism. 13 of these gene products are kinases or

phosphatases that are also included in a closely related GO

category, post-translational protein modification. This category

approached significance for overrepresentation and contained 4

additional genes from the CaRF ChIP list whose products regulate

protein ubiquitination, SUMOylation, and sulfonation. Finally, 6

of the putative CaRF target genes were not part of a defined GO

category but caught our attention for their involvement in

calcium-dependent signaling events. These genes are interesting

in light of our previous observation that the transcriptional activity

of CaRF can be modulated in a neuronal and calcium-selective

manner [14], because they suggest that CaRF may act not only

downstream, but also upstream of calcium signaling in neurons.

Taken together these data predict that CaRF may play an

important role in regulating neuronal intracellular signaling

pathways.

We observed that a CaRF ChIP peak overlaps exon 1 of the

Carf gene itself (Figure 6a), raising the possibility that, like many

other eukaryotic transcription factors [30], CaRF might regulate

its own expression. In addition to the chCaRE motif identified by

the PRIORITY motif finder, we found a second chCaRE-like site

within this ChIP peak (Figure 6b). Probes containing either of

these motifs are capable of competing the binding of recombinant

CaRF to the cCaRE in an EMSA, although the PRIORITY-

identified site has higher affinity for CaRF (Figure 6c). To test

whether CaRF might transcriptionally regulate its own expression

in vivo, we took advantage of the fact that the Carf KO mice lack

only a single exon of this gene (exon 8)[15]. Although no

functional CaRF protein is detected in the KO mice, Carf mRNA

is still transcribed. Quantitative PCR of Carf using primers distal to

the exon 8-deleted region reveal that Carf mRNA expression is

Table 1. GOstat analysis of putative CaRF targets.

GO Category Genes p value

Proline translase activity Eprs 0.00956

GO:004827 Pars2

GO:0006433

Phosphorous Metabolism Acp1 0.00956

GO: 0006783 Atp5d

GO:0006796 Atp6c0e

Dyrk2

Epha3

Epha6

Ikbke

Limk2

Map3k3

Map4k4

Mark3

Prkar1a

Ptpre

Ptprs

Srpk2

Post-translational Chst8 0.058

protein modification Fbxl20

GO: 0043687 Park2

Pias4

(also includes 13 genes from the category above)

Calcium signaling Cacng2 N/A

(not a GO category) Caly

Camk2n1

Camsap1l1

Camta1

Syt1

doi:10.1371/journal.pone.0010870.t001
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significantly elevated in the absence of CaRF protein

(WT = 160.059, KO = 1.3760.089, n = 8/genotype, p = 0.036;

Figure 6d). Consistent with the possibility that this enhanced

Carf RNA expression is due to increased transcription of the Carf

gene, as opposed to a change in RNA stability, we also find an

increase in RNA polymerase II association with the Carf promoter

in Carf exon 8 KO mice (WT = 2.2660.06, KO = 3.0560.06,

n = 2/genotype, p = 0.0125, Figure 6e).

To determine whether other genes that contain CaRF ChIP

peaks also show altered expression in the absence of functional

CaRF protein, we compared the expression of 13 of the genes

from Table 1 between the brains of newborn Carf WT and KO

mice (Figure 7). Expression of 8 of these gene products was

significantly different between WT and KO brains, with 4 genes

showing significantly higher expression in WT compared with

KO, while 4 showed significantly lower expression in WT

compared with KO. These data demonstrate that CaRF is

required for proper expression of a least a subset of the gene

products that neighbor the CaRF ChIP peaks.

Discussion

CaRF was first cloned in a yeast one-hybrid screen based on its

ability to bind to the CaRE1 calcium-response element of the Bdnf

gene [14]. Further characterization verified that CaRF is a nuclear

protein and that overexpression of CaRF drives CaRE1-

dependent transcription, however mapping of the domain of

CaRF required for binding to CaRE1 revealed that this region

shares no sequence homology with any known family of DNA

binding domain proteins. This was intriguing because most

transcription factors are part of large families defined by the

homology of their DNA binding domains, whereas our data

suggested that CaRF is unique.

To gain more insight into the importance of the CaRF DNA

binding domain, we first asked whether this region has been

conserved over evolutionary time. We identified conserved CaRF

orthologs from 35 vertebrates, a deuterostome, and the cnidarian

Nematostella vectensis. We did not find any evidence for CaRF

orthologs in plant genomes, suggesting that CaRF co-evolved with

the development of animal-specific functions, which include

processes such as cell-cell adhesion, cell signaling, and synaptic

transmission. Nor, intriguingly, were any orthologs identifiable in

the completed genomes of C. elegans or D. melanogaster despite the

fact that these organisms evolved after N. vectensis. The reasons for

this are unclear, although it has been observed that the genome of

N. vectensis has a gene repertoire, intron-exon structure and gene

linkage map that is more similar to that of vertebrates than to flies

or nematodes [29]. Importantly we find only one gene with any

Figure 6. CaRF regulates Carf transcription in neurons. a) Primary data from the UCSC genome browser (http://genome.ucsc.edu) showing the
CaRF ChIP peak overlapping exon 1 of the Carf gene. b) Position of CaRF-binding motifs in the CaRF ChIP peak from the Carf gene. Capital letters
denote exon 1. The underlined sequences show the two potential CaRF-binding motifs. The more 39 motif in intron 1 was identified by the PRIORITY
motif finder. c) Competition EMSA analysis demonstrates that CaRF can bind both motifs in the Carf ChIP peak. Recombinant CaRF was bound to a
radiolabeled cCaRE probe in the absence (-) or presence of a 100-fold molar excess of competitor probes. Arrow indicates the CaRF-cCaRE complex.
Unlabeled probes used as competitors are listed across the top. d) Expression of Carf mRNA in a Carf exon 8 KO mouse. Cortical neurons from
individual P0 WT or CaRF exon 8 deleted (KO) mice were cultured for 5 days, treated with 1mM TTX overnight, then RNA was harvested for cDNA
synthesis and quantitative PCR. Carf mRNA was detected with primers against exons 11–12 distal to the deleted region in Carf. Carf mRNA expression
was normalized for expression of Gapdh in the same sample to control for sample handling. e) Chromatin immunoprecipitation for RNA polymerase II
on the Carf promoter. Carf promoter DNA co-precipitated with an anti-RNA polymerase II antibody or control IgG was quantitated by Q-PCR, and
normalized as a percent of signal in the input DNA. Bars show the mean and error bars show SEM. *p,0.05.
doi:10.1371/journal.pone.0010870.g006
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similarity to CaRF in each species, confirming that CaRF is

unlikely to be part of a larger transcription factor family. By

aligning these sequences, we show that the DNA binding domain

of CaRF has been highly conserved across hundreds of millions of

years of evolution, strongly suggesting that CaRF has a conserved

function as a DNA binding protein. Given our evidence that

CaRF binds directly to DNA, and the fact that DNA binding

domains are otherwise some of the best understood protein

structures, it will of great interest in the future to determine the

structure of the CaRF DNA binding sequence to understand this

novel domain.

We took two complementary approaches to identifying CaRF

binding sites. First we conducted a PCR-assisted binding site

selection screen in vitro which identified a 12bp high-affinity

CaRF-binding motif (cCaRE). In an independent set of

experiments, we identified a highly similar motif (the 10bp

chCaRE) when we aligned the fragments of neuronal genomic

DNA that specifically coimmunoprecipitated with CaRF by

ChIP. The chCaRE motif was found in 78% of the 176 CaRF

ChIP peaks, and by testing the requirement for each degenerate

base across the chCaRE motif we provide evidence that CaRF is

likely to show affinity for at least 64.5% of the variant chCaRE

motifs in vitro. These data raise the question of whether CaRF also

directly associates with the other 35.5% of the ChIP peaks that

contain base changes in key positions within the chCaRE motif,

as well as those that lack a sequence with any similarity to the

cCaRE.

Transcription factors vary in their requirement for a consensus

motif to guide their selection of genomic binding sites [5]. For

example, consensus binding motifs are highly enriched in genomic

binding sites for the transcriptional repressor REST [7], whereas

other factors, including the neuronal activity-regulated transcrip-

tion factor CREB, are frequently found bound to regions that lack

a consensus binding sequence [8]. In the case of CaRF, one

possibility is that in addition to cCaRE-like sequences, CaRF may

directly bind additional distinct sequence motifs that were not

identified in our binding site selection screen. A recent

comprehensive analysis of DNA binding preferences conducted

for a large group of transcription factors revealed that approxi-

mately half of these factors recognized multiple distinct sequence

motifs, indicating that DNA binding preferences of transcription

factors may be more flexible than previously realized [31]. It is also

possible that the association of CaRF with peaks that lack

consensus binding sites is indirect. Protein-protein interactions can

recruit transcription factors to regions that lack consensus binding

motifs either through an association that depends solely on the

binding of the interacting factor to DNA, or by cooperative

binding between the transcription factor of interest and the

interacting factor in a manner that changes the affinity of the

transcription factor for non-consensus DNA motifs [5]. It would be

particularly interesting if CaRF were recruited to consensus and

non-consensus binding sites through distinct mechanisms, as this

would imply a potential means to differentially regulate the

expression of subsets of CaRF target genes.

GOstat analysis of the genes that neighbor the CaRF ChIP

peaks revealed overrepresentation of gene products involved in

signaling pathways, suggesting the possibility that CaRF-depen-

dent transcription may modulate intracellular states in neurons.

Interestingly, the known functions of these gene products suggest

possible mechanisms through which CaRF could contribute to

experience-dependent synaptic development and plasticity. For

example the Eph family receptor tyrosine kinases Epha3 and Epha6

are regionally expressed in the developing brain, where they play

important roles in neural patterning [32]. Within the visual

system, EphA signaling has been shown to cooperate with neural

activity in the refinement of the synaptic connections that are

required for the establishment of topographic maps in both the

thalamus and the visual cortex during development [33,34]. In

Figure 7. Altered expression of a subset of the putative CaRF target genes in Carf knockout mice. RNA from P0 cortex of Carf WT or KO
was processed for quantitative PCR using primers against a subset of the putative CaRF target genes. In each case, mRNA expression was normalized
for expression of Gapdh in the same sample to control for sample handling. Data are displayed as expression in KO brains relative to expression in WT
brains. A value of 1 indicates no difference in expression, whereas values less than 1 indicate reduced expression in KO compared with WT, and values
greater than 1 indicate increased expression in KO compared with WT. n = 4–6 for each genotype. Bars show the mean and error bars represent S.E.M.
*p,0.05 for KO compared with WT.
doi:10.1371/journal.pone.0010870.g007
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addition, among the putative CaRF target genes that are related to

calcium signaling, the proteins encoded by Caly (Calcyon) and

Cacng2 (Stargazin) contribute to the regulation of AMPA-type

glutamate receptor trafficking to synapses [35,36] suggesting a

possible mechanism by which CaRF-dependent transcription

could modulate the strength of excitatory synapses. These data

are particularly exciting in light of our findings that adult Carf KO

mice show abnormalities in several tests of learning and memory

[15]. Specifically these mice display impaired extinction of

context-dependent fear conditioning as well as reduced remote

memory retention in a novel object recognition task. Performance

in both of these memory tests is thought to depend on experience-

dependent changes in cortical synaptic function [37,38]. Whether

activity-dependent plasticity of glutamatergic synapses is altered in

the Carf knockout mice, and whether any the gene products

identified in this study contribute to the memory phenotypes in

these mice, will be interesting questions to explore.

Despite the evidence for the enrichment of functional pathways

among the putative CaRF targets, it remains possible that our list

of genomic CaRF binding sites is incomplete. To ensure the

specificity of ChIP using the anti-CaRF antibody, we sequenced

ChIP libraries made from both Carf WT and KO neurons then

developed a statistical method to identify only those genomic

regions significantly enriched in the pulldown from the WT cells.

This method of analysis yielded a relatively small number of peaks

compared with other genome-scale ChIP studies [7,39,40],

suggesting that by setting our parameters to define a stringent

threshold for peak detection we may have increased the likelihood

of false negatives. For example, we did not find a CaRF ChIP peak

in promoter IV of the Bdnf gene, which could indicate either that

CaRF was not bound to Bdnf CaRE1 under the conditions used in

this study or that this interaction was undetectable for technical

reasons. In addition, despite the evidence that the transcriptional

activity of CaRF can be acutely enhanced by the activation of L-

type voltage gated calcium channels in neurons [14], we did not

find extensive overlap between the list of putative CaRF target

genes (Table S4) and several large published sets of neuronal

activity-dependent genes [19,41,42].

Nonetheless, we have demonstrated that at least a subset of the

putative CaRF target genes show altered expression in the brains

of Carf KO mice, demonstrating that CaRF expression is

important for their proper regulation. It is interesting that whereas

in heterologous overexpression assays CaRF acts as a CaRE1-

dependent transcriptional activator of a Bdnf promoter IV-

luciferase reporter [14], the data presented in Figure 6d and

Figure 7 demonstrate both up- and down-regulation of genes

with CaRF ChIP peaks in the Carf KO mice. Although loss of

CaRF may indirectly elevate gene expression, because the genes

we have assayed here directly neighbor sites of CaRF binding in

vivo, these data raise the possibility that CaRF acts as a direct

repressor of a subset of its target genes. The functions of many

transcriptional regulators are highly context dependent, and can

be influenced by cell type [43], post-translational modifications

[44,45], protein-protein interactions [46], as well as the local

chromatin environment [47]. The molecular mechanisms by

which CaRF regulates transcription are not fully understood,

however our previous overexpression experiments indicated that

the C-terminal region of CaRF was required for its ability to

activate the Bdnf promoter IV reporter plasmid [14]. In this

context it is interesting that in addition to producing full-length

Carf transcripts, we have found that the Carf locus also encodes a

C-terminally truncated Carf variant through the use of an

alternative polyadenylation site in the intron just following the

exons that encode the DNA binding domain [15]. This variant is

expressed in brain and is predicted to bind DNA but not to

activate transcription. Thus the short variant of CaRF could

potentially act as an endogenous dominant negative of CaRF-

dependent transcription. Our antibody was raised against the

complete CaRF protein and will immunoprecipitate both forms of

CaRF, and importantly both the short and the long variants of

CaRF are absent in our KO mice [15]. However whether different

CaRF variants are recruited differentially to different regions of

the genome, and whether either form of CaRF can actively repress

transcription remains to be tested. In conclusion, by continuing to

combine the analysis of gene expression in our Carf KO mouse

with the identification of genomic binding sites of CaRF presented

here we expect these data will provide a crucial starting point for a

detailed study of the molecular mechanisms that regulate CaRF-

dependent transcription in neurons.

Supporting Information

Table S1 Oligonucleotides used in this study.

Found at: doi:10.1371/journal.pone.0010870.s001 (0.07 MB

DOC)

Table S2 CaRF orthologs. CaRF orthologs were identified by

BLAST search for translated nucleotide sequences with high

similarity to Mus musculus CaRF. Orthologs from 37 species were

identified, and accession numbers are listed below. ENS sequences

are from Ensembl (http://www.ensembl.org) and XM, XR, and

NR sequences are from NCBI (http://www.ncbi.nlm.nih.gov/

entrez).

Found at: doi:10.1371/journal.pone.0010870.s002 (0.04 MB

DOC)

Table S3 Identification of a high affinity CaRF binding motif by

PCR-assisted site selection. Oligos selected after four rounds of

coimmunoprecipitation with CaRF were cloned in the vector

pBluescript and sequenced. 62 sequences were aligned and the

best fitted 16bp motif is shown for each clone. Capital letters

indicate bases within the random 16mer sequence and lower case

letters indicate the flanking sequences.

Found at: doi:10.1371/journal.pone.0010870.s003 (0.04 MB

DOC)

Table S4 Genomic locations of CaRF ChIP peaks and

identification of a conserved in vivo CaRF binding motif. Peak

files derived from the CaRF ChIP were loaded into the UCSC

browser to analyze genomic location. Location denotes the

chromosomal position of each peak. The peak start and end

numbers are in reference to build 37 of the Mus musculus genome

(mm9, July 2007; http://genome.ucsc.edu). The nearest annotated

gene within 10kB of the ChIP peak is listed under Gene Symbol.

The Motif column shows the sequence of the common 10bp motif

found by PRIORITY analysis of the ChIP peak sequences. The

sequences not included in the analysis are marked ‘‘too short’’, and

sequences analyzed that did not contain a conserved motif are

marked ‘‘none.’’ Finally based on in vitro analysis of CaRF’s

tolerance for base pair changes across the motif as shown in

Figure 5c, we predicted the affinity of CaRF for each of the motif

sequences by EMSA. Motifs with base pair changes in positions 3,

6, 7, or 8 are denoted as ‘‘Low’’ affinity, motifs with base pair

changes in positions 1, 9, or 10 are denoted ‘‘Medium’’ affinity,

and the remaining motifs are ‘‘High’’ affinity. The 60 peaks

highlighted in gray are within 1kB of a transcriptional start site and

were used for the positional analysis of CaRF binding sites in

Figure 4.

Found at: doi:10.1371/journal.pone.0010870.s004 (0.27 MB

DOC)
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