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Abstract

The Internet has enabled profound changes in the way science is performed, especially in scientific communications.
Among the most important of these changes is the possibility of new models for pre-publication review, ranging from the
current, relatively strict peer-review model, to entirely unreviewed, instant self-publication. Different models may affect
scientific progress by altering both the quality and quantity of papers available to the research community. To test how
models affect the community, I used a multi-agent simulation of treatment selection and outcome in a patient population
to examine how various levels of pre-publication review might affect the rate of scientific progress. I identified a ‘‘sweet
spot’’ between the points of very limited and very strict requirements for pre-publication review. The model also produced a
u-shaped curve where very limited review requirement was slightly superior to a moderate level of requirement, but not as
large as the aforementioned sweet spot. This unexpected phenomenon appears to result from the community taking longer
to discover the correct treatment with more strict pre-publication review. In the parameter regimens I explored, both
completely unreviewed and very strictly reviewed scientific communication seems likely to hinder scientific progress. Much
more investigation is warranted. Multi-agent simulations can help to shed light on complex questions of scientific
communication and exhibit interesting, unexpected behaviors.
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Introduction

Modern science is a highly collaborative, community practice.

Scientists often collaborate directly, and the scientific literature

supports building upon previous work over time. New electronic

publishing technologies, such as e-journals, forums, and blogs, offer

the enticing possibility of highly efficient instant publication, rather

than authors having to go through the cumbersome processes of

classic peer review and long publication cycles. In the extreme,

scientists may put their lab notebooks or straight-off-the-instrument

data online. Of course, unreviewed publication is a venerable

tradition both in classic and modern science; scientists often publish in

books, editorials, and other venues that are not peer reviewed; some

have even run their own presses, like Benjamin Franklin did. But the

ease and speed with which one can publish on the Web, combined

with the critical role that Web search has taken as the first resource for

nearly all scientific scholarship, raises new possibilities and the

potential for new problems. Nielsen [1] eloquently describes the

possibilities: ‘‘The Internet offers us the first major opportunity [to

create] a conversational commons for the rapid collaborative

development of ideas.’’ On the other hand, the Internet poses

problems with information quality control. Shrager et al. [2] suggest

that reducing pre-publication review requirements may lead to a

decrease in the average quality of the information stream; high-

quality information will be less clearly marked, and information may

be quickly posted and therefore less stable due to revisions. With the

vast amount of information available, scientists could act based on

unreliable information. Although some rapidly-published results are

available for post-publication review, readers often miss these types of

reviews. Moreover, as the pace of information distribution in the

community speeds up, a vicious cycle may result that pushes

researchers to act faster to ensure they publish first, potentially

reducing their capacity to check their own results. A Web-based

review process must be carefully designed to allow for easy filtering of

publications based upon their review type and quality.

Ominous as this scenario may sound, it is not entirely clear that

these changes are for the worse. The rapidity with which results

are posted and shot down may balance out a decrease in the

quality of published results. Thus even if the signal-to-noise ratio of

published results is reduced, the search among alternative

hypotheses could take place so much faster that this balances

out the time wasted by the community in following up published

results that turn out to be invalid.

Whether, and under what model, pre-publication review should

take place is no mere academic question; scientists encounter this

struggle daily. Pöschl [3] recently observed that ‘‘shorter articles

and an increasing number of publications have resulted in the

scientific information market being flooded by journal articles,

preprints and proceedings with little or no quality control.’’

Moreover, unreviewed (or lightly reviewed) material is rapidly

leaking into the supposedly validated scientific literature without

any indication of the level of review it has received. For example,
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the online journal PLoS Currents: Influenza [4] is ‘‘moderated by an

expert group of influenza researchers, but in the interest of

timeliness, does not undergo in-depth peer review.’’ Yet the

abstracts from this journal appear in PubMed–a widely accepted

source for validated biomedical publication–with no indication

they have not undergone in-depth peer review. By contrast, arXiv

[5] provides quality control through two levels of review,

endorsement and moderation, and will not certify a paper until

it has appeared in a peer-reviewed journal.

With the current state of the review process, and new publication

paradigms rapidly upon us, now is the time to question the impact

that a flood of lightly reviewed scientific publications could have on

scientific progress. For example, the first volume of the newly minted

Journal of Participatory Medicine (JPM) [6] launched online in October

2009, featured an essay wherein Richard W. Smith [7], former editor

of the British Medical Journal, encouraged the readership of JPM to help

design a new alternative to traditional peer review: ‘‘[We] don’t yet

have a clearly articulated alternative to peer review, but this is your

chance to ‘join the revolution’ and together with the editors devise a

better system for this journal.’’ Smith asks his readers to consider a

model under which new data is put online immediately, with reviewer

and editor comments available after online publication. But again,

our modern Web experience suggests that post-publication com-

mentary of this sort often goes largely unnoticed. Indeed, Google’s

Page Rank algorithm ranks documents primarily based upon the

number of citations, pushing papers, with more citations higher in

rank even if the citations are not complementary.

Although Web-based publication has not yet resulted in the

chaos envisioned by Shrager, et al., we are rapidly headed for a

world of increasingly lightly reviewed, post-reviewed, or unre-

viewed scientific publications. In his exhortation, Smith asks the

readers to contribute their thoughts based on evidence. There are

various sorts of evidence that might bear on this problem. In the

present paper, I employ a multi-agent, computational simulation

to explore what impact self-publication and lightly reviewed, post-

reviewed, or unreviewed publication might have on the progress of

science. Multi-agent simulations have been used to good effect in a

wide variety of domains [8], but have rarely been used to model

the scientific community. Payette [9] developed a multi-agent

simulation based upon the hypothesis that scientists earn the

respect of their peers through sharing ideas with their collaborators

and competitors. In this model, scientists ‘‘propagate their ideas

[and] acquire credit, i.e., the consideration of their peers, with

whom they are both competing and collaborating.’’ Payette’s

simulated scientists operate in a social network with their students

and collaborators while writing peer-reviewed articles that allow

them to share their ideas with the whole community. Each idea is

assigned a real-value of ‘empirical adequacy’, although the

scientists do not have direct access to this value and must

approximate it using tests. When ideas are transmitted from one

scientist to another, noise can be introduced into the transmission,

and the efficiency of the system is measured by how close the

subjective ratings assigned by the agents to ideas come to the real,

objective correctness of the idea.

My model employs a similar multi-agent approach to the

question of whether pre-publication review accelerates or hinders

the progress of science. I simulate the health of a community with

a population of 1000 persons and realistic probabilities of getting a

progressive, fatal disease, such as cancer. In this model, patients

with cancer are treated with the best available published

treatment, and observe the population after 100 years. Like

Payette’s model, the present model contains ubiquitous and

inherent measurement noise; it is impossible for any agent to

directly observe the true state of health of themselves or of any

other agent. This will come into play in trying to understand how

the predictions and observed results arise. The main variable I

explore here is the stringency of the requirements for publication,

modeled here as the number of sequentially observed improve-

ments in a particular patient’s health status; that is, approximately:

replications required to publish. I call this ‘HMSDCALE’ and

abbreviate is as: ‘@N’, where N is the minimum number of

sequentially observed improvements required to publish. The

present experiments vary HMSDCALE in the range of @1 (very

weak replication requirements) through @12 (very strict replica-

tion requirements). I predict that both extremes on the scale will be

inferior to mid-range values, and the population size will decrease

over the course of one-hundred years; however, the explanation

for this downward trend is different at each end of the scale. At the

weak end (near @1), nonsense observations will rapidly fill the

literature, misleading the community to adopt improper treat-

ments, whereas at the strict end (near @12) almost nothing will be

published because measurement noise makes it almost impossible

to achieve the required number of sequentially observed

improvements in the patient’s health. In this latter scenario,

treatment selection has no basis in published evidence and is

therefore effectively random. Both of these cases should have

adverse consequences for the overall health of the population.

More details of the model appear in the Materials and Methods

section below.

Results

Figure 1 depicts the number of patients that remain alive at the

end of 100 years of simulation across a range of HMSDCALE

values from @1 through @12. These data are accumulated over

250 replicated runs with different random seeds. The error bars

represent standard errors (s.e.). Overall, this result is highly

significant (F(11,2988) = 69.43, p, = 0.00), but further analysis is

required in order to confirm or refute the theory put forward

above.

Figure 1. Populations after 100 years of simulation across
increasing values of HMSDCALE (@1-12). Standard error (s.e.) bars
are over 250 replications with different random seeds. (The s.e. bars are
so small as to be nearly invisible at high values of HMSDCALE.)
doi:10.1371/journal.pone.0010782.g001
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First, note that the population falls off steeply at the high end of

HMSDCALE values. This happens because measurement error

makes it very unlikely to observe high numbers of sequential

declines, even in a patient whose health is improving monoton-

ically. As a result, very few effective treatments are published in

this upper range of HMSDCALE. There is a fairly smooth decline

from @5 through @8, reaching a minimum of about 300 people

alive after 100 years. Not surprisingly, this is about the same result

obtained if random treatments are given. In post-hoc ANOVA

analysis (by Tukey HSD), there are no significant differences

between @9-@12, but @7-@12 all show highly significant

differences (p,.001) from the other values (@1-@6). The

HMSDCALE at @7 is nearly significantly different from each

value in @9 to @12 (9v7, = 0.08, 10v7, = 0.08, 11v7, = 0.07,

12v7, = 0.08). Of the remaining post-hoc comparisons, the only

significantly different ones were as follows: 5v1, = 0.001,

4v2, = 0.03, 5v2, = 0.00, 5v3, = 0.00, and 6v5,0.01.

Notice that comparing @1 to @5, the final population increases

significantly (p, = 0.001) followed by the decline described above.

An increase from @1 through some medium point is roughly what

was expected. This supports the hypothesis that lightly reviewed

publication is inefficient, and some moderate level of publication

stringency is superior to either very weak or very strong levels. Five

simulated years of observed, monotonic improvement in disease

state is approximately the ‘‘sweet spot’’ for pre-publication

replication requirements in this particular simulation regimen.

Interestingly, the values between @1 and @5 decrease

somewhat. Although @1 is not significantly different from @2–

4, there is a difference between @2 and both @4 and @5, and a

difference greater than the standard error between both @2 and

@3 compared to @5, yielding post-hocs of 4v2, = 0.03,

5v2, = 0.00, and 5v3, = 0.00. This u-shaped result was not

expected, so I explored it in more detail. A closer look at the

standard errors suggests the data in this range is essentially

bimodal; either the population discovers the right treatment,

publishes the results fairly rapidly, and essentially everyone

survives; or they never discover it, resulting in approximately the

same lower population as in the higher values on the scale. What is

changing in the @1–5 range is the number of the 250 runs that

land in each of these regimens.

One can more clearly observe this bimodality by splitting the

data shown in Figure 1 into the high-end and low-end of the scale.

To show this more easily, I have split the data at a remaining

population of 800. Table 1 gives the total number of runs of the

250 where the population after 100 years was greater than or

equal to 800 as well as the associated means and standard errors

(s.e). This division significantly reduces the s.e. for almost all of the

data, from a s.e. around 25 in the @2–5 range down to s.e. in the

low single digits. This supports the hypothesis of strong bimodality

in the data, and can be seen by looking at any of the dynamics in

the @1-@6 range. Notice that the number of people remaining

after 100 years is around 170 for all of the ,800 cases in @2–5,

which is around the level of the null treatment; that is, all patients

are always treated with a drug that has no effect. This suggests that

once someone randomly discovers a good treatment, everyone still

alive at that point is saved. If this happens early in the simulation,

almost everyone is saved. But unless and until the correct

treatment is discovered and published, everyone is being treated

randomly, and with mostly poor treatments. The HMSDCALE

parameter simply pushes the point in time when this discovery

takes place to a later date, making it harder to discover a good

treatment but also improving the performance of the treatment

once discovered. At low HMSDCALE values, incorrect treatments

are published and have little utility, whereas, as the HMSDCALE

rises up to a point around @5 or @6, the quality of the published

treatments is improved. However, these discoveries come later in

the run. After about @6, publication starts to be so difficult that

eventually nothing is published at all and treatments are essentially

random. And indeed, the level reached, about 300, is about the

same as random treatment. Note that random treatment is slightly

superior to null treatment as the variation inherent in the random

approach means the treatments may be either more or less

effective than the null. The parameters of the present model lean

slightly toward more good than poor treatments. The combination

of these phenomena creates the observed complex dynamics.

Discussion

Although limited in scope and applicability, these results suggest

that different levels of stringency in peer review may accelerate or

hinder scientific progress. Too strict of a review requirement

(represented here by the HMSDCALE parameter) can prevent

sharing of valid treatments, but too weak of a requirement drowns

good results in a sea of bad treatments. Moreover, unexpected,

non-linear complexities appear between the point of too little

Table 1. Statistics from 250 runs split between a final population of . = 800 v.,800 after 100 years.

@ combined Mean combined se n. = 800 . = 800 mean . = 800 se n,800 ,800 mean ,800 se

1 578.82 19.53 86 966.79 4.86 164 375.37 11.98

2 528.19 26.16 109 997.33 0.56 141 165.52 1.86

3 547.34 26.21 115 995.00 0.68 135 166.01 2.10

4 611.16 25.94 135 988.50 1.03 115 168.20 2.26

5 682.69 23.72 162 957.69 2.37 88 176.45 2.88

6 586.73 20.74 105 898.78 5.18 145 360.76 20.58

7 387.00 12.34 18 884.61 13.12 232 348.39 9.28

8 322.69 4.34 1 803.00 0.00 249 320.76 3.90

9 0 250 310.32 1.50

10 0 250 310.63 0.92

11 0 250 309.24 0.92

12 0 250 310.72 0.93

doi:10.1371/journal.pone.0010782.t001
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review (@1-4) and the ‘‘sweet spot’’ of five observed sequential

improvements (@5).

These results certainly have not answered the specific question

of exactly how much pre-publication review is too much or too

little. For example, it is unlikely that doctors should wait five years

for the improvement of a cancer patient before publishing.

(Coincidentally, cancer-free for five years is exactly what is

considered a ‘‘cure’’ in oncology.) However, I have shown that a

relatively simple model can suggest general principles and reveal

interesting, complex phenomena that invite further analysis. In

this way, multi-agent models offer a new instrument for

investigation of the complex social structures that are modern

science.

Materials and Methods

Supporting file Text S1 contains the complete, self-contained

Common Lisp code for the model, along with the parameter

values that produced the results presented here.

Agents, that is, patients, doctors, or patient–doctor units,

operate in an environment of a single disease (e.g., cancer) and

numerous potential treatments. A population of patients (here

1000) stochastically becomes ill, for example, at a rate of 0.01 of

the population per year. When the disease is initially diagnosed in

a given person, it has a real-valued level (0.1), and progresses each

year by a fixed factor (1.26) until it reaches a death threshold (0.5).

At this point the individual is removed from the population.

Patients visit the doctor once each year and either continue with or

change their current treatment. The model is usually run for 100

simulated years, and I conduct 250 replication runs with different

random seeds. The available drugs used to treat the disease take

on a range of multiplicative effectiveness, with an effectiveness of

1.0 having no effect (i.e., a null treatment). Values smaller than 1.0

denote beneficial effects (i.e., reducing the level of the disease), and

those greater than 1.0 denote undesired side effects (i.e.,

accelerating towards the death threshold). For example, if a

person is diagnosed at 0.1 and is treated for three years with a null

drug (effectiveness = 1.0) and a disease progression factor of 1.2, he

or she will have a disease level of ,0.173 in the third year. If he or

she then begins treatment with a drug that has a treatment

effectiveness of 0.8, his or her next disease level will be

0.17361.260.8 = 0.166, then 0.159, etc., and this patient will

eventually be ‘‘cured’’ if he or she remains on this drug; that is, the

disease level will approach, although never quite reach, 0.0.

In the present model, every person employs the same decision

algorithm. When initially diagnosed, the patient gets the best drug

reported in the literature at the time. This method is described

below. If the disease has not apparently improved by the patient’s

annual visit to the doctor, that is, the measured disease level has

not reduced, this patient is again treated with the current best drug

in the literature, which will almost certainly have changed since

the patient’s last visit. Note that on each visit to the doctor the

patient’s actual state of health can only be measured with a

standard deviation of 2.0, so that the actual state of the patient’s

health is not directly observable, similar to Payette’s model.

Agents in the present model interact with one another via

publication. At each annual treatment, either the patient or his or

her doctor may publish the result in the collective literature, which

is a simple, chronological stack. Results are only published after

the patient has a number of sequential improvements while taking

the same drug, as determined by the HMSDCALE parameter.

Recall that patient improvement inherently contains error, so that

an error on a single measurement could cause a misinterpretation

of the patient’s state. I use the notation ‘‘@N’’ to indicate an

HMSDCALE value of N. The range between the @1 and higher

values of HMSDCALE models the range between no pre-

publication review, that is no requirement of replication where

everything that shows any promise is published into the literature,

and a very stringent requirement of observing monotonic

improvement over many sequential observations. An

HMSDCALE of @1 is close to, but not quite literally publishing

everything because in a true publish-everything setting publication

would take place regardless of whether the patient’s health is

improving. I do not currently model ‘‘negative results’’–that is, a

well-powered study that shows no effect–nor publication of poor

outcomes–that is, replicable declining health status rather than

improving health status.

Modeling statistics were carried out by one-way ANOVA and

Tukey HSD post-hoc tests.

Supporting Information

Text S1 Stand Alone Simulation Common Lisp Code.

Found at: doi:10.1371/journal.pone.0010782.s001 (0.03 MB

TXT)
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