
A Male with Unilateral Microphthalmia Reveals a Role for
TMX3 in Eye Development
Ryan Chao1, Linda Nevin2, Pooja Agarwal3, Jan Riemer4, Xiaoyang Bai5, Allen Delaney6, Matthew

Akana7, Nelson JimenezLopez1, Tanya Bardakjian8, Adele Schneider8, Nicolas Chassaing9, Daniel F.

Schorderet10, David FitzPatrick11, Pui-yan Kwok7, Lars Ellgaard4, Douglas B. Gould5, Yan Zhang12,

Jarema Malicki12, Herwig Baier2, Anne Slavotinek1*

1 Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America, 2 Department of Physiology,

University of California San Francisco, San Francisco, California, United States of America, 3 Cardiovascular Research Institute, University of California San Francisco, San

Francisco, California, United States of America, 4 Department of Biology, University of Copenhagen, Copenhagen, Denmark, 5 Departments of Ophthalmology, Anatomy

and the Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America, 6 Genome Sciences Center, BC Cancer

Research Center, Vancouver, British Columbia, Canada, 7 Department of Dermatology, Cardiovascular Research Institute and Institute for Human Genetics, University of

California San Francisco, San Francisco, California, United States of America, 8 Clinical Genetics Division, Albert Einstein Medical Center, Philadelphia, Pennsylvania, United
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Abstract

Anophthalmia and microphthalmia are important birth defects, but their pathogenesis remains incompletely understood.
We studied a patient with severe unilateral microphthalmia who had a 2.7 Mb deletion at chromosome 18q22.1 that was
inherited from his mother. In-situ hybridization showed that one of the deleted genes, TMX3, was expressed in the retinal
neuroepithelium and lens epithelium in the developing murine eye. We re-sequenced TMX3 in 162 patients with
anophthalmia or microphthalmia, and found two missense substitutions in unrelated patients: c.116G.A, predicting
p.Arg39Gln, in a male with unilateral microphthalmia and retinal coloboma, and c.322G.A, predicting p.Asp108Asn, in a
female with unilateral microphthalmia and severe micrognathia. We used two antisense morpholinos targeted against the
zebrafish TMX3 orthologue, zgc:110025, to examine the effects of reduced gene expression in eye development. We noted
that the morphant larvae resulting from both morpholinos had significantly smaller eye sizes and reduced labeling with
islet-1 antibody directed against retinal ganglion cells at 2 days post fertilization. Co-injection of human wild type TMX3
mRNA rescued the small eye phenotype obtained with both morpholinos, whereas co-injection of human TMX3(p.Arg39Gln)
mutant mRNA, analogous to the mutation in the patient with microphthalmia and coloboma, did not rescue the small eye
phenotype. Our results show that haploinsufficiency for TMX3 results in a small eye phenotype and represents a novel
genetic cause of microphthalmia and coloboma. Future experiments to determine if other thioredoxins are important in eye
morphogenesis and to clarify the mechanism of function of TMX3 in eye development are warranted.
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Introduction

Birth defects affect an estimated 120,000 (1 in 33) babies born in

the United States each year, and are the leading cause of death in the

first year of life [1]. Anophthalmia is characterized by the absence of

an eye or the presence of a rudimentary eye, and has a prevalence of

up to 30 cases per 100,000 individuals [2]. Anophthalmia is closely

related to microphthalmia (small eye). Coloboma (failure of the

choroid or optic fissure to fuse, also known as an optic fissure closure

defect) frequently occurs together with microphthalmia and may

have a similar pathogenesis to microphthalmia in some cases.

Mutations in several transcription factors that are expressed

during eye development have been shown to cause anophthalmia,

microphthalmia and coloboma [2–5]. The eye phenotype is

thought to arise from several basic pathological mechanisms - a

failure of lens formation (for example, SOX2 and PAX6

haploinsufficiency [6,7]), a failure of optic vesicle formation or

regression of the optic vesicle (for example, RAX loss of function

[8]) and impaired retinal development (for example, CHX10,

OTX2 and MITF haploinsufficiency [9]). However, a significant

proportion of patients with anophthalmia and microphthalmia,

estimated to be more than 60–70%, do not have an identified
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genetic etiology for their birth defect, and it is highly likely that

new genes and pathways remain to be discovered [2].

Array comparative genomic hybridization (array CGH) is an

effective methodology for screening whole genomes for submicro-

scopic chromosome aberrations [10]. Array hybridization has also

been used to study patients with congenital heart disease [11], cleft

palate [12] and diaphragmatic hernia [13–15]. Our previous

studies on diaphragmatic hernia patients identified a novel

18q22.1 deletion using the Affymetrix GeneChipH Human

Mapping 100K Set in a patient with unilateral microphthalmia

and right-sided diaphragmatic hernia [16]. The following work

describes our evaluation of the genes contained within this

deletion: Cadherin 19, type 2 preprotein, (CDH19; Accession

number NM_021153), Thioredoxin domain-containing 10

(TMX3, also known as TXNDC10, Accession number

NM_019022), Dermatan sulfate epimerase-like (DSEL; Accession

number NM_032160), and Coiled-coil domain-containing 102B

(CCDC102B; Accession number NM_001093729), for a role in the

pathogenesis of the microphthalmia found in the propositus.

Results

The 13-month old propositus with severe unilateral microph-

thalmia and diaphragmatic hernia has previously been described

[16,17]. The propositus’s parents were apparently without birth

defects, but were not examined by us personally, and a maternal

aunt was reported to have anophthalmia, although she was unable

to be examined. Sequencing of the STRA6 (Stimulated-by-retinoic

acid-6; Accession number NM_022369) gene that is mutated in

individuals with a phenotype comprising anophthalmia, diaphrag-

matic defects, cardiac malformations and pulmonary agenesis, was

performed on the propositus, and was negative [17].

We used an Affymetrix GeneChip Human Mapping 500K Set

to repeat our array studies in this family to refine the breakpoints

of the 2.7 Mb 18q22.1 deletion that were previously identified

using the Affymetrix GeneChip Human Mapping 100K Set [16].

The proband’s deletion extended from SNP_A-4257584 at

chr18:61,987,859 to SNP_A-1938047 at chr18:64,614,741 (base

pairs numbered according to version hg18 of the UCSC Genome

Browser, http://genome.ucsc.edu; Fig. 1A), inclusive, and his

mother’s deletion extended from SNP_A-4238202 at 62,058,576

to SNP_A-4257824 at 64,600,521, inclusive (Fig. 1B). The

proband therefore has a slightly larger deletion than his mother

based on these single nucleotide polymorphisms (SNPs), but both

deletions contain the same genes. We did not find any other

significant copy number variations (CNVs) in the propositus or in

his parents (data not shown). The father did not have the same

deletion using the same 500K array, and no other family members

were available to be tested. The 18q22.1 deletion was confirmed

by fluorescence in-situ hybridization (FISH) using bacterial

artificial chromosome (BAC) probes RP11-246I7 and RP11-

105L16, which were deleted [16].

The deleted region on chromosome 18 contains three genes that

encode proteins - CDH19 at chr18:62,322,301-62,422,196, DSEL

at chr18:63,324,799-63,334,947, and TMX3 at chr18:64,491,905-

64,533,333. CCDC102B was located at the telomeric breakpoint of

the deletion at chr18:64,533,471-64,873,406. All of these genes

except for DSEL have been reported to be located in CNV regions

(see Database of Genomic Variants; http://projects.tcag.ca/

variation/ [18–22]. TMX3 was located in variation 4061

(chromosome 18: 64,126718-64,543,942) which was duplicated,

but not deleted, in 3/270 HapMap individuals [19]. However,

CNV studies do not definitively eliminate any of the deleted

candidate genes from consideration for the etiology of the

microphthalmia, although we assessed CDH19 as less likely to be

involved in the pathogenesis of the eye defects due to the

frequency of CDH19 deletions in normal individuals. We also did

not find significant expression of Cdh19 in the developing murine

eye (data not shown).

There is no murine homologue for Ccdc102b, but we did not find

significant expression in either developing eye or diaphragm for

Ccdc102a, the most closely related murine gene (data not shown).

Figure 1. A 500K Microarray shows a 2.7 Mb deletion of
18q22.1 in the propositus. Fig. 1A. Graph of smoothed copy number
for chromosome 18 from the Affymetrix 500K Array in the propositus,
indicating loss of copy number (green color) and demonstrating a
chromosome deletion at chromosome 18q22.1. The x-axis shows the
nucleotide number from 1–76,117,153 on chromosome 18 and the y-
axis shows smoothed copy number. Fig. 1B. Graph of smoothed copy
number for chromosome 18 from the Affymetrix 500K Array in the
mother of the propositus, indicating a similar loss of copy number
(green color) at chromosome 18q22.1. The x-axis shows the nucleotide
number from 1–76,117,153 on chromosome 18 and the y-axis shows
smoothed copy number.
doi:10.1371/journal.pone.0010565.g001
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Dsel was only weakly expressed in the murine lens at embryonic

day 13.5 (E13.5; data not shown). In contrast, Tmx3 expression

was first detectable in the developing murine eye at E11.5, but

expression was relatively weak (data not shown). From E13.5–

E16.5, we saw robust Tmx3 expression in regions corresponding to

the future retina and lens epithelium, two important sites of eye

development (Fig. 2). At postnatal day 4 (P4), Tmx3 expression was

present in at least the outer retinal layer of the eye (Fig. 2). In

addition to the developing eye, Tmx3 was also expressed in several

other tissues during embryogenesis, including the brain, kidney

and lung, confirming the expression data for human TMX3, in

which 5.1 kb and 4.0 kb transcripts have been found in many

tissues such as the eye, heart, skeletal muscle, brain, lung and

kidney [23]. Our in-situ studies enabled us to prioritize our

candidate genes for anophthalmia and microphthalmia, with Tmx3

becoming the strongest candidate based on the intensity of

expression and the duration of expression in the developing eye.

Our expression studies lead us to re-sequence TMX3 in 162

patients with microphthalmia or anophthalmia. We identified a

c.116G.A transition, predicting the p.Arg39Gln amino acid

substitution, in a Caucasian male who had unilateral microph-

thalmia and retinal and iris coloboma (Fig. 3A; Table 1;

numbering according to transcript ENST00000299608 (Ensembl

Database: http://www.ensembl.org/index.html), with 1 = A of

ATG start codon). Sadly, parental DNA from this patient was

unavailable, and thus it is not known if the sequence alteration

occurred de novo. This nucleotide change is predicted to substitute a

basic residue (arginine) with a polar residue (glutamine) in the

catalytic thioredoxin-like domain of the protein [23]. The

nucleotide alteration was assessed as ‘possibly damaging’ by the

PolyPhen website (http://genetics.bwh.harvard.edu/pph/) for the

prediction of functional effect of human non-synonymous SNPs,

with a Position-Specific Independent Counts (PSIC) score

difference of 1.595. This substitution was not present in 212

Caucasian control chromosomes matching the ethnicity of this

Caucasian patient, or in 102 control chromosomes of mixed

ethnicity (obtained from the California Birth Defects Monitoring

Program), or in 30 control chromosomes of mixed ethnicity

(obtained from the Coriell Institute for Medical Research, www.

coriell.org/), making a total of 344 control chromosomes without

c.116G.A (data not shown). The arginine residue was conserved

in multiple species (Table S1), supporting pathogenicity for this

sequence alteration.

We also found. c.322G.A, predicting p.Asp108Asn (Fig. 3B;

Table 1), also in the thioredoxin-like domain of the protein, in an

adopted patient from Haiti who had severe, unilateral left

microphthalmia and significant micrognathia (small jaw) but

normal development. This substitution was predicted by PolyPhen

to be ‘possibly damaging’, with a PSIC score of 1.614, and was

also highly conserved in different species (Table S1). Parental

samples were unavailable and the ethnicity of the patient was not

known, but the substitution was not found in 91 chromosomes of

mixed ethnicity (obtained from the Coriell Institute for Medical

Research, www.coriell.org/), 48 chromosomes of African Amer-

ican ethnicity, 46 chromosomes of Hispanic ethnicity and 46

chromosomes of Caucasian ethnicity for a total of 231 control

chromosomes without c.322G.A (data not shown). Interestingly,

this patient also had an alteration of unknown significance, c.-

25G.A, in the 59UTR of TMX3, 25 base pairs upstream to the A

in the ATG start codon and close to the predicted promoter of the

gene (McPromoter – The Markov Chain prediction promoter

server; http://tools.igsp.duke.edu/generegulation/McPromoter/).

However, we could not obtain RNA to look at TMX3 gene

expression. DNA from this child had previously been sequenced

for SOX2 mutations, and c.859G.C, predicting p.Ala287Pro, was

identified (Ms Tanya Bardakjian, personal communication), but

this alteration was also of unknown significance, with a PolyPhen

PSIC score difference of 1.347, indicating that it could be

considered benign. However, in view of this SOX2 sequence

alteration of unknown significance, we chose to focus our attention

on p.Arg39Gln rather than p.Asp108Asn for functional studies (see

below). We also found numerous other non-coding sequence

variants in TMX3 that have been listed in Table S2.

When assessed by pulse chase experiments, we did not detect

any significant difference between wild type TMX3 and altered

TMX3(p.Arg39Gln) in terms of protein stability over a time period

of 25 hours (data not shown). We therefore sought to make an

animal model of TMX3 deficiency to examine the effect of reduced

expression of this gene in eye development in another species and

to test p.Arg39Gln for pathogenicity. Zgc:110025 (Accession

number NM_001020557), the Danio rerio orthologue of TMX3,

has 46% identity to human full-length TMX3 (Clustal W2; http://

www.ebi.ac.uk/Tools/) and is single-copy in the zebrafish

genome. We designed two antisense morpholinos to reduce the

expression of this gene, one directed against the start codon

(hereafter referred to as MO1 morpholino, or MO1), and a splice

site morpholino (hereafter referred to as MO3 morpholino, or

MO3) directed against the exon 2-intron 2 boundary of

zgc:110025. We verified the ability of the anti-splice morpholino

to reduce zgc:110025 expression using reverse transcription

polymerase chain reaction (RT-PCR) at 2 days post fertilization

(dpf; Figure S1).

When we injected 6 ng of MO1, there was a significant

difference in eye size between larvae injected with MO1 and

control-injected larvae at all three time periods examined (p,0.05

for 2 dpf, 4 dpf and 6 dpf; unpaired Two-sample t-test; Fig. 4). At

6 dpf, we also obtained a low, but consistent frequency of

coloboma (2.6%; Fig. 5) in morphant larvae that did not have any

other evidence of external toxicity. The eye phenotype was

commonly bilateral. However, the interpretation of the phenotype

obtained by MO1 injection was complicated by a relatively high

incidence of toxicity and a wide variation in eye size at 6 dpf

(Fig. 4). There was a consistent reduction in eye size for 8 ng of

MO3 compared to control-injected larvae at 2 dpf and 4 dpf

(p,0.05 for 2 dpf), but not at 6 dpf (Two-sample t-test, Fig. 6).

The small eye phenotype was present in the absence of toxicity

and was consistent over more than five independent experiments.

Coloboma was observed very infrequently in MO3-injected fish, at

an estimated frequency of less than 1% (data not shown).

For both morpholinos, we defined penetrance as an eye size

greater than 2 standard deviations below the mean eye size for

control-injected larvae in the same experiment. Penetrance varied

between experiments, but was approximately 80% for microph-

thalmia in MO1-injected mutants and 50–60% in MO3- injected

mutants at 2 dpf. These data using two independent morpholinos

indicate that a reduction in expression for the zebrafish orthologue

ofTMX3 can be associated with a reduction in eye size.

We tested for rescue of the MO1 and MO3 eye phenotype using

human wildtype mRNA for TMX3. In preliminary experiments,

injections of 100–120 pg of human wildtype mRNA for TMX3 did

not result in an external phenotype different from uninjected or

control-injected fish (data not shown). Injection of 100–120 pg of

human TMX3 wild type mRNA together with MO1 or MO3

dramatically reduced the frequency of ocular abnormalities

compared to experiments with injections of MO1 or MO3 alone

at 2 dpf (Table 2; Fig. 7), indicating that rescue of the external

ocular phenotype had occurred. This experiment also established

the specificity of our MO1. However, the injection of 100–120 pg

TMX3 and Microphthalmia
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Figure 2. In-situ hybridization shows strong expression of TMX3 in the developing murine eye. Fig. 2. In-situ hybridization using
antisense and sense riboprobes for TMX3, showing expression in the murine developing eye at E13.5, E14.5, E16.5 and P4. An arrow points to the
labeling of the lens epithelium at E16.5 and P4 with the TMX3 antisense probe.
doi:10.1371/journal.pone.0010565.g002
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of human TMX3(p.Arg39Gln) mutant mRNA, analogous to the

human mutation, together with MO1 morpholino did not rescue

the small eye phenotype (Table 2). In the dual injection rescue

experiments with MO1, we did observe a high frequency of

external toxic effects with the combined morpholino and mRNA

injections that may in part have been attributable to early gene

expression. In our dual injection rescue experiments with MO3

and wildtype human TMX3 mRNA, rescue occurred (Fig. 7), but

minimal toxicity was observed (data not shown). Human

TMX3(p.Arg39Gln) mutant mRNA did not rescue the MO3

phenotype (Fig. 7).

The difference in eye size between MO3 and control was

evident at 2 dpf, and we therefore chose islet-1 antibody to label

retinal ganglion cells and primary neurons. Islet-1 antibody is

directed against a LIM homeodomain protein and labels both

retinal ganglion cells and other primary neurons. Islet-1 is

expressed in the ventral retina at 33 hours post fertilization (hpf

[24]). Labeling with islet-1 antibody on sections from MO1 and

MO3 fish at 2 dpf showed almost absent expression compared to

control-injected fish (Fig. 8C–D and Fig. 8G–H). The labeling

difference using islet-1 antibody was present in MO1 morphant

larvae at day 2, but was no longer apparent using either

morpholino by 4 dpf (data not shown). Co-injection of human

wildtype mRNA with MO3 rescued the reduction in islet-1

labeling (Fig. 8I–J), again demonstrating the specificity of the

morpholino.

On sections from 4 dpf embryos injected with MO1 or MO3 or

controls, we measured retinal circumference and the length of

antibody labeling for antibodies directed against PKCa, parval-

bumin and glutamine synthetase. We chose 4 dpf, as labels for

these later developing cell types were not always visible at 2 dpf.

We found no significant difference in labeling length when both

morpholinos were examined for antibodies against PKCa,

parvalbumin and glutamine synthetase (data not shown), labeling

Figure 3. Two patients unrelated to our propositus with microphthalmia have sequence alterations predicting amino acid
substitutions in TMX3. Fig. 3A. Chromatogram showing c.116G.A, predicting p.Arg39Gln in TMX3. Arrow points to the site of the sequence
alteration. Fig. 3B. Chromatogram showing c.322G.A, predicting p.Asp108Asn in TMX3. Arrow points to the site of the sequence alteration.
doi:10.1371/journal.pone.0010565.g003

TMX3 and Microphthalmia
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for bipolar, amacrine and Mueller glial cells respectively. We also

found no significant differences for MO1 for zpr-1 labeling where

the retina was intact (Fig. 9A–B), anti-rhodopsin antibody, lectin to

Peanut Agglutinin (PNA) and opsin antibodies to label blue and

UV cones at 6 dpf (data not shown). We did not examine the rod

and cone labels in MO3 larvae at 6 dpf, as the difference in eye

size had resolved by this time period.

Finally, we used anti-histone H3 and Terminal deoxynucleoti-

dyl transferase dUTP nick end labeling (TUNEL) to examine cell

proliferation and apoptosis in the MO1-injected morphant retinas.

Although we found a significant increase in anti-histone H3

labeling at the retinal margins in the MO1 morphants at both 4

and 6 dpf, we did not observe this significant difference for MO3-

injected larvae (data not shown). We did not find evidence of

increased apoptosis in the MO1-injected fish as compared to

controls (data not shown).

A small proportion of MO1- and MO3-injected morphant

larvae were observed to have colobomas at the site of the choroid

fissure. As colobomas have been previously associated with

abnormal Pax2 expression, we hypothesized that Pax2 expression

Table 1. Sequence Alterations in TMX3 in 162 patients with Anophthalmia or Microphthalmia.

Nucleotidea
Amino Acid
Substitution dbSNPb Patient Phenotype

Allele Frequency in 162
Sequenced Patients with
Anophthalmia/Microphthalmia

Allele Frequency in
Control
Chromosomesc

c.-25G.A (59UTR) - - Unilateral Microphthalmia, Micrognathia G = 0.997
A = 0.003

Not done

c.116G.A p.Arg39Gln - Unilateral Microphthalmia and Coloboma G = 0.997
A = 0.003

Not detected in 320
Control Chromosomes

c.322G.A p.Asp108Asn - Unilateral Microphthalmia, Micrognathia G = 0.997
A = 0.003

Not detected in 240
Control Chromosomes

c.477A.T - - Bilateral Microphthalmia A = 0.997
T = 0.003

Not detected in 180
Control Chromosomes

c.925G.A p.Val309Ile - Bilateral Microphthalmia G = 0.988
A = 0.012

G = 0.990; A = 0.01 in
188 Caucasian Control
Chromosomes

c.997G.A p.Val333Ile - Anophthalmia/Microphthalmia G = 0.994
A = 0.006

Not detected in 188
Caucasian Control
Chromosomes. Mother
of one patient was
Homozygous for A
Allele

c.1441A.T (39UTR) - - Unilateral Microphthalmia with Cyst A = 0.997
T = 0.003

Not done

Nucleotidea = numbering according to ENST00000299608, with 1 = A of ATG start codon;
dbSNPb = Database of Single Nucleotide Polymorphisms, http://www.ncbi.nlm.nih.gov/sites/entrez;
Allele Frequency in Control Chromosomesc = for full details of ethnicity of control chromosomes, please see text.
doi:10.1371/journal.pone.0010565.t001

Figure 4. A comparison of eye size in MO1 morpholino-injected larvae and control-injected larvae. Graph shows mean eye size
(measured in mm on y-axis) for MO1 morpholino-injected larvae (MO1; light purple) compared to control-injected larvae (Control MO; dark purple) at
three different time periods, 2 dpf, 4 dpf and 6 dpf, labeled on the x-axis. Data are shown as mean +/2 one standard deviation, measuring a
minimum of 9–20 independent retinas per data point. Analysis using a Two-sample t-test assuming equal variance showed a significant difference at
2 dpf, 4 dpf and 6 dpf (p,0.05 for 2 dpf, 4 dpf and 6 dpf).
doi:10.1371/journal.pone.0010565.g004
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could be dysregulated in the region of the choroid fissure in the

morphant larvae. We examined Pax2 expression in whole embryos

by in-situ hybridization at 2 dpf to determine if expression of this

gene was altered between morphants and control-injected larvae.

We chose this early time period in order to assess Pax2 expression

at the time of choroid fissure fusion. We found that there was an

expansion of Pax2 expression in the region of the ventral retina

and choroid fissure in the morphant embryos compared to

control-injected embryos (Fig. 10A–C), suggestive of either

increased Pax2 expression or a delay in the loss of Pax2 expression

due to later optic fissure closure. We also examined Vax2

expression in MO3-injected eyes at 2 dpf due to the known role

of this gene in ventral eye formation and detected increased

labeling in morphants compared to control-injected larvae

(Fig. 10D–E).

Discussion

We have previously identified a patient with microphthalmia

and a 2.7 Mb deletion at 18q22.1. Our data support a role for one

of the deleted genes, TMX3, in eye development, as deficiency of

this gene in humans and in zebrafish causes microphthalmia. Our

forward genetic approach, starting with the human birth defect of

microphthalmia, has resulted in the discovery of an important

function in eye development for a vertebrate gene.

TMX3 is a member of the protein disulfide isomerase (PDI)

family and contains a thioredoxin domain that catalyzes the

formation of disulfide bonds [23,25]. Members of the thioredoxin

superfamily share two features – a short sequence motif, CXXC,

that represents the active site for the oxido-reductase reaction, and

an overall structure containing this motif that forms a thioredoxin-

like fold. Human TMX3 has 16 exons that encode a 454 amino

acid, 51.8 kDa protein that is a single pass membrane protein of

the endoplasmic reticulum (ER [23]). The protein has two

isoforms and is N-glycosylated. The luminal region of TMX3 has

an N-terminal ER signal peptide (residues 1–24), a catalytic

thioredoxin-like domain that contains the active CGHC sequence

as described above (residues 25–131), two redox-inactive thior-

edoxin-like domains, a transmembrane domain and a C-terminal

domain with a KKXX motif [23,25]. The overall sequence

similarity is 93% for murine TMX3 and 28% for the D. melanogaster

and C.elegans orthologous proteins.

There is prior evidence that thioredoxin genes may play a role in

eye formation. In Drosophila, the drosopterins, or red components

Figure 5. Reduced expression of zgc:110025 results in a small eye phenotype. Fig. 5A. Control injected, wild type zebrafish showing normal
eye formation at 6 dpf. Fig. 5B. MO1 morphant zebrafish showing a small eye compared to control at 6 dpf. Fig. 5C. MO1 morphant zebrafish with co-
injection of TMX3/(p.Arg39Gln), showing a small ocular coloboma (indicated by arrow) at 6 dpf. Fish are oriented with ventral surface facing left and
dorsal surface facing right.
doi:10.1371/journal.pone.0010565.g005

Figure 6. A comparison of eye size in splice morpholino-injected larvae and control-injected larvae. Graph shows mean eye size
(measured in mm on y-axis) for splice morpholino-injected larvae (MO3; light purple) compared to control-injected larvae (Control MO; dark purple) at
three different time periods, 2 dpf, 4 dpf and 6 dpf, labeled on the x-axis. Data are shown as mean +/2 one standard deviation. A representative
single experiment is shown, measuring a minimum of 10–20 independent retinas per data point. Analysis using a Two-sample t-test assuming equal
variance showed a significant difference at 2 dpf and 4 dpf (p,0.05 for 2 dpf), but not at 6 dpf (p.0.05).
doi:10.1371/journal.pone.0010565.g006
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of the eye, are partially encoded by the clot gene, a member of the

Glutaredoxin class of the thioredoxin-like enzyme superfamily [26].

Disruption of murine TMX3, Rttn, CD226 and Dok6 genes with a

biallelic, 1.6 Mb deletion causes the lethal Nt (no turning)

phenotype in mutant mice [27,28]. Although the phenotype of

the Nt mouse is caused by Rttn deficiency, the breakpoint of the Nt

deletion interrupts TMX3, which shows no transcript. Mutant Nt

embryos have otic eminences but lack optic eminences at E9.5 [27].

However, the mice are only viable until E11.5, and thus further

study of eye development in these mice is not feasible.

Our in-situ hybridization experiments showed that TMX3 was

expressed in the murine eye from E11.5 onwards, with strongest

expression in the retinal neuroepithelium from E13.5 to E16.5

(Fig. 2). The gene is more widely expressed at later stages, with

labeling in the brain, lungs, kidneys and spinal ganglia. In contrast,

the zebrafish orthologue of TMX3, zgc:110025, is initially

expressed in the hypophysis of the developing brain and in the

retina, and subsequently in the photoreceptor layer of the retina

from 30 hours post fertilization until at least day 5 of development

(Thisse B, Thisse C, The Zebrafish Model Organism Database

(ZFIN) Direct Data Submission: http://zfin.org [29]). The early

expression data are consistent with our morpholino results, which

show the greatest difference in eye size at 2 and 4 dpf (Fig. 4 and

Fig. 6). However, the expression pattern is more restricted in fish

than in mouse. If one assumes that a similar expression pattern in

humans and mice is likely, the eye phenotype in patients is very

specific and is so far unilateral, despite the apparently widespread

expression of this gene in mammals. This finding could be due to

an intrinsic sensitivity of the process of eye formation to stressors,

meaning that a hypomorphic allele may be more penetrant in the

eye than in other body organs [30].

Both of our morpholinos resulted in small eyes with a low

frequency of coloboma, reduced islet-1 labeling and both were

rescued by human wildtype mRNA, demonstrating the specificity

of the morpholinos for TMX3. In addition, human wildtype TMX3

mRNA was able to rescue the severe reduction in islet-1 labeling

exhibited in morphant eyes (Fig. 8I–J). However, there were some

differences in phenotype between MO1 and MO3-injected

morphant eyes, possibly resulting from greater gene knockdown

with MO1 or a longer duration of knock-down, although we were

unable to perform a Western blot to directly verify the level of

gene reduction with MO1 because of lack of a suitable antibody.

We noted that some of the morphant eyes had incomplete

formation of the lens (data not shown). We chose to concentrate

Figure 7. Co-injection of human wildtype TMX3 mRNA with a splice antisense morpholino rescues morphant eye size. Data are shown
for mean eye size (measured in mm on the y-axis) at 2 dpf for uninjected, control-injected, MO1 and MO3 injected, and MO3 and human wildtype and
mutant TMX3 mRNA-injected fish (categories listed on x-axis). A minimum of 10–20 fish were scored for each data point and the data is shown as
mean +/2 one standard deviation. Rescue of the small eye phenotype can be seen by the similarity in eye measurements obtained for MO3 and
human wildtype TMX3 mRNA-injected larvae compared to uninjected and control-injected larvae (p.0.05; two-sample t-test assuming equal
variance).
doi:10.1371/journal.pone.0010565.g007

Table 2. Frequency of Microphthalmia and/or Coloboma with 6 ng MO1 Morpholino and 100 pg human TMX3 wild type or
100 pg of human TMX3/(p.Arg39Gln).

MO1 Morpholino
(n = 349)

MO1 Morpholino +100 pg
Human TMX3 wild type (n = 582)

MO1 Morpholino +100 pg
Human TMX3/(p.Arg39Gln) (n = 440)

Microphthalmia/Colobomaa 18 (5.2%) 7 (1.2%)c 30 (6.8%)d

External Toxicityb 46 (13.2%) 164 (28.18%) 77 (17.5%)

Normal 285 (81.6%) 411 (70.62%) 333 (75.7%)

Microphthalmia/Colobomaa: Larvae with microphthalmia or coloboma only and without any other evidence external toxicity.
External toxicityb: Edema, body axis curving; can also include eye defects.
c: P = 0.0031 for the frequency of microphthalmia and/or coloboma using MO1 morpholino versus frequency of microphthalmia and/or coloboma using MO1
morpholino +100 pg Human TMX3 wild type. Fish with external toxicity were excluded from the analysis. A two-tailed Fisher’s exact test was used.

d: P = 0.293 for the frequency of microphthalmia and/or coloboma using MO1 morpholino versus frequency of microphthalmia and/or coloboma using MO1 morpholino +100 pg
Human TMX3(p.Arg39Gln). Fish with external toxicity were excluded from the analysis. A two-tailed Fisher’s exact test was used.

doi:10.1371/journal.pone.0010565.t002
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Figure 8. Islet-1 expression is reduced in morphant larvae compared to control larvae at 2 dpf. Fig. 8A–D. Fig. 8A–B. Labeling of MO1
control-injected zebrafish eye with DAPI (Fig. 8A) and FITC (Fig. 8B) showing labeling for islet-1 at 2 dpf. Fig. 8C–D. Labeling of MO1-injected zebrafish
eye with DAPI (Fig. 8C) and FITC (Fig. 8D) showing almost absent labeling for islet-1 at 2 pdf. Fig. 8E–H. Fig. 8E–F. Labeling of MO3 control-injected
zebrafish eye with DAPI (Fig. 8E) and FITC (Fig. 8F) showing labeling for islet-1 at 2 pdf. Fig. 8G–H. Labeling of MO3-injected zebrafish eye with DAPI
(Fig. 8G) and FITC (Fig. 8H) showing almost absent labeling for islet-1 at 2 pdf, similar to the labeling pattern observed with MO1. Fig. 8I–J. Fig. 8I.
MO3-injected zebrafish rescued with human wildtype TMX3 mRNA labeled with DAPI (Fig. 8I) and FITC (Fig. 8J) at 2 dpf, showing labeling with islet-1
antibodies that is similar to labeling in control-injected fish. Ventral is down in all image panels.
doi:10.1371/journal.pone.0010565.g008
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on the retinal phenotype in the morphants, and have not studied

lens formation in the morphants, despite the expression of TMX3

in the lens epithelium (Fig. 2), but it is possible that there is also a

contribution to the microphthalmia from abnormal lens forma-

tion in the morphants. Interestingly, the microphthalmia

phenotype was unilateral in all of the three human patients with

TMX3 sequence alterations, whereas we found a bilateral

reduction in eye size in fish. Although this is a small sample

size, we postulate that the TMX3 phenotype shows extreme

variation in the resultant degree of delay in eye formation, and

that reduced TMX3 gene dosage can be compensated for by

different genes. Many of the genes that cause anophthalmia,

microphthalma and coloboma have been associated with marked

phenotypic variation or an inconsistent eye phenotype, both for

the spectrum of eye defects and in terms of associated anomalies

[31].

We found coloboma, or failure of the choroid fissure to close, in

addition to microphthalmia, in the eyes of the morphant larvae

injected with MO1 and MO3, although the frequency of

coloboma was very low (MO1 frequency of coloboma of 2.6%

from three independent experiments; MO3 frequency of colobo-

ma ,1% from five independent experiments). Ocular coloboma is

a ventral patterning defect has been shown to be associated with

abnormal Pax2 and Vax expression [32]. We hypothesized that

Pax2 expression could be dysregulated in the region of the choroid

fissure in morphant larvae, and our whole embryo studies showed

increased labeling of Pax2 in morphants compared to controls at

2 dpf. At first, this result appeared contradictory, as Pax2 loss of

function and/or haploinsufficiency, rather than a gain of function,

has been associated with the formation of colobomas, microph-

thalmia and optic nerve defects in both humans and animals

[33,34]. Pax2 is expressed in the central optic cup at the time of

choroid fissure closure, when it becomes restricted to the cells of

the optic stalk and the cells that line the choroid fissure to regulate

the breakdown of the extracellular matrix lining the choroid fissure

[32]. Lack of Pax2 expression results in persistence of the basal

lamina and matrix at the sides of the choroid fissure, preventing

the fusion of the neuroepithelium and causing coloboma [35].

However, it has also been shown that ectopic expression of Pax2 in

the ventral optic cup after electroporation in the chick can leads to

a failure of choroid fissure closure, phenocopying the colobomas

seen with Pax2 loss of function [32]. The increased labeling seen

with the Pax2 and Vax2 probes could also indicate a delay in the

closure of the optic fissure in morphants and the formation of the

ventral eye, as Vax2 expression is present in the optic cup, optic

stalk and presumptive neural retina from 24–30 hpf in wildtype

fish (The Zebrafish Model Organism Database (ZFIN) Direct

Data Submission: http://zfin.org).

Based on our data, we propose that deficiency for TMX3

causes a small eye phenotype and may be involved in the

Figure 9. Morphant larvae show altered formation of the ventral eye. Fig. 9A–D. Fig. 9A–B. Staining of control injected zebrafish eye with
DAPI and FITC at 6 dpf to image zpr-1 shows a strong signal that can be seen at the ciliary margins of the retina. Fig. 9C–D. Staining of anti-ATG
morphant (MO1) zebrafish eye with DAPI and FITC at 6 dpf to image zpr-1 shows absent signal for zpr-1 at the ventral region of the retina in an eye
with a coloboma, whereas staining at the dorsal region of the retina appears normal. Fish are oriented so that the ventral surface of the eye is seen
inferiorly in each photograph.
doi:10.1371/journal.pone.0010565.g009
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pathogenesis of human microphthalmia in three known cases.

The propositus most likely had a loss of function mutation

because his deletion involved the entire gene, but the effects of

the two missense substitutions have not been quantified in terms

of loss or gain of function. Reduced penetrance between

individuals (the patient inherited the deletion from his asymp-

tomatic mother), and within individuals (all three patients

described in this study had unilateral rather than bilateral

microphthalmia) suggests that haploinsufficiency can reduce

TMX3 expression to levels near a pathogenic threshold. Other

genetic modifier effects and environmental factors that influence

TMX3 levels relative to this threshold are likely to be responsible

for determining the penetrance of the eye defects. Our rescue

data using the wildtype human mRNA to prevent a morpholino-

induced reduction in eye size argue strongly that gene deficiency

is required for the phenotype.

We have examined the genes in a 2.7 Mb deletion at

chromosome 18q22.1 in a male with microphthalmia for a role

in the pathogenesis of microphthalmia and present evidence that

one of the deleted genes, TMX3, is involved in eye development.

We noted strong expression of TMX3 in the murine eye from

E13.5 onwards that persisted into postnatal life. We identified two

sequence alterations that predict amino acid substitutions,

c.116G.A, predicting p.Arg39Gln, in an unrelated patient with

unilateral microphthalmia and coloboma, and c.322 G.A,

predicting p.Asp108Asn, in a female with unilateral microphthla-

mia and severe micrognathia. We showed that a reduction in the

expression of the orthologous gene in zebrafish, zgc:110025, using

two antisense morpholinos, resulted in an external phenotype of

small eye and in abnormal retinal formation, with reduced labeling

with islet-1 antibody at 2 dpf. Finally, increased Pax2 and Vax2

labeling at the site of the choroid fissure in the morphant-injected

embryos compared to control-injected embryos suggests delayed

closure of the optic fissure and may implicate these genes and/or

the Pax2 pathway in the pathogenesis of the colobomas. We

hypothesize that a deficiency of TMX3 predisposes to microph-

thalmia, and that further study of this gene and other thioredoxins

in eye development is warranted.

Figure 10. Pax2 and Vax2 expression are dysregulated in the region of the choroid fissure in MO1 injected morphant larvae. Fig. 10.
Fig. 10A–C. Representative, uninjected (Fig. 10A), control morpholino injected (Fig. 10B) and MO1 morpholino injected (Fig. 10C) whole embryos
hybridized with a Pax2 probe. The region of Pax2 labeling at the site of the choroid fissure (indicated by arrows) is enlarged in the MO1 morphant
embryo compared to both the uninjected and control-injected embryos. Fig. 10D. Representative control morpholino injected (Fig. 10D–E) and splice
morpholino (MO3) injected (Fig. 10E) whole embryos hybridized with a Vax2 probe. The region of Vax2 labeling (indicated by arrows) is enlarged in
the MO3 morphant embryo compared to the control-injected embryo.
doi:10.1371/journal.pone.0010565.g010
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Methods

All patient samples were collected after ethical approval by an

Institutional Review Board at UCSF and at all institutions where

participants were recruited. At UCSF, we obtained human

samples after informed, written consent from participants or their

parents/guardians under a protocol approved by the Committee

for Human Research (CHR) at the University of California, San

Francisco (CHR number 41842-22157-06). DNA samples from a

further 24 patients with anophthalmia and/or microphthalmia

were collected from Tanya Bardakjian, CGC and Dr Adele

Schneider under an approved protocol for the Anophthalmia/

Microphthalmia Registry and gene screening project (Institutional

Review Board, Albert Einstein Medical Center). DNA samples

from 66 patients with anophthalmia/microphthalmia were

obtained from Dr. David FitzPatrick, MRC Human Genetics

Unit, Edinburgh with approval from the Lothian Research Ethics

Committee. DNA samples from 36 patients with unilateral or

bilateral microphthalmia collected under institutional review

board approved protocols were also obtained from Pr. Patrick

Calvas, Inserm U563 (Review Board: CPP Sud Ouest et Outre

Mer II) and from Dr Daniel Schorderet (Institute Review Board of

the Institut de Recherche en Ophtalmologie) respectively. All

zebrafish work was done in accordance with an Institutional

Animal Care and Use Committee (IACUC) approved protocol to

Dr Herwig Baier at the University of California, San Francisco.

DNA was extracted from peripheral blood lymphocytes and cell

lines using proteinase K and salting-out according to standard

methods (Qiagen, Valencia, CA). Phenotypic details were

obtained from referring clinicians.

Array hybridization was performed with the GeneChipH
Human Mapping 500K Set to fine map the deletion. Hybridiza-

tion was preformed using 500 ng genomic DNA according to the

manufacturer’s instructions. The results were analyzed according

to the Significance of Mean Difference (SMD) algorithm designed

to detect copy number variations [36] and parental studies using

the same mapping set were performed.

Section in-situ hybridization on murine paraffin- or cryo-sections

was performed as previously described [37] using digoxygenin-

labeled riboprobes (DIG RNA labeling kit; Roche, Indianapolis,

IN). The TMX3 sense and antisense probes (1444 bp) were

generated using the full-length cDNA clone (MMM1013-9200944,

Open Biosystems, Huntsville, AL). Dsel and Ccdc102a probes were

generated using the following primers: Dsel: F: 59GAGTGAGT-

GCGTGTGTCCAG; R: 59 TCTCGTTTTTGTGTGCAAGG;

Ccdc102a: F: 59AGCCATCTTTCGCTGTCTGT; R: 39TGTT-

CCATCTCTGCACGAAG. Dsel, TMX3 and Ccdc102a expression

were examined in the murine eye at E11.5, E12.5 and E13.5.

TMX3 expression was also examined in the murine eye at E14.5,

E16.5, E18.5, P1 and P4, to sample time-points from both

embryonic and postnatal development.

Genomic sequencing was performed with a BigDyeH Termina-

tor v3.1 Cycle Sequencing Kit on an ABI 3730 machine (Applied

Biosystems, Foster City, CA) as previously described [14]. We

sequenced the coding exons and intron-exon boundaries of TMX3

in DNA samples from 162 patients with anophthalmia or

microphthalmia.

Fish were maintained and bred under standard conditions at

28uC, and embryos were staged according to dpf. Anti-sense

morpholinos targeting the MO1 start codon (ATG; 26 to +19;

TGTTTCTCATGTTTGCCATCTTGAG; referred to as MO1

morpholino or MO1 in text), and the splice donor site between

exon 2 and intron 2 (GTAAAATACTTAC-TTGTCATCGAGC;

referred to as splice morpholino or MO3 in text) of zgc:110025

were obtained (GeneTools LLC, Philomath, OR). A BLAT search

for both MO1 and MO3 did not reveal any similarity to other

sequences that might result in off-target effects. We also obtained a

specific control for the MO1 morpholino above (TGATTCT-

GATGTTTCCCATGTTCAG), a specific control for the splice

morpholino (GTATAATAGTTAGTTGTGATCCAGC) and a

standard control (GeneTools LLC, Philomath, OR). We injected

2–8 ng of antisense morpholino or control morpholino into eggs at

the 1–8 cell stage and examined larvae at 2 dpf, 4 dpf and 6 dpf

for external eye defects and for signs of toxicity. Eye size

(measurement of longest eye axis) was measured in mm using

direct microscopy (AxioVision Digital Imaging Software, Carl

Zeiss Microimaging Inc., Thornwood, NY) using a micrometer for

standardization. A minimum of 10 to 20 fish were measured for

each data point in independent experiments for all data points,

except for MO1 at 6 dpf, when 9 fish were measured. We did not

observe a significant phenotype with either the standard or the

specific control morpholinos.

RNA was obtained using Trizol and cDNA was prepared using

the High-Capacity cDNA Reverse Transcription kit (Applied

Biosystems, Foster City, CA). RT-PCR to verify gene knock-down

for the splice morpholino was performed using forward primer

TTACGCGGTCAATGACAAGA from exon 1 of zgc:110025

and reverse primer CTCCACCAGCCAGAGTTCAT from exon

3 of zgc:110025 (data not shown). The cDNA was also amplified

using universal primers for actin used to check for cDNA integrity.

For the MO1 morpholino, we ran a Western blot using the only

available antibody for TMX3 [23] and were unable to see signal

from protein extracted from 2 dpf larvae from either MO1

morpholino larvae or control morpholino larvae, although an

antibody for actin verified the integrity of the protein samples (data

not shown).

We used pcDNA3/TMX3-HA and pcDNA3/TMX3

(p.Arg39Gln)-HA [23] as template to make mRNA. The C-

terminal end of the protein was altered to ASYPYDVP-

DYASKKKD from human wild type PTVQEPKDVLEKKKD

[23], resulting in loss of the stop codon that could theoretically

reduce translation or message stability [38], but both constructs

have been previously used to examine gene function [23]. Human

TMX3 wild type mRNA and human TMX3(p.Arg39Gln) mRNA

were made by digestion with ApaI and sense RNA was

transcribed, capped and a polyA tail added using the mMessage

mMachineH T7 Ultra kit (Ambion, Austin, TX) according to

manufacturer’s instructions. Constructs were sequenced to verify

the addition of a polyA tail (data not shown). We initially injected

100–120 pg of human TMX3 wild type mRNA into wild-type

zebrafish eggs to ensure that there was no detectable phenotype

with overexpression of the gene, and we did not detect any

increase in external ocular abnormalities beyond control frequen-

cies at this dose (data not shown). We then performed a series of

experiments injecting 6 ng of MO1 morpholino or 8 ng of MO3

morpholino with either 100–120 pg of human TMX3 wild type

mRNA or 100–120 pg of TMX3(p.Arg39Gln) mRNA in a total

injection volume of 1 nl, similar to other injection volumes.

Fixed larvae were cryoprotected in 35% sucrose for a minimum

of 4 hours. The larvae were embedded in cryomatrix (Tissue

Freezing Medium, Triangle Biomedical Sciences, Durham, NC)

and rapidly frozen on dry ice. 12 mm sections were cut at 220uC
onto slides (VWR Superfrost Plus, West Chester, PA) and air-

dried. For immunohistochemistry, slides were washed in phos-

phate buffered saline (PBS), blocked in PBS containing 3% sheep

serum and 0.3% Triton-X and then incubated with primary

antibody at 1:100 to 1:400 dilution overnight at 4uC. After

washing with PBS, slides were incubated with fluorescently labeled
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secondary antibodies conjugated to AlexaFluor 488 (Invitrogen,

Carlsbad, CA) at a 1 in 200 to 1 in 500 dilution for 2 hours at

room temperature.

The primary antibody used for 2 dpf larvae was murine

monoclonal islet-1 antibody [24]. The primary antibodies used for

4 dpf larvae were rabbit anti-histone H3 (Upstate Biotechnolo-

gies/Millipore, Billerica, MA) to label proliferating cells, murine

anti-glutamine synthetase (Chemicon/Millipore, Billerica, MA) to

label Mueller glial cells, rabbit anti-PKCAa (Santa Cruz

Biotechnology Inc, Santa Cruz, CA) to label bipolar cells and

murine anti-parvalbumin (Chemicon/Millipore, Billerica, MA) to

label amacrine cells. The primary antibodies used to examine

photoreceptors at 6 dpf were: murine zpr-1 (Zebrafish Interna-

tional Resource Center, Eugene, OR) for labeling of double cone

photoreceptors [39], murine anti-rhodopsin antibody (0.5 mg/ml;

Meridien Life Sciences, Cincinnati OH) for labeling of the rod

photoreceptor cells and peanut agglutinin (PNA) lectin directly

conjugated to TRITC (TRITC Arachis hypogaea lectin, EY

laboratories, San Mateo, CA) as a label for the outer segments of

the long-double and long-single cone photoreceptors. We also used

rabbit anti-blue opsin and rabbit anti-UV opsin kindly provided by

Dr David Hyde of the University of Notre Dame according to

published protocols [40]. A minimum of 8 independent retinas

were examined for each antibody.

Slides were photographed using a Leica fluorescent microscope

and SPOT imaging software, or confocal microscopy as described

below. Quantification of labeling differences for anti-histone H3

was performed by counting the number of FITC-fluorescent cells

in a minimum of two to three, non-adjacent sections per retina for

8 retinas for both MO1 morphant and control-injected larvae.

The length of positive, FITC-labeled retina was measured for both

MO1 morphant and control injected larvae. Retinal circumfer-

ence was also measured for the same retinas to control for eye size.

A similar methodology was employed for the glutamine synthetase,

parvalbumin and PKCa antibodies, but 4-6 independent retinas

were scored. Labeling widths were initially compared using a

Two-sample t-test assuming equal variance. In instances where a

significant difference was found with this statistical method, the

analysis was repeated with regression analysis or ANOVA to

control for retinal size including the measurements of retinal

circumference.

Cell death was detected using the TUNEL assay (terminal

deoxynucleotidyl transferase [TdT]-mediated deoxyuridinetripho-

sphate [dUTP] nick end-labeling method (Apoptag Peroxidase In-

situ Apoptosis Detection kit, Chemicon, Temecula, CA), according

to the manufacturer’s instructions on sections from 4 dpf.

In-situ hybridization on whole morphant and control larvae

from 2 dpf was performed using a probe for the zebrafsh Pax2 and

Vax2 genes according to standard methodologies [39]. Labeled

areas were quantified on images in Photoshop using ImageJ

software. For the Pax2 hybridizations, 13 morphants and 11

control-injected larvae were examined. For the Vax2 hybridiza-

tions, 22 morphants, 15 control-injected and 21 uninjected larvae

were examined.

Confocal images were captured using the Zeiss LSM 5 Pascal

microscope and software under a 40X oil immersion lens.

Confocal stacks were further processed using ImageJ software.

In some cases, z-projections of a few slices were made; in others,

single, representative slices were selected. In all figures, compar-

isons were made between images that were processed equivalent-

ly—slices compared to slices, and projections compared to

projections of a similar number of slices.

Supporting Information

Figure S1 RT-PCR at 2 days post fertilization shows the

expected 154 bp band in lane C, containing cDNA from

uninjected larvae, and a very faint 154 bp band in lane MO3,

containing cDNA from MO3 injected larvae, with probable RNAi

mediated decay of the expected mutant 110 bp splice band in the

MO3 lane. The primers used are provided in the text of the paper

and the 100 base pair (bp) and 200 bp bands from the size marker

are indicated.

Found at: doi:10.1371/journal.pone.0010565.s001 (0.47 MB TIF)

Table S1 Conservation of amino acids p.39Arg and p.108Asp

between different species for the TMX3 gene and orthologues.

Found at: doi:10.1371/journal.pone.0010565.s002 (0.18 MB

DOC)

Table S2 Non-coding sequence alterations in TMX3 in 162

patients with Anophthalmia/Microphthalmia.

Found at: doi:10.1371/journal.pone.0010565.s003 (0.05 MB

DOC)
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