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Abstract

An often reported, but nevertheless persistently striking observation, formalized as the Newcomb-Benford law (NBL), is that
the frequencies with which the leading digits of numbers occur in a large variety of data are far away from being uniform.
Most spectacular seems to be the fact that in many data the leading digit 1 occurs in nearly one third of all cases.
Explanations for this uneven distribution of the leading digits were, among others, scale- and base-invariance. Little
attention, however, found the interrelation between the distribution of the significant digits and the distribution of the
observed variable. It is shown here by simulation that long right-tailed distributions of a random variable are compatible
with the NBL, and that for distributions of the ratio of two random variables the fit generally improves. Distributions not
putting most mass on small values of the random variable (e.g. symmetric distributions) fail to fit. Hence, the validity of the
NBL needs the predominance of small values and, when thinking of real-world data, a majority of small entities. Analyses of
data on stock prices, the areas and numbers of inhabitants of countries, and the starting page numbers of papers from a
bibliography sustain this conclusion. In all, these findings may help to understand the mechanisms behind the NBL and the
conditions needed for its validity. That this law is not only of scientific interest per se, but that, in addition, it has also
substantial implications can be seen from those fields where it was suggested to be put into practice. These fields reach
from the detection of irregularities in data (e.g. economic fraud) to optimizing the architecture of computers regarding
number representation, storage, and round-off errors.
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Introduction

Newcomb [1] observed how much faster the first pages of tables

of decadic logarithms wear out than the last ones, indicating that

the first significant figure is oftener 1 than any other digit, and that

the frequency diminishes up to 9. Without giving actual numerical

data and a strict formal proof, he reached the conclusion that

‘‘The law of probability of the occurrence of numbers is such that

all mantissae of their logarithms are equally probable’’, so that

‘‘every part of a table of anti-logarithms is entered with equal

frequency’’. This resulted in a table giving the probabilities of

occurrence in the case of the first two significant digits; see Table 1.

More than a half century later, Benford [2] rediscovered

Newcomb’s observation. Based on substantial empirical evidence

from 20 different domains, such as the surface areas of 335 rivers,

the sizes of 3259 U.S. populations, 104 physical constants, 1800

molecular weights, 5000 entries from a mathematical handbook,

308 numbers contained in an actual issue of Readers’ Digest, the

street addresses of the first 342 persons listed in American Men of

Science, and 418 death rates, Benford stated a logarithmic law of

frequencies of significant digits. This law gives

p(a)~log(1za{1), a~1, . . . ,9, ð1Þ

for the probability p(a) of the digit a in the first place of observed

numbers and

p(b)~
X9

a~1

log 1z(10azb){1
� �

, b~0, . . . ,9, ð2Þ

for the probability p(b) of the second-place digit b. Most of the 20

domain-specific distributions of the first-place digits showed rather

good agreement with the logarithmic law (1) – that later came to

be known as Benford’s or Newcomb-Benford law (NBL) –, but the

averaged distribution fitted nearly perfectly.

These findings initiated ‘‘a varied literature, among the authors

of which are mathematicians, statisticians, economists, engineers,

physicists, and amateurs’’, as Raimi [3] wrote in his comprehen-

sive review on the first digit problem (p.521). After having

described and discussed several approaches taken to ground the

NBL, namely density and summability, scale-invariance, base-

invariance, and mixture-distribution arguments, he concludes that

– up to that time – Pinkham’s [4] scale-invariance argument gave

the first theoretical explanation of the NBL, however assuming a

cumulative distribution function that cannot exist [5], pp.253–264,

and assuring only a miserable numerical approximation. As an

example, on p.533 Raimi [3] mentions the half Cauchy

distribution with scale parameter a and density f (x)~2a
�

p(x2za2)
� �

, x§0, which satisfies all the relevant hypotheses

stated by Pinkham. For this distribution, Pinkham’s formula gives

the lower and upper bounds .05 and 0.55, respectively, for the
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first-place digit to be 1. But some 15 years earlier, Furry and

Hurwitz [6] already had derived much more precise bounds for

the half Cauchy distribution.

Since Raimi’s [3] review, the literature on the NBL has been

expanded considerably. This can be seen from the bibliography

compiled by Hürlimann [7] in 2006 with its 350 entries and from

the up-to-date online bibliography implemented by Berger and

Hill [8] that actually lists nearly 600 sources related to the NBL.

Major theoretical advances have to be attributed to Hill who

showed in a series of papers that base-invariance implies the NBL

[9,10], and that random samples coming from many random

distributions may generate a compound distribution fulfilling the

NBL [11]. Schatte [12] and Lolbert [13] studied the NBL in

dependence on the numeral base, with the result that the

approximation by the NBL becomes worse outside a limited

range of bases. The relationship between the distribution of first

digits with Zipf’s law, with prime numbers and Riemann zeta

zeroes, and with order statistics was investigated by Irmay [14],

Luque and Lacasa [15], and Miller and Nigrini [16], respectively.

Further, it was shown that exponential random variables [17] and

other survival distributions [18] obey the NBL, that mixtures of

uniform distributions fulfill a (generalized) version of the NBL

[19,20], and that data coming from different types of multiplica-

tive processes also result in a first-digit distribution following the

NBL [21–23] (but see also earlier results in [24,25]) as do

geometric sequences, for example powers of two [3], p.525.

Bounds for the approximation error to the NBL were given by

Dümbgen and Leuenberger [26] for the (half-)normal, the log-

normal, the Gumbel, and the Weibull (including the exponential)

distributions.

The NBL has been shown to fit rather closely many empirical

data: in addition to most of those analyzed by Benford [2], among

others, stock index returns [27], stock prices [28], eBay auctions

[29], and consumer prices half a year after the introduction of the

Euro in 2002 [30]. In contrast, the latter study found deviations

from the NBL due to psychological pricing (consumer prices

preferably ending in 0, 5, or 9) immediately after and a full year

after the introduction of the Euro. So, the NBL may be useful as a

benchmark for detecting irregularities in data. This has become of

widespread use in economic fraud detection (e.g. tax evasion) [31],

but the NBL was also proposed as a means to identify possible

problems with survey data [32], self-reported ratings [33], and

scientific results [34]. Because of its prominence, the NBL found

even entrance in esteemed newspapers [35]. Another, merely

future field for putting the NBL into practice is computer design.

Theoretical considerations concerned the interrelation between

number representation and storage requirements, as well as

round-off errors arising in the computation of products [10].

Interestingly, empirical evidence was provided by Torres et al.

[23] that file sizes in PCs behave according to the NBL of the first

and second digit. In all, the goal could be to optimize the

architecture of computers in order to fasten precise calculations

and to save storage, both by taking the implications of the NBL

into account.

On the other hand, many data obey the NBL rather badly or

simply not, for example some mathematical functions such as

square roots and the inverse 1=x. In his review, Raimi [3] gave

two empirical examples for failure of the NBL: the 1974

Vancouver (Canada) telephone book, where no number began

with the digit 1, and sizes of populations of all populated places

with population at least 2500 from five US states according to the

censuses from 1960 and 1970, where 19% only began with digit 1

but 20% with digit 2. To give but one recent empirical example,

Beer’s [36] finding should be mentioned that terminal digits of

data in pathology reports do not follow the NBL. A simple

explanation of the incompatibility of empirical data with the NBL

cannot be found in any case, but these three cases have their

obvious peculiarities: assignment of telephone numbers in an

arbitrary manner, truncation of population size at 2500 inhabi-

tants, and rounding data, comparable to psychological pricing of

consumer goods.

It seems that nowadays the practical potentialities of the NBL

have been recognized, and that meanwhile this empirically derived

law can be considered theoretically well-analyzed. However, its

relation to common distributions of random variables was

investigated up to now only rudimentary [6,17,18,26]. In addition,

previous studies concentrated on the first digit, derived the

deviation of the distribution under consideration from the NBL by

calculating or approximating the respective integrals, and did not

consider functions of random variables. In contrast, the present

study investigates the leading ten digits and counts their

frequencies from simulated data for different numbers of figures

generated, whereby this is done not only for the random variables

themselves, but also for ratios therefrom. This proceeding allows

one to get an impression of the degree to which real data of finite

sample size may approach the distribution predicted by the NBL

while adopting one of Newcomb’s arguments stated in the second

paragraph of his two-pages 1881 note [1]: ‘‘As natural numbers

occur in nature, they are to be considered as the ratios of

quantities. Therefore, instead of selecting a number at random, we

must select two numbers at random, and inquire what is the

probability that the first significant digit of their ratio is the digit n.

To solve the problem we may form an indefinite number of such

ratios, taken independently;… (p.39).

This statement suggests the interpretation that Newcomb did

not intend to consider numbers stemming from one and the same

domain, for example from one of those investigated later by

Benford, but that he had in mind to consider numbers drawn at

random from the universe of all possible domains. If so, the

measure z(i) being available for an object O(i) can be understood

as the ratio x(i)=y(i) of the two numbers x(i) and y(i), where x(i)
represents the object’s size ‘‘per se’’ and y(i) represents the scaling

unit. In case that the objects stem from the same domain and were

measured on the same scale, the scaling constant is no longer of

interest and considering the measures z(i) as given entities is

appropriate, the more so as the Newcomb-Benford distribution

has been shown to be scale-invariant. (This means that performing

an admissible transformation of the ratio scale – that is, by

multiplying all of the values by a positive constant – does neither

reduce nor improve the degree to which the NBL fits the data.)

Therefore, both relations are of interest: within one domain the

relation between the NBL and the distribution of a random

Table 1. Probabilities of occurrence for first four digits
according to the Newcomb-Benford law.

Digit

Place 0 1 2 3 4 5 6 7 8 9

1. – 3010 1761 1249 0969 0792 0669 0580 0512 0458

2. 1197 1139 1088 1043 1003 0967 0934 0904 0876 0850

3. 1018 1014 1010 1006 1002 0998 0994 0990 0986 0983

4. 1002 1001 1001 1001 1000 1000 0999 0999 0999 0998

Notes: Decimal points omitted. First and second digits’ probabilities as given in
Newcomb(1881), third and fourth digits’ probabilities supplemented.
doi:10.1371/journal.pone.0010541.t001

Newcomb-Benford Law

PLoS ONE | www.plosone.org 2 May 2010 | Volume 5 | Issue 5 | e10541



variable, and across domains the relation between the NBL and

the ratio distribution of two random variables.

Methods

Out of the manifold of common distributions seven were

selected for the simulation study. Criteria for inclusion were, first,

that each one of the distributions gives support for x§0 only,

second, that some of the earlier investigated distributions should

be included in order to allow comparisons, and, third, that across

the selected distributions their shape should vary from right-

skewed to left-skewed, including symmetric distributions. The

seven types of distributions illustrated in Figure 1 and the

resulting ratio-distributions (cf. Figure 2 for some of them) are the

following ones.

(a) The uniform distribution, U 0,1½ �, with density

f xð Þ~
1 0ƒxƒ1

0 otherwise,

�
ð3Þ

merely as a test for the pseudo-random number generator,

and in the case of ratios Z~X=Y , with X and Y
independent, because of the specific shape of the resulting

density for f (z),

f zð Þ~
1=2 0vzv1

1
�

2z2
� �

z§1

0 otherwise:

8><
>: ð3aÞ

(b) The exponential distribution, EXP lð Þ, with density

f xð Þ~l e{lx x§0, ð4Þ

as one of the survival distributions investigated earlier, so

that for different sample sizes comparisons can be made with

results obtained earlier [17,18,26]; if X~EXP(l1) and

Y~EXP(l2), then, for X and Y being independent,

Z~X=Yhas density function

f zð Þ~ l1 l2

l1 zzl2ð Þ2
z§0; ð4aÞ

hence, for l1~l2 the density of Z~X=Y becomes

independent of l1 and l2 and has the simple form

f zð Þ~1
.

1zzð Þ2 z§0: ð4a9Þ

(c) The half-normal distribution, HN sð Þ, with density

f xð Þ~
ffiffiffi
2
p

s
ffiffiffi
p
p e

{ x2

2s2 x§0, ð5Þ

thus also decreasing with increasing x, as a distribution not

belonging to the classic survival distributions, in order to

allow comparison with earlier results [6,26]; the distribution

of the ratio Z~X=Y , if X and Y are independent and both

follow the half-normal, results as a special case of two folded

normals, the latter having a very complicated density; for

details and some interrelations to other distributions, see

Kim [37].

(d) The right-truncated normal with truncation at

m,RTN(m, s), with density

f xð Þ~
ffiffiffi
2
p

s
ffiffiffi
p
p e

{
x{mð Þ2

2s2 xƒm, ð6Þ

to take into account a distribution whose density increases

with increasing x; for sufficiently large m in relation to s, this

distribution gives factual support for 0ƒxƒm only; the

distribution of the ratio of two independent right-truncated

normals again results as a special case of two folded normals

[37].

(e) The normal distribution, N(m, s),with density

f xð Þ~ 1

s
ffiffiffiffiffiffi
2p
p e

{
x{mð Þ2

2s2 {?vxv?, ð7Þ

which for sufficiently large m in relation to s also gives factual

support for x§0 only, in order to include a very common

member of the family of symmetric distributions; the

distribution of the ratio Z~X=Y , if X~N(m1,s1) and

Y~N(m2,s2) has a rather complicated form, which was

derived by Hinkley [38] and which will not be given here.

(f) The chi-square distribution with df ~1, x2(1), and

density

f xð Þ~ 1ffiffiffiffiffiffiffiffiffi
2p x
p e{x=2 xw0, ð8Þ

the chi-square distribution with df ~2, x2(2), and density

f xð Þ~ 1

2
e{x=2 x§0, ð89Þ

which, thus, equals that of the exponential with l~1=2 (cf.(4)),

as well as some chi-square distributions with larger degrees of

freedom; as is well-known, for df ~1 the chi-square distribu-

tion resembles a survival distribution, for increasing df it

approaches the normal distribution N(df ,
ffiffiffiffiffiffiffiffi
2df

p
); if

X~x2(df 1) and Y~x2(df 2), with X and Y independent, then

the ratio Z~(X=df 1)=(Y=df 2) follows the F-distribution,

F (df 1,df 2), so that for df 1~df 2~df , Z~X=Y~F (df ,df );

for df ~1, this ratio distribution has density

f zð Þ~ 1

p 1zzð Þ
ffiffiffi
z
p zw0, ð8aÞ

for df ~2 its density equals that of the ratio of two exponentials

when l1~l2, see (4a9); for df 1 and/or df 2 equal to 1 or 2, the

F-distribution looks like a survival distribution, for increasing df
it tends to become symmetric around its mean.

(g) The log-normal distribution, LOGN(m, s), with density

f xð Þ~ 1

xs
ffiffiffiffiffiffi
2p
p e

{
ln x{mð Þ2

2s2 xw0, ð9Þ

because of its usage in cases where the random variable

under consideration is thought of as the multiplicative

Newcomb-Benford Law
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Figure 1. Seven common distributions of random variables. Uniform distribution, exponential distributions with l~1 and l~3, half-normal
distributions with s~1 and s~3, right-truncated normal distribution with m~100 and s~15, normal distribution withm~100 and s~15, chi-square
distributions with df ~1, df ~2, and df ~3, log-normal distributions with m~0 and s~1, m~0 and s~10, and m~10 and s~40.
doi:10.1371/journal.pone.0010541.g001

Newcomb-Benford Law
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product of many independent random variables (cf. the

Introduction, where it was mentioned that multiplicative

processes were shown to result in the Newcomb-Benford

distribution, and [26]); as a function of s, the log-normal

distribution exhibits a behaviour similar to that of the chi-

square and F-distributions, varying between long right-tailed

to symmetric around its mean; if X~LOGN(m1, s1) and

Y~LOGN(m2, s2), then for X and Y independent, the

product XY~W~LOGN m1zm2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1zs2
2

q	 

, see Johnson,

Kotz and Balakrishnan [39], p.216, so that the ratio

X=Y~Z~LOGN m1{m2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1zs2
2

q	 

. Note that the ratio

distribution of two log-normals with m1~m2~m becomes

independent of m.

According to each one of these distributions random numbers

x(i) were generated for increasing sample size, n, beginning with

n~1000 up to n~10,000,000. For the ratio distributions n pairs

of random numbers x(i) and y(i) were generated, from which the

n ratios z(i)~x(i)=y(i) were calculated, that is, the ratio

distributions were not involved directly. This can be seen to be

an advantage of the simulation approach: in principle, the

distribution of the ratio Z of two (independent) random variables

X and Y can be generated in that way for any two distributions of

X and Y , even without knowing the form of the distribution of Z.

To save space, results will not be presented for all sample sizes

under study, but mostly for n~1000 (realistic sample size for real

data) and n~10,000,000 (to approximate the true distributions).

In the next step, the frequencies of the first ten leading digits were

counted. As for the sample sizes, results will be given in a reduced

manner, namely for the first- and the second-place digits only. (No

drastic irregularities became observable for third-place etc. digits.

Moreover, it is known since Newcomb [1] that already the

distribution of the third-place digit follows rather closely the

uniform; see Table 1.) All of the calculations were performed in

double precision by a FORTRAN program using the built-in

function RANDOM which produces uniformly distributed

pseudo-random variables between 0 and 1.

Results

The numerical results for the uniform distribution and the

ratio distribution of two uniforms are shown in Table 2. The

uniform distribution produces a uniform distribution of first- and

second place digits, as was to be expected. Hence, the clear

conclusion is, that the uniform distribution and the NBL are

incompatible. Nevertheless it is instructive to consider in more

detail the discrepancies between the simulated relative frequencies

of the digits and their theoretical values to get an impression of the

precision which can be expected from the simulation study.

Assuming a uniform distribution, the probabilities of occurrence

for the first-place digits are 1=9 and for the second-place digits they

are 1=10. For the first-place digit, the deviation of the simulated

relative frequencies from these values does not exceed .0231 for

n~1000 and .0013 for n~100,000, respectively. Similar maximal

discrepancies (.0250 for n~1000 and .0018 for n~100,000) are

obtained for the second-place digit. Nearly perfect agreement is

Figure 2. Three distributions of the ratio of two random variables. Ratio distribution of two uniforms U(0,1), ratio distribution of two
exponentials with same l, ratio distribution of two chi-squares (F-distribution) with df ~1, df ~2, and df ~3.
doi:10.1371/journal.pone.0010541.g002

Newcomb-Benford Law
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found for the first two digits and n~10,000,000, that is, under this

sample size the true distribution is generated nearly perfectly.

Across all sample sizes, for each digit a its simulated relative

frequency r(a) lies within the approximate (for the number of tests

corrected overall) 99% confidence interval around the corre-

sponding probability p(a), CI: p(a)+3:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(a) 1{p(a)½ �=n

p
. From

this it can be concluded that the pseudo-random number

generator works properly. Therefore, rather reliable results can

be expected for all distributions under study even for n~1000 in

terms of absolute differences between simulated and true distribu-

tions. But in terms of relative differences Dr(a){p(a)D=p(a), the

agreement must be expected to be much weaker: the maximal

relative differences turn out to be 20.29% for n~1000 and

1.17% for n~100,000 in the case of the first-place digit, and

25.00% for n~1000 and 1.80% for n~100,000 in the case of

the second-place digit. One has to bear in mind these facts when

Table 2. Uniform distribution and ratio of two uniforms.

Digit

Place 0 1 2 3 4 5 6 7 8 9

Uniform U[0,1]

n~1000 1. – 0880 1080 1140 0950 1290 1210 1170 1290 0990

2. 0930 0990 0900 0840 0910 0980 1250 1190 1100 0910

n~100,000 1. – 1120 1117 1110 1102 1124 1106 1113 1100 1108

2. 1001 1005 1001 1004 1004 1016 0995 1001 0982 0992

n~10,000,000 1. – 1111 1111 1111 1111 1112 1111 1112 1111 1109

2. 1001 1000 1000 1000 0999 1000 0998 1000 1001 1001

Ratio of two uniforms U[0,1]

n~1000 1. – 3450 1140 1120 0640 0640 0900 0690 0640 0780

2. 1240 1110 0990 1040 1060 1000 0900 0890 0870 0900

n~10,000,000 1. – 3332 1481 1019 0834 0741 0688 0655 0634 0617

2. 1293 1191 1106 1044 0988 0943 0903 0872 0842 0818

doi:10.1371/journal.pone.0010541.t002

Table 3. Exponential distribution and ratio of two exponentials.

Digit

Place 0 1 2 3 4 5 6 7 8 9

Exponential l~1=2ð Þ
n~1000 1. – 2900 2010 1200 1030 0690 0800 0380 0480 0510

2. 1160 1230 0890 0970 1040 1080 0970 0870 0990 0800

n~10,000,000 1. – 2971 1945 1353 0987 0757 0612 0516 0451 0408

2. 1171 1122 1082 1041 1008 0974 0943 0914 0885 0860

Exponential l~1ð Þ
n~1000 1. – 3210 1720 1180 0990 0910 0540 0580 0320 0550

2. 1230 1050 1160 1270 1100 0840 0850 0880 0770 0850

n~10,000,000 1. – 3298 1744 1128 0860 0725 0642 0582 0532 0489

2. 1210 1153 1100 1051 1006 0964 0929 0893 0862 0833

Exponential l~2ð Þ
n~1000 1. – 2900 1900 1120 0870 0810 0900 0550 0520 0430

2. 1120 1120 1000 1010 0890 1030 1110 0920 0870 0930

n~10,000,000 1. – 2872 1585 1225 1020 0869 0744 0641 0558 0486

2. 1212 1147 1089 1041 0999 0961 0928 0899 0873 0851

Ratio of two exponentials with parameters l1~l2

n~1000 1. – 3160 1560 1370 0970 0740 0730 0460 0470 0540

2. 1180 1290 1080 1070 1020 0900 0980 0790 0770 0920

n~10,000,000 1. – 3021 1752 1244 0965 0791 0670 0582 0516 0460

2. 1198 1140 1088 1044 1004 0968 0933 0903 0873 0849

doi:10.1371/journal.pone.0010541.t003

Newcomb-Benford Law
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evaluating the fit to the NBL in the presence of real data with

moderate sample size, as well as when interpreting the results for

the various distributions in the following.

In contrast to the uniform distribution, the ratio distribution
of two uniforms fits the NBL rather good. For n~10,000,000
the maximal absolute difference between the simulated relative

frequencies and the probabilities according to the NBL amounts to

.0322, is found for the leading digit 1, and corresponds to a relative

difference of 10.7%. For the same sample size even larger relative

differences are found in some cases. For example, for the leading

digit to be 9, the absolute difference is .0159 only, however

resulting in the relative difference of nearly 35%. Especially for the

large sample size most of the simulated relative frequencies fall

outside any usual confidence interval around the digits’ probabil-

ities as given by the NBL. Thus, the NBL does not hold in a strict

sense for the ratio distribution of two uniforms, that is, for

unrealistically large sample sizes the H0: ‘‘The digits’ distributions

follow the NBL’’ would have to be rejected. But the NBL

approximates the digits’ distributions to such a degree that it may

be acceptable as a H0 in the presence of real data sets with typical

sample size.

The numerical results for the exponential distribution with

parameter l = 0.5, 1, 2 and the ratio distribution of two

exponentials are given in Table 3. The exponential distribution

produces first- and second-place digits’ distributions coming close

to the Newcomb-Benford distribution. As derived theoretically by

Engel and Leuenberger [17] and also shown numerically by

Leemis, Schmeiser and Evans [18], however for the leading digit

only, the maximal absolute deviation is less than 0.03. This result

was reproduced here, and it does not only apply to large samples,

but also to the sample size of n~1000. Further, it generalizes to

the second-place digit. Note that for both the first- and second

place the quality of fit depends on l and varies across the digits.

The ratio distribution of two exponentials with l1~l2

clearly outperforms these results. For n~1000, the maximal

absolute deviation amounts to .0150 for the first-place digit to be 1

and to .0151 for the second-place digit also to be 1; for

n~10,000,000, the maximal deviation is found to be .0011

Table 4. Half-normal distribution and ratio of two half-normals.

Digit

Place 0 1 2 3 4 5 6 7 8 9

Half-normal (s~1)

n~1000 1. – 3800 1190 0800 0680 0640 0750 0810 0850 0480

2. 1270 1120 0930 1200 0940 0930 0970 0920 0960 0760

n~10,000,000 1. – 3636 1279 0850 0803 0769 0732 0687 0644 0600

2. 1263 1190 1124 1062 1007 0954 0907 0864 0830 0798

Half-normal (s~2:5)

n~1000 1. – 2880 2390 1620 1120 0500 0480 0320 0300 0390

2. 1100 1160 1080 0980 0900 1050 1090 0860 0810 0970

n~10,000,000 1. – 2991 2299 1579 1002 0638 0450 0370 0341 0330

2. 1135 1104 1075 1043 1012 0984 0956 0926 0894 0870

Half-normal (s~5)

n~1000 1. – 1990 1320 1560 1330 1060 0880 0740 0630 0490

2. 1220 1010 1100 1180 0980 0900 0950 0780 0950 0930

n~10,000,000 1. – 2129 1572 1419 1243 1056 0873 0706 0559 0443

2. 1196 1116 1059 1016 0984 0962 0940 0923 0908 0897

Ratio of two half-normals with s1~s2

n~1000 1. – 3170 1590 1110 0880 0820 0660 0650 0530 0590

2. 1370 1240 0980 0940 1070 0870 0960 0830 0990 0750

n~10,000,000 1. – 3099 1685 1182 0938 0787 0683 0604 0539 0484

2. 1211 1149 1094 1045 1001 0963 0928 0897 0868 0842

Ratio of two half-normals with s1~2 and s2~1

n~1000 1. – 3250 2000 1170 0840 0750 0590 0520 0490 0390

2. 1100 1360 1140 0940 0960 0870 0990 0890 0810 0940

n~10,000,000 1. – 3097 1845 1254 0936 0749 0632 0550 0491 0447

2. 1190 1136 1089 1045 1005 0970 0935 0906 0876 0848

Ratio of two half-normals with s1~1 and s2~2

n~1000 1. – 2700 1700 1310 1120 1060 0660 0510 0430 0510

2. 1260 1130 0950 1020 0920 0970 0890 1110 0920 0830

n~10,000,000 1. – 2866 1725 1287 1023 0838 0699 0594 0515 0453

2. 1195 1136 1083 1041 1001 0968 0933 0906 0880 0857

doi:10.1371/journal.pone.0010541.t004
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(first-place digit 1). Most simulated relative frequencies look as if

they were generated under the NBL, and they lie within the

confidence intervals introduced above, except for n~10,000,000.

Comparable results were obtained for some ratio distributions of

exponentials with l1=l2, but details will be omitted.

The numerical results for the half-normal distribution with

s = 1, 2.5, 5 and the ratio distribution of two half-normals are shown

in Table 4. The three half-normals under investigation do not fit the

NBL as well as was to be expected following Dümbgen and

Levenberger [26], but far better than given by Furry and Hurwitz

[6]. According to our results, the maximal deviance across all cases

studied is found to be .0790 for the first-place digit to be 1 if s = 1

and n~1000, whereas Furry and Hurwitz reported .33. (Note that

Furry and Hurwitz speak of the normal distribution, in fact they

investigated the half-normal, as can be seen from their formula (a)

on p.53. Note further that they reported .115 for the deviance of the

exponential distribution – which now is known to be much smaller,

see above –, but .0557 for the half Cauchy distribution that was not

included in the present study because of its similarity with the

normal distribution; cf. thereto p.300 in Johnson, Kotz and

Balakrishnan [39]). The digits’ distributions remain unaffected

when multiplying s by integer powers of 10 so that, for example, the

entries found in the first half of Table 4 also apply to the half-normal

with s = 10, s = 25, and s = 50, respectively.

Surprisingly good fit to the NBL shows the ratio distribution
of two half-normals with s1~s2 (independent of their actual

values), s1~2, s2~1, and s1~1, s2~2. The fit is not as perfect

as it is for the ratio of two exponentials, but it is better than that of

the ratio of two uniforms. Especially good agreement is observed

for the second-place digit under all three scenarios studied here,

and even for the first-place digit the maximal deviance is found to

be only .0089, .0087, and .0256, respectively (digit 1,

n~10,000,000). Overall, it seems to make little difference of

whether the variances of the two random variables are equal or

not, with the slight tendency to worsen the fit if the variance of the

variable in the denominator, Y , exceeds that of the numerator, X ,

in the ratio Z~X=Y .

The numerical results for the right-truncated normal
distribution and the ratio distribution of two right-
truncated normals are given in Table 5. Its entries speak for

themselves so that a short comment will suffice. As compared with

survival distributions, the right-truncated normal shows inverse

behaviour in that it puts most mass on large values of the random

variable. That is why the right-truncated normal was selected for

inclusion in the present study. It turns out that it may serve as a

prototypical example of distributions of random variables not

leading to first- and second-place digits’ distributions obeying the

NBL. Presented are the figures only for n~10,000,000, two

distributions, with m = 1.1, s = 0.25 and m = 100, s = 15, and their

ratio distributions. The discrepancies between the simulated digits’

distributions and the Newcomb-Benford distribution are such that

even for small sample sizes conventional goodness-of-fit tests, for

example Pearson’s chi-square and the likelihood-ratio test, have a

good chance to become significant. Considering the ratio

distribution of two right-truncated normals does not improve

matters. (Note that nonconformance to the NBL was reported for

the Gumbel distribution whose density also increases with

increasing value of the random variable [26].)

Similar results were obtained for the normal distribution
and the ratio distribution of two normals; see Table 6. The

normal distribution, putting most mass around the mean of the

random variable, was selected for inclusion in the present study as

a further possible candidate of nonconformity with the NBL.

Neither the normal distribution nor the ratio distribution of two

normals disappointed this expectation. As for the right-truncated

normal, figures are presented for n~10,000,000 and two sets of

parameters only.

The numerical results for the chi-square distribution and

the ratio distribution of two chi-squares are shown in Table 7.

Regarding the chi-square distribution, a clear tendency becomes

obvious. Very good fit to the NBL is found for the chi-square

withdf ~1 (n~10,000,000, maximal deviance .0065 for first-place

digit 2), increasing the df (shown for df ~2 and df ~5) worsens

the fit considerably. This does not come as a surprise when taking

the shape of the chi-square distribution into account: the chi-

square with df ~1 behaves like a survival distribution, for

increasing df it approaches a normal distribution.

The ratio distribution of two chi-squares (F-distribu-
tion) with df 1~df 2~df fits better than does the chi-square.

Moreover, the ratio distribution of two chi-squares proves more

robust against increasing the df . For df ~1, the simulated first-

and second-place digits’ distributions are nearly indistinguishable

Table 5. Right-truncated normal distribution and ratio of two right-truncated normals.

Digit

Place 0 1 2 3 4 5 6 7 8 9

Right-truncated normal (m~1:1, s~0:25)

n~10,000,000 1. – 3075 0008 0033 0110 0295 0657 1232 1950 2641

2. 3637 0589 0619 0649 0677 0705 0736 0767 0796 0826

Right-truncated normal (m~100, s~15)

n~10,000,000 1. – 0000 0000 0000 0005 0061 0381 1402 3246 4905

2. 0764 0815 0868 0919 0972 1028 1080 1132 1186 1236

Ratio of two right-truncated normals, both with m~1:1 and s~0:25

n~10,000,000 1. – 4891 0104 0033 0081 0214 0472 0883 1399 1922

2. 2204 1597 1191 0939 0789 0704 0661 0641 0635 0640

Ratio of two right-truncated normals, both with m~100 and s~15

n~10,000,000 1. – 4999 0002 0000 0001 0020 0132 0550 1495 2801

2. 2957 1710 1022 0708 0591 0561 0568 0594 0627 0662

doi:10.1371/journal.pone.0010541.t005
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Table 6. Normal distribution and ratio of two normals.

Digit

Place 0 1 2 3 4 5 6 7 8 9

Normal distribution (m~1:1, s~0:25)

n~10,000,000 1. – 6536 0005 0016 0055 0148 0329 0617 0975 1320

2. 1820 1831 1630 1299 0954 0682 0515 0438 0414 0417

Normal distribution (m~100, s~15)

n~10,000,000 1. – 4999 0000 0000 0003 0030 0191 0702 1623 2453

2. 2834 2031 1134 0649 0516 0517 0541 0566 0594 0618

Ratio of two normals, both with m~1:1 and s~0:25

n~10,000,000 1. – 4758 0230 0072 0179 0419 0749 1064 1254 1275

2. 1663 1470 1266 1083 0936 0830 0750 0699 0664 0641

Ratio of two normals, both with m~100 and s~15

n~10,000,000 1. – 4988 0011 0001 0011 0096 0398 0993 1615 1887

2. 2143 1741 1313 0986 0779 0661 0607 0586 0590 0594

doi:10.1371/journal.pone.0010541.t006

Table 7. Chi-square distribution and ratio of two chi-squares (F-distribution).

Digit

Place 0 1 2 3 4 5 6 7 8 9

Chi-square (df ~1)

n~1000 1. – 3050 1840 1250 0850 0760 0820 0600 0500 0330

2. 1330 1050 1070 1000 0950 0960 0960 0920 0820 0940

n~10,000,000 1. – 3071 1826 1257 0949 0759 0639 0556 0495 0448

2. 1192 1138 1087 1045 1006 0968 0936 0905 0874 0849

Chi-square (df ~2)

n~1000 1. – 2810 2090 1220 1020 0960 0620 0420 0520 0340

2. 1200 1320 1270 0990 0860 0970 0960 0940 0850 0640

n~10,000,000 1. – 2961 1959 1365 0993 0757 0607 0511 0445 0402

2. 1168 1121 1079 1041 1007 0974 0944 0915 0888 0862

Chi-square (df ~5)

n~1000 1. – 1820 1580 1530 1440 1020 1080 0520 0480 0530

2. 1220 1210 1040 0880 0960 0940 1140 0880 0840 0890

n~10,000,000 1. - 1820 1494 1532 1383 1159 0927 0720 0547 0418

2. 1183 1107 1052 1010 0983 0961 0945 0930 0920 0909

Ratio of two chi-squares, both with df ~1

n~1000 1. – 3160 1510 1470 0770 0780 0770 0610 0450 0480

2. 1170 1340 1100 1090 0960 0840 0950 0860 0880 0810

n~10,000,000 1. – 3013 1760 1249 0969 0791 0667 0581 0512 0458

2. 1196 1140 1089 1042 1003 0967 0935 0903 0874 0850

Ratio of two chi-squares, both with df ~2 (see ratio of two exponentials, Table 3)

Ratio of two chi-squares, both with df ~5

n~1000 1. – 3100 1610 1110 1090 0740 0670 0590 0520 0570

2. 1030 1280 0990 1070 1050 1000 1070 0880 0870 0760

n~10,000,000 1. – 3180 1619 1119 0907 0784 0698 0624 0562 0507

2. 1221 1157 1100 1046 1004 0960 0924 0892 0860 0835

doi:10.1371/journal.pone.0010541.t007
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from the Newcomb-Benford distribution, and up to df ~5 the

deviance increases rather slowly. Note that the F-distribution with

df 1~df 2~2 is formally identical to the ratio distribution of two

exponentials with l1~l2. Therefore, figures for F(2,2) were

omitted; see Table 3.

The numerical results for the log-normal distribution are

given in Table 8. For this two-parameter distribution, the fit to the

NBL heavily depends on s and slightly depends on m. The larger s
and/or m, the better is the fit. For m~0, s~1 and m~:33, s~1
the misfit is massive, so that considering the effect of sample size

becomes obsolete; hence figures are given for n~10,000,000 only.

The best fit amongst the cases reported here is obtained with

m~10, s~40: the simulated first- and second-place digits’

distributions come very close to the Newcomb-Benford distribu-

tion when n~10,000,000; the maximal deviance amounts to

.0064 and refers to the first-place digit 1. As the ratio distribution

of two log-normals also follows the log-normal, no separate

presentation of results is needed.

The results of the simulation study may be summarized in two

statements. First, all types of distributions which turned out to be

compatible with the NBL exhibit a common feature. They are

long right-tailed and, thus, put most mass on small values of the

random variable. To these distributions belong the exponential,

the chi-square with very small degrees of freedom (df ~1 and

df ~2), the log-normal with large variance, and, with some

limitations, the half-normal. Incompatibility with the NBL proved

the uniform, the normal, and the right-truncated normal

distributions. Second, the fit to the NBL generally improves when

considering distributions of ratios of random variables. Among the

seven types of ratio distributions studied here, five emerged as

being consistent with the NBL. The ratio distribution of two

exponentials, the ratio distribution of two chi-squares (F-

distribution) with small degrees of freedom, and the ratio

distribution of two log-normals with large variance fitted the first-

and second-place digits’ distributions as given by the NBL nearly

perfectly, the ratio distributions of two uniforms and of two half-

normals fitted it sufficiently well, whereas only the ratio

distributions of two normals and of two right-truncated normals

completely failed to fit.

Together with findings reported earlier [6,17,18,26] regarding

the conformance to the NBL for some survival distributions

(exponential, Muth, Gompertz, Weibull, gamma, log-logistic, and

exponential power distributions) our results indicate that the

validity of the NBL requires that the frequency of ‘natural’

numbers in the sense of Newcomb [1] decreases with increasing

magnitude. Roughly speaking, this means that small numbers have

to be predominant. That is, when thinking of real-world data,

conformity to the NBL necessitates a majority of small objects. As

Table 8. Log-normal distribution.

Digit

Place 0 1 2 3 4 5 6 7 8 9

Log-normal (m~0, s~1)

n~10,000,000 1. – 6931 3069 0000 0000 0000 0000 0000 0000 0000

2. 1442 1335 1246 1167 1098 1037 0983 0639 0541 0512

Log-normal (m~0:33, s~1)

n~10,000,000 1. – 3599 4054 2346 0000 0000 0000 0000 0000 0000

2. 0816 0782 0752 0756 1387 1320 1256 1186 0893 0853

Log-normal (m~0, s~10)

n~1000 1. – 3520 1680 1290 0980 0700 0590 0460 0440 0340

2. 1200 1040 1160 1100 1080 1040 0840 0870 0880 0790

n~10,000,000 1. – 3466 1719 1151 0893 0729 0616 0534 0472 0420

2. 1248 1181 1083 1034 0994 0954 0922 0889 0861 0834

Log-normal (m~2:5, s~10)

n~1000 1. – 3270 1690 1380 0940 0780 0600 0560 0390 0390

2. 1130 1150 0970 0990 0880 1040 1020 1000 0860 0960

n~10,000,000 1. – 3268 1915 1152 0892 0729 0617 0533 0471 0422

2. 1151 1093 1112 1077 1034 0995 0953 0890 0861 0835

Log-normal (m~0, s~40)

n~1000 1. – 2940 1710 1360 1010 0750 0780 0490 0450 0510

2. 1250 1240 1230 1100 0930 0900 0930 0980 0740 0700

n~10,000,000 1. – 3118 1764 1222 0951 0775 0655 0566 0501 0448

2. 1206 1148 1096 1046 0997 0963 0929 0899 0871 0844

Log-normal (m~10, s~40)

n~1000 1. – 2940 1900 1150 0890 0740 0690 0680 0510 0500

2. 1380 1270 1020 1050 1100 0970 0730 0840 0890 0750

n~10,000,000 1. – 2946 1801 1294 1003 0785 0654 0567 0501 0449

2. 1190 1133 1089 1047 1004 0967 0935 0907 0877 0852

doi:10.1371/journal.pone.0010541.t008
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the NBL has often been shown to be valid, conversely it can be

deduced that, at least within numerous domains of our world,

small objects must occur much more frequently than do large

ones. Some examples given in the following will sustain this

conclusion.

Analyzed were the distributions of the following five variables

plus their first- and second-place digits’ distributions.

(a) The closing prices in Euro as of June 30, 2009 of stocks

contained in the AEX (Netherlands), ATX (Austria), CAC40

(France), DAX (Germany), DJI (USA), DJStoxx50 (Europe)

and SMI (Swiss), in total 179 values whereby stocks entered

only once when they appeared twice, namely in one of the

local European stock indices and in the overall European

index DJStoxx50;

(b) the closing prices of these stocks, however in local currencies

(Euro, US-$, Swiss Franc);

(c) the areas of 198 countries;

(d) the numbers of inhabitants of these 198 countries; and

(e) the starting page numbers of 225 papers referenced in the

bibliography on the NBL compiled by Hürlimann [7].

Overall, results are as expected. First, all five variables possess a

marked majority of small and a clear minority of large realizations.

Four of the five variables exhibit a distribution coming more (areas

and inhabitants of countries) or less (stock prices: very low values

are underrepresented) close to survival distributions. The distri-

bution of one variable (the bibliography data) follows rather a step

function than a continuously decreasing density function: the

highest frequency is found for starting pages 1 to 99 as it was to be

expected; the starting pages 100 to 199, 200 to 299, and 300 to

399 occur with markedly lower, but approximately constant

frequency; then the frequency decreases sharply to a level

remaining approximately constant for the following five 100-pages

sections (Figure 3; frequency distributions on the left).

Second, in all five cases the first-place digit 1 is slightly

underrepresented. Nevertheless, based on the Pearson chi-squared

goodness-of-fit test (5% significance level), all of the first- and

second-place digits’ distributions are compatible with the NBL,

with one exception: the first-place digit’s distribution of the

bibliography data clearly fails to fit the NBL; see Table 9. The best

fit is found for the areas of countries and their numbers of

inhabitants, weaker fit is found for both variants of stock prices

(prices in Euro vs. prices in local currencies). Note that the second-

place digit’s distribution of the stock prices in Euro is a borderline

case pointing at the importance not to look at the first-place digit

only when testing for the fit of the NBL. The first- and second-

place digits’ distributions are shown in Figure 3 on the right,

whereby observed values are represented by bars, values expected

according to the NBL by a line.

Third, and most importantly, the examples demonstrate the link

between the distribution of a random variable on the one hand

and the first-and second place digits’ distributions on the other

hand. The closer the shape of the distribution of a random

variable comes to that of a survival distribution or a distribution

behaving like a survival distribution, the better follows the first-

and second-place digits’ distributions the NBL. Regarding our five

examples, the same ordering according to both properties is

observable: the areas of countries and their numbers of inhabitants

perform best, both versions of stock prices perform to some extent,

but the bibliography data do simply not.

Discussion

In the first part of this study seven types of common

distributions were investigated regarding their conformance to

the NBL. The results of the simulations showed first that all types

of distributions behaving like survival distributions, that is, putting

most mass on small values of the random variable and being long

right-tailed, were compatible with the NBL. Second, distributions

of the ratio of two random variables fitted better than did the

distributions of a single random variable. For symmetric

distributions (illustrated by example of the normal distribution),

distributions tending to symmetry as a function of their parameters

(illustrated by example of the chi-square and the log-normal

distributions), and distributions whose density increases with

increasing value of the random variable (illustrated by example

of the right-truncated normal distribution), the misfit to the NBL

was found to be substantial up to massive.

These observations together with the fact that the NBL – at least

approximately – applies to many empirical data led to the

suspicion that the size of ‘natural’ objects must follow a

distribution behaving like a survival distribution in order to be

able to obey the NBL. This suspicion could be substantiated by

analyzing five sets of data. It turned out that the closer the

distribution of a variable comes to that of a survival distribution

the better is the fit to the NBL. Thereby, the fit to the NBL was

tested formally by chi-square goodness-of-fit tests of the first- and

second-place digits’ distributions, whereas the fit of the observed

variable’s distribution to a survival distribution of unspecified form

was informally assessed by visual inspection.

The overall conclusion resulting from the present study reads

very simply. The frequently found good fit of the NBL to empirical

data can be explained by the fact that in many cases the frequency

with which objects occur in ‘nature’ is an inverse function of their

size. Very small objects occur much more frequently than do small

ones which in turn occur more frequently than do large ones and

so on. Thus, the variable’s distribution looks like a survival

distribution whose leading digits’ distributions follow the NBL, at

least approximately.

Figure 3. Five empirical examples. Stock prices in Euro, stock prices in local currencies, area of countries (in units of 100,000 sq.km.), population
of countries (in units of millions), starting page of papers referenced in a bibliography on the Newcomb-Benford law. For each data set, the
distribution of the observed variable is shown on the left, the resulting first- and second-place digits’ distributions are shown on the right (bars)
together with the respective distributions according to the Newcomb-Benford law (solid lines).
doi:10.1371/journal.pone.0010541.g003

Table 9. Results of the Pearson chi-square tests for the five
empirical examples.

First digit (df ~8) Second digit (df ~9)

X 2 p X 2 p

Stock prices in Euro 9.45 .306 16.94 .0497

Stock prices in local
currencies

14.04 .081 10.20 .335

Area of countries 4.17 .841 5.39 .799

Inhabitants of countries 4.83 .776 11.70 .231

Bibliography 27.46 .001 14.06 .120

doi:10.1371/journal.pone.0010541.t009
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It is somewhat surprising that in the literature on the NBL the

connection between the distribution of a random variable and the

leading digits’ distributions was investigated up to now only for a

handful of mainly survival distributions. Studies referring to

empirical data concentrated solely on the leading digits’

distributions, nearly always on the most significant digit only,

neither discussing the relationship between the leading digits’

distributions and the variable’s distribution nor presenting the

latter one. As a consequence, reanalyzing empirical data collected

earlier was not possible and new data had to be found. Presumably

the present study is therefore the first one focusing on the

connection between the variables’ distribution and the leading

digits’ distributions, in both theoretical and empirical settings. It

remains to hope that future investigations on and applications of

the NBL will pursue the approach taken here.
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