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Abstract

Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able
to rank countries by their environmental impact so that poor performers as well as policy ‘models’ can be identified. We
provide novel metrics of country-specific environmental impact ranks – one proportional to total resource availability per
country and an absolute (total) measure of impact – that explicitly avoid incorporating confounding human health or
economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water
pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-
specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The
proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands
as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India,
Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened).
Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high
proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often
perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a
non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental
impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that
increasing wealth was the most important driver of environmental impact. Our results show that the global community not
only has to encourage better environmental performance in less-developed countries, especially those in Asia, there is also a
requirement to focus on the development of environmentally friendly practices in wealthier countries.
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Introduction

The environmental crises currently gripping the planet [1,2] are

the corollary of excessive human consumption of natural resources

[3]. Indeed, there is considerable and mounting evidence that

elevated degradation and loss of habitats and species are compro-

mising ecosystem services that sustain the quality of life for billions of

people worldwide [1,4,5]. Continued degradation of nature despite

decades of warning [1], coupled with the burgeoning human

population (currently estimated at nearly 7 billion and projected to

reach 9–10 billion by 2050) [1,6], suggest that human quality of life

could decline substantially in the near future. Increasing competition

for resources could therefore lead to heightened civil strife and more

frequent wars [7]. Continued environmental degradation demands

that countries needing solutions be identified urgently so that they

can be assisted in environmental conservation and restoration.

Identifying those nations whose policies have managed successfully to

reduce environmental degradation should be highlighted to inspire

other nations to achieve better environmental outcomes for their own

long-term prosperity.

Policy makers require good information on which to base their

decisions to reduce environmental degradation and restore

ecosystems [8]. In the spirit of minimizing carbon emissions [9],

environmental performance can be measured via international

rankings to provide benchmarks against which improvements can

be assessed [8]. Many such rankings exist, such as the City

Development Index (CDI), Ecological Footprint (EF), Environ-

mental Performance Index (EPI), Environmental Sustainability

Index (ESI), Genuine Savings Index (GSI), Human Development

Index (HDI), Living Planet Index (LPI), and the Well-Being Index

(WI) [reviewed in 8]. However, all such indices have problems

associated with their inability to describe the complexity of

‘sustainable’ development, lack of comprehensiveness, and arbi-

trary or subjective assumptions regarding normalization and

weighting [8]. Most indices also incorporate (often arbitrarily)

indicators of human health and economic performance, so the

emphasis on the environmental component per se is diluted or

confounded. Indeed, each set of criteria used to rank nations

depends on the particular goal of the ranking itself, the

assumptions associated with the data (i.e., precision, robustness,
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extent), and the hypotheses posed to explain among-nation

trends.

Economists and social scientists have attempted to explain

trends among countries for various indices of environmental

performance based primarily on human population density,

wealth and governmental structure and efficacy, with varying

results. Perhaps the most controversial is the environmental

Kuznets curve (EKC) hypothesis [10] and the theory of ecological

modernization [11] which argue that environmental performance

and per capita wealth follow a U-shaped relationship among

countries. In other words, instead of higher environmental impact

associated with increasing wealth and the corollary of higher per

capita resource consumption [12–15], the EKC predicts that

beyond a certain threshold, wealthier societies can reduce

environmental degradation via cleaner technologies and higher

demand for sustainable behavior from their citizenry [10]. This

evidence for the EKC hypothesis is equivocal; some analyses

suggest that measures of environmental degradation (i.e., defor-

estation [16], air and water pollution [11], and number of

threatened birds and mammals [17,18]) increase initially with

economic growth, but then decline after a threshold. However,

others suggest that increasing economic development leads to

higher species endangerment [11,17], and general levels of species

threat [19]. There is also evidence for an interaction between a

country’s wealth and its rate of deforestation or afforestation –

poor countries with little forest cover consume that remaining

portion more quickly than do poor countries containing relatively

more forests [20].

In addition to metrics of wealth, other indices of socio-economic

performance such as human population size and density, and

governance quality correlate with environmental performance

measures [15,21–25]. Indeed, human population density is

positively associated with the number of threatened species per

country [11,18]. Although the influence of governance type and

quality on environmental performance is still hotly debated [25],

political corruption (the ‘unlawful use of public office for private

gain’) [23,24] is expected to erode environments and exacerbate

biodiversity loss [23]. Corruption has been linked to deforestation

[20,25,26], CO2/NOx emissions, land degradation, organic

pollution in water [25] and an index of environmental ‘sustain-

ability’ [27], although others have not found evidence for a

relationship between change in natural forest cover and mean

governance scores [23].

One of the principal reasons results are inconsistent and the

relationship continues to be debated is that the importance of

different correlates varies among regions [28], and there are many

different methods used and assumptions made regarding metrics

and exceptions [8,11,15,25]. Our goal here is to provide a set of

simple, yet novel metrics of environmental impact that rank

countries by their proportional (relative to resource availability per

country) and absolute (total degradation as measured by different

environmental metrics) resource consumption, deforestation,

pollution and biodiversity loss. These metrics are intended to

improve policy and practice in the regions identified as having the

poorest environmental performance so that global benefits will

arise; we contend that the beneficiaries of policies that our ranking

Table 1. Twenty worst-ranked countries by proportional composite environmental (pENV) rank (lower ranks = higher negative
impact).

Rank Country Code PD PGR GOV GNI NFL HBC MC FER WTP PTHR CO2 pENV

1 Singapore SGP 1 51 13 115 128 5 91 1 4 63 1 10.6

2 Rep Korea KOR 14 158 56 154 23 61 20 17 21 29 5 20.4

3 Qatar QAT 108 8 67 - - 198 112 20 3 - 7 24.8

4 Kuwait KWT 61 110 74 109 128 197 114 11 1 - 8 25.1

5 Japan JPN 23 188 30 165 87 87 18 21 29 13 6 25.2

6 Thailand THA 71 145 90 148 43 8 7 67 - 37 46 25.5

7 Bahrain BHR 6 41 73 52 - 193 59 4 - 123 2 25.7

8 Malaysia MYS 102 60 71 131 47 75 22 8 77 15 11 25.9

9 Philippines PHL 36 70 122 144 22 20 48 57 70 3 38 26.7

10 Netherlands NLD 16 166 9 151 171 25 11 12 - 173 4 27.0

11 Denmark DNK 70 181 3 125 178 4 12 52 9 180 16 27.4

12 Sri Lanka LKA 34 156 110 111 31 56 33 30 41 7 34 28.9

13 Indonesia IDN 74 118 153 153 5 76 62 59 79 12 14 29.3

14 Israel ISR 33 40 64 123 128 110 93 5 6 62 9 30.0

15 Bangladesh BGD 5 80 166 134 84 1 26 45 81 36 101 31.2

16 Malta MLT 4 154 21 36 - 214 127 69 2 138 3 34.0

17 China CHN 64 149 129 166 194 111 3 29 33 20 47 34.5

18 New Zealand NZL 177 128 6 113 98 89 73 13 91 1 93 35.4

19 Iceland ISL 207 144 2 44 128 195 13 2 106 - - 36.9

20 Honduras HND 124 66 135 76 1 39 125 82 72 44 75 37.0

Shown are country names and codes (see also Fig. 1), population density (PD) rank, population growth rate (PGR) rank, governance quality (GOV) rank, Gross National
Income (GNI) rank, natural forest loss (NFL) rank, natural habitat conversion (HBC) rank, marine captures (MC) rank, fertilizer use (FER) rank, water pollution (WTP) rank,
proportion of threatened species (PTHR) rank, and carbon emissions (CO2) rank. Constituent variables used to create the pENV are in boldface. See text for details.
Missing values denoted by ‘-’.
doi:10.1371/journal.pone.0010440.t001
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system could influence would be global in extent, such as

international trade treaties, carbon taxation, and development

aid. We use the unit of ‘country’ as a basis for environmental

impact rank because a government’s decisions affecting the state of

the environment can be realistically best made at this level [29].

We provide different rankings that combine important (and readily

available) variables of past and current environmental impact

(forest loss, natural habitat conversion to managed/crop/urban

uses, marine captures, fertilizer use, water pollution, carbon

emissions and species threat), but do not confound environmental

performance with indicators of human health (e.g., EPI) or

economics (e.g., GSI). Our indices are also transparently and

Figure 1. Relative rank of countries by proportional and absolute environmental impact. Proportional environmental impact (179
countries; top panel) and absolute environmental impact rank (171 countries; bottom panel) (darker grey = higher impact) out of 228 countries
considered are shown. Environmental impact ranks (proportional and absolute) combine ranks for natural forest lost, habitat conversion, marine
captures, fertilizer use, water pollution, carbon emissions and proportion of threatened species (see text for details). The worst 20 countries (codes
described in Tables 1 & 2) for each ranking are shown.
doi:10.1371/journal.pone.0010440.g001
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objectively constructed, and are particularly robust to the

inclusion/exclusion of component metrics.

Specifically, we aimed to: (i) provide a rank of proportional

environmental impact to determine how countries perform with

respect to their available resources, (ii) provide a rank of total

(absolute) resource use to determine which countries have the

highest (and lowest) impact at the global scale, (iii) examine

concordance among the different measures of environmental

impact within our composite indices to test whether a country’s

performance is uniform across the environmental spectrum, (iv)

determine the correlation between our environmental impact

ranks and existing indices of environmental performance; (v) test

for correlations between environmental impact ranks and those

associated with population size, governance quality and wealth

using non-parametric, parametric and structural equation models,

and (vi) test the EKC hypothesis that relative environmental

impact is nonlinearly related to per-capita wealth.

Results

Proportional rank
Using the constraint of missing no more than three values

within the composite environmental impact rank (see File S1 and

Tables S1, S2, S3, S4 for sensitivity analysis of this choice), there

were 179 countries out of the entire dataset of 228 for which

sufficient data were available for correlation analyses (a list of the

49 missing countries [mostly small island nations] is provided in

Table S5). This index ranked the following 10 countries as having

the highest proportional environmental impact: Singapore, Korea,

Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines

and the Netherlands (Table 1; Fig. 1, top panel). The 10 lowest

proportional impact countries were Eritrea, Suriname, Lesotho,

Turkmenistan, Gabon, Kazakhstan, Mali, Vanuatu, Chad and

Bhutan (Table 2). The full proportional ranking of all 179

countries is provided in Table S6. Proportional rankings were

robust to the inclusion/exclusion of composite metrics – removing

each component metric one at a time and recalculating the

proportional rank maintained the general characteristics of the

ranking (Kendall’s t = ranged from 0.799 to 0.877 between the

original and modified ranks; Table 3).

Absolute rank
Based again on no more than three missing values, the absolute

composite ranking could be calculated for 171 countries (57

missing countries provided in Table S7). The full absolute ranking

of all 171 countries is provided in Table S8. From a global

perspective, the most populous and economically influential

countries generally had the highest absolute environmental

impact: Brazil, USA, China, Indonesia, Japan, Mexico, India,

Russia, Australia and Peru were the 10 worst-ranked countries

(Table 4; Fig. 1, bottom panel). The absolute and proportional

environmental impact ranks were negatively correlated (Kendall’s

t = 20.28, P = 0.0001, n = 170 countries); but China, Indonesia,

Japan, Malaysia, Thailand, and Philippines appeared in the list of

highest-impact countries for both proportional and absolute ranks

(Tables 2 & 4). Absolute rankings were even more robust to the

Table 2. Twenty top-ranked countries by proportional composite environmental (pENV) rank (higher ranks = lower negative
impact).

Rank Country Code PD PGR GOV GNI NFL HBC MC FER WTP PTHR CO2 pENV

179 Cape Verde CPV 69 54 76 20 128 214 113 157 - - - 148.5

178 Cent Afr Rep CAF 199 67 188 29 76 172 176.5 174 - 175 131 144.8

177 Swaziland SWZ 116 96 142 31 201 192 176.5 113 67 167 148 143.9

176 Antig & Barb ATG 50 85 52 9 128 148 119 - - 176 - 141.1

175 Niger NER 191 10 143 46 80 178 176.5 173 109 128 145 136.4

174 Grenada GRD 30 164 66 6 128 214 115 - - 109 - 136.1

173 Samoa WSM 117 150 65 14 196 214 95 96 - - 116 134.7

172 Tonga TON 66 185 109 8 128 214 132 - - - 88 133.6

171 Djibouti DJI 153 53 151 19 128 184 152 - - 98 109 130.8

170 Tajikistan TJK 137 119 182 38 161 124 176.5 111 - 93.5 - 129.6

169 Bhutan BTN 183 143 81 - 198 85 176.5 169 - 53 142 124.8

168 Chad TCD 197 12 181 41 70 112 176.5 148 - 125 144 124.3

167 Vanuatu VUT 172 48 88 4 128 165 81 - - - 139 124.2

166 Mali MLI 193 29 103 50 65 114 176.5 137 - 148 137 124.0

165 Kazakhstan KAZ 200 207 146 114 157 107 176.5 152 - 57 - 120.8

164 Gabon GAB 201 63 125 39 81 161 86 163 110 144 124 120.0

163 Turkmenistan TKM 192 91 189 70 128 182 176.5 90 - 66 - 119.6

162 Lesotho LSO 114 116 102 34 128 126 176.5 120 46 157 138 119.1

161 Suriname SUR 208 152 94 22 128 181 66 73 - 183 136 118.6

160 Eritrea ERI 148 52 168 27 77 117 148 133 - 132 - 118.5

Shown are country names and codes, population density (PD) rank, population growth rate (PGR) rank, governance quality (GOV) rank, Gross National Income (GNI)
rank, natural forest loss (NFL) rank, natural habitat conversion (HBC) rank, marine captures (MC) rank, fertilizer use (FER) rank, water pollution (WTP) rank, proportion of
threatened species (PTHR) rank, and carbon emissions (CO2) rank. Constituent variables used to create the pENV are in boldface. See text for details. Missing values
denoted by ‘-’.
doi:10.1371/journal.pone.0010440.t002
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inclusion/exclusion of composite metrics (Kendall’s t = ranged

from 0.808 to 0.929 between the original and modified ranks;

Table 5).

Concordance among environmental variables
There was modest concordance among the individual propor-

tional environmental variable rankings (Table 1) making up the

proportional composite ranking (Kendall’s W = 0.26, P,0.0001).

This demonstrates that environmental impact in one aspect is

partially mirrored by impact in other measures presumably

because high urbanization leads to higher proportional natural

forest loss, greater release of CO2 through land-use change and

burning of fossil fuels, and an ensuing higher proportion of species

threatened with extinction owing to habitat loss and pollution.

Despite this moderate concordance, countries can perform poorly

for somewhat different reasons (Tables 6 & 7); for example,

Singapore, Bahrain and Malta had high relative fertilizer use and

CO2 emissions, Indonesia and Honduras had high rates of

deforestation, Bangladesh and Denmark had high habitat

conversion, China had high marine captures, and New Zealand

had a high proportion of threatened species (Tables 1, 6, 7).

For the absolute index, composite variable ranks had a much

higher concordance (Kendall’s W = 0.42, P,0.0001), most likely

owing to the correlation imposed by higher absolute consumption

and economic activity in populous and wealthy (in absolute terms)

countries (see also below).

Correlation with existing environmental performance
indicators

There was evidence of moderate correlation and concordance

among the different composite indicators compared. Overall

concordance among the five indicator ranks (our composite

proportional index, EPI, HDI, GSI and EF) gave a Kendall’s

W = 0.25 (P = 0.04; n = 110 countries with data for all 5 indices; Fig.

S1). EPI and HDI were positively correlated (Kendall’s t = 0.698,

P,0.0001), and HDI and EF were negatively correlated (Kendall’s

t = 20.670, P,0.0001). There was a weak negative relationship

between our composite proportional environmental impact rank

and EPI (Kendall’s t = 20.21, P = 0.0001, n = 149 countries), HDI

(Kendall’s t = 20.22, P,0.0001, n = 178 countries), and GSI

(Kendall’s t = 20.25, P,0.0001, n = 118 countries), but only the

suggestion of a weak positive relationship between the proportional

environmental impact rank and EF (Kendall’s t = 0.09, P = 0.0991,

n = 150 countries; Fig. S2).

The relationships were much weaker or non-evident when

considering the absolute environmental impact rank; there was no

concordance among the five indicators (Kendall’s W = 0.19,

P = 0.69; n = 110 countries), and only EPI was negatively

Table 3. Ten worst- and best-ranked countries by proportional composite rank (pENV) with each of the 7 composite metrics
removed sequentially (i.e., pENV calculated from 6 metrics only).

pENV exNFL exHBC exMC exFER exWTP exTHR exCO2

t = 0.799 0.812 0.803 0.807 0.864 0.800 0.877

10 Worst

Singapore Singapore Singapore Singapore Singapore Singapore Singapore Singapore

Rep Korea Kuwait Qatar Qatar Taiwan Taiwan Bahrain Taiwan

Qatar Netherlands Bahrain Kuwait Rep Korea Rep Korea Netherlands Thailand

q Kuwait Taiwan Kuwait Rep Korea Thailand Malaysia Rep Korea Philippines

worse Japan Rep Korea Rep Korea Bahrain Philippines Philippines Denmark Bangladesh

Thailand Denmark Japan Philippines Denmark Japan Thailand Rep Korea

Bahrain Japan Malaysia Israel Japan Indonesia Qatar Sri Lanka

Malaysia Thailand Malta Indonesia Indonesia Thailand Kuwait Malaysia

Philippines Malaysia Israel Malta Qatar Bahrain Malta Denmark

Netherlands Israel Iceland Malaysia Sri Lanka Bangladesh Israel New Zealand

10 Best

Tajikistan Guinea-Bissau Chad Fr Guiana Antig & Barb Lesotho Swaziland Samoa

Djibouti Martinique Niger Vanuatu Cape Verde Antig & Barb Djibouti Antig & Barb

Tonga Antig & Barb Tajikistan Grenada Samoa Niger Tajikistan Swaziland

Samoa Niger Cape Verde Samoa New Caledonia Cen Afr Rep Kazakhstan Cen Afr Rep

Grenada Marshall Is Bhutan Antig & Barb Swaziland Cape Verde Grenada Cape Verde

better Niger Cape Verde Swaziland Cayman Is Cayman Is Cayman Is Bhutan Tonga

Q Antig & Barb Fr Guiana Atig & Barb Martinique Fr Polynesia Marshall Is Cape Verde Cayman Is

Swaziland Cen Afr Rep Cen Afr Rep Cape Verde Bermuda Swaziland Marshall Is Marshall Is

Cent Afr Rep Andorra Andorra Andorra Andorra Andorra Andorra Andorra

Cape Verde Liechtenstein Liechtenstein Liechtenstein Liechtenstein Liechtenstein Liechtenstein Liechtenstein

Metrics excluded (ex) sequentially include proportional natural forest loss (NFL), proportional natural habitat conversion (HBC), proportional marine captures (MC),
proportional fertilizer use (FER), proportional water pollution (WTP), proportion of threatened species (THR), and proportional carbon emissions (CO2). See Materials and
Methods for calculation of proportional metrics. Boldface cells indicate which countries appeared in the full pENV (calculated from 7 composite metrics) for each
reduced pENV (i.e., with one metric removed). For each reduced pENV, Kendall’s t correlation to the full pENV is shown (all P,0.0001 and n = 179 countries).
doi:10.1371/journal.pone.0010440.t003
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correlated with the absolute environmental impact rank (Kendall’s

t = 20.12, P = 0.037, n = 149 countries).

Correlation with socio-economic ranks
The composite proportional environmental impact rank

correlated with the five socio-economic ranks (Fig. 2). We found

that countries with higher total human populations and densities

had greater proportional environmental impact (Kendall’s

t = 0.209 and 0.336, P,0.0001, respectively), and those with

lower population growth rates had a slightly lower proportional

environmental impact (Kendall’s t = 0.114, P = 0.029) (Fig. 2A–

C). Countries with greater total wealth (total purchasing power

parity-adjusted Gross National Income) had worse environmental

records than poorer countries (t = 20.331, P,0.0001) (Fig. 2D),

and those with poorer governance had slightly higher environ-

mental impact; t = 0.180, P = 0.0005) (Fig. 2E). However, none of

the socio-economic ranks correlated with the absolute environ-

mental impact rank except total purchasing power parity-adjusted

Gross National Income (t = 20.537, P,0.0001; Fig. 2F).

Our choice to focus on absolute (rather than per capita)

measures of wealth will tend to identify the largest economies as

having the greatest environmental impacts. To test the EKC

hypothesis explicitly, we found evidence for a positive relationship

between the proportional environmental impact rank and per

capita wealth; i.e., as per capita wealth increases, proportional

environmental impact decreases (Fig. 3A). This was also supported

by comparing the ranks using Kendall’s t (t = 20.210, P,0.0001).

The log-linear model (wBIC = 0.891) explained 9.6% of the

deviance in the data and was 8.4 times more likely (BIC evidence

ratio) than the quadratic model (wBIC = 0.107; Fig. 3A). Thus,

there is little evidence for the EKC hypothesis, although there was

a slight improvement in proportional environmental performance

as per capita wealth increased. There was no relationship between

the absolute environmental rank and per capita GNI-PPP (Fig. 3B).

Of course, identifying the causative aspect of these correlates is

problematic because of the strong inter-correlation of predictor

ranks (Table S9). As human population size increases, total wealth

increases, and governance quality decreases. Likewise, there is a

positive correlation between wealth and governance quality, such

that poorer countries have lower-quality governance. Structural

equation models (SEM) revealed total human wealth is the most

important correlate of both relative and absolute environmental

impact (Table 8), with lesser contributions from population size

and governance quality (Fig. 4). Structural model ‘A’ that contains

total wealth (GNI-PPP) as the only correlate of proportional

environmental impact rank was the top-ranked SEM

(wBIC = 0.439), but there was also some support for models D

and E (wBIC = 0.291 and 0.268, respectively) (Fig. 4; Table 8). For

absolute environmental impact, model ‘D’ including wealth and

population size was the highest-ranked model (wBIC = 0.763;

Table 8; Fig. 4). Model coefficients indicate that increasing total

wealth is strongly correlated with higher proportional and absolute

environmental impact, and increasing population size explains

additional variance in absolute environmental impact (Fig. 4).

Discussion

Our results based on a novel and objective combination of

proportional and absolute environmental impact variables (as

Table 4. Twenty worst-ranked countries by absolute composite environmental (aENV) rank (lower ranks = higher negative impact).

Rank Country Code PD PGR GOV GNI NFL HBC MC FER WTP THR CO2 aENV

1 Brazil BRA 166 114 95 159 1 3 30 3 8 4 4 4.5

2 USA USA 156 139 20 167 21 211.5 3 1 2 9 1 5.9

3 China CHN 64 149 129 166 216 36 1 - 1 6 2 6.7

4 Indonesia IDN 74 118 153 153 2 183 6 6 7 3 3 7.0

5 Japan JPN 23 188 30 165 73 5 4 17 5 23.5 6 10.8

6 Mexico MEX 131 115 93 156 9 211.5 17 13 17 1 12 13.6

7 India IND 21 90 106 164 214 137 8 2 3 8 8 13.7

8 Russia RUS 194 202 141 158 12 125 7 18 4 26 5 13.9

9 Australia AUS 209 127 11 152 10 7 47 9 31 11.5 18 15.2

10 Peru PER 168 111 120 119 27 30 2 46 49 7 27 18.3

11 Argentina ARG 181 134 121 149 19 11 21 23 22 16 31 19.6

12 Canada CAN 204 141 10 155 133.5 6 19 7 16 71 10 19.8

13 Malaysia MYS 102 60 71 131 39 170 16 22 24 10 9 24.3

14 Myanmar MMR 111 132 197 - 4 18 22 113 102 25 14 25.2

15 Ukraine UKR 103 208 137 141 201 1 39 36 11 90 - 25.6

16 Thailand THA 71 145 90 148 28 211.5 9 11 - 20 29 26.4

17 Philippines PHL 36 70 122 144 22 168 12 27 21 11.5 33 26.6

18 France FRA 79 172 24 161 210 - 26 4 9 116.5 16 26.7

19 South Africa ZAF 147 93 72 147 63 43 25 28 19 31 17 29.4

20 Colombia COL 146 102 138 139 43 162 64 30 30 2 32 30.7

Shown are country names and codes (see also Fig. 1), population density (PD) rank, population growth rate (PGR) rank, governance quality (GOV) rank, Gross National
Income (GNI) rank, natural forest loss (NFL) rank, natural habitat conversion (HBC) rank, marine captures (MC) rank, fertilizer use (FER) rank, water pollution (WTP) rank,
threatened species (THR) rank, and carbon emissions (CO2) rank. Constituent variables used to create the aENV are in boldface. See text for details. Missing values
denoted by ‘-’.
doi:10.1371/journal.pone.0010440.t004
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opposed to metrics that incorporate human health and/or

economic indicators directly – see [8] for a review) demonstrate

that overall wealth is the most important correlate of environ-

mental impact, although population size explains additional

variation in absolute impact. The modest concordance we found

among common sustainability ranking systems is partially due to

our choice to exclude economic and human health indicators, with

our indices thus providing a more direct measure of environmental

impact than of ‘sustainability’ (i.e., the capacity for ecosystems and

human living standards to endure) per se. Indeed, many existing

metrics of environmental impact attempt to make predictions of

future resource use and so require imposing many untestable

assumptions on their metrics (e.g., Ecological Footprint; [8]). Our

ranking system explicitly avoids such assumptions and instead

focuses on measures of present-day accumulated environmental

degradation. Of course, the purpose of any index of environmental

impact depends on its ultimate application – proportional impact

is a better reflection of a country’s performance relative to

economic opportunity, irrespective of contextual wealth and

population size. However, if one desires to measure a country’s

contribution to global environmental degradation, then absolute

environmental impact is a better reflection of a country’s

contribution to the world’s current environmental state.

We openly acknowledge that because our aim was to provide as

parsimonious an environmental impact index as possible (maxi-

mizing sample sizes and data availability), we could not

incorporate all major indices of environmental degradation.

Measures such as the magnitude of bushmeat harvest [30], coral

reef habitat quality [31], seagrass loss [32], freshwater habitat

degradation [33], illegal fishing [34], invertebrate threat patterns

[35], and some forms of greenhouse gas emission [36] were simply

not available at the global scale of investigation. Nonetheless, we

contend that our indices provide the most comprehensive

measures of relative country-level environmental impact derived

from the most complete global datasets available. The low

sensitivity of each ranking to the exclusion of component metrics

reinforces their robustness.

Despite the different derivation and application of proportional

and absolute ranks, we found a surprising correlation between the

two. This suggests that a country’s consumption, pollution and

land-use trends relative to opportunity reflect, at least to some

degree, its citizens’ attitude to environmental stewardship globally.

The most striking aspect of this correlation was the dominance of

Asian countries (Fig. 1) within the highest proportional and

absolute rankings; China, Indonesia, Japan, Malaysia, Thailand,

and Philippines had proportionally and absolutely the highest

environmental impact according to our composite indices (Tables 2

& 3). Of course, our indices naturally focus on modern

environmental impact (by their very construction we were limited

to environmental impacts occurring within the last few decades);

thus, they ignore some elements of historical degradation (e.g.,

deforestation in Europe). The corollary is that the proportional

Table 5. Ten worst- and best-ranked countries by absolute composite rank (aENV) with each of the 7 composite metrics removed
sequentially (i.e., aENV calculated from 6 metrics only).

aENV exNFL exHBC exMC exFER exWTP exTHR exCO2

t = 0.816 0.808 0.890 0.904 0.929 0.870 0.917

10 Worst

Brazil China USA Brazil Brazil Brazil Brazil Brazil

USA USA Indonesia USA China Indonesia USA USA

China Brazil Brazil Indonesia Indonesia USA China Indonesia

q Indonesia Japan China China USA China Indonesia China

worse Japan Indonesia Mexico Australia Japan Japan Japan Japan

Mexico India India Japan Russia Mexico Russia Mexico

India Canada Russia Mexico Mexico Australia Zambia Australia

Russia Russia Japan India Peru Peru India India

Australia Mexico Peru Russia Australia Russia Canada Russia

Peru Australia Australia Argentina Argentina India Australia Peru

10 Best

Tonga Grenada St Lucia Cayman Is St Helena Cayman Is Bermuda Djibouti

St Kitts & Nevis Timor-Leste Antig & Barb Fr Polynesia Martinique St Lucia St Helena Martinique

Gambia Bermuda Gibraltar Neth Antilles Cayman Is Amer Samoa Martinique Cayman Is

St Vincent Gren US Virgin Is Br Virgin Is St Lucia St Lucia Grenada Antig & Barb St Lucia

Swaziland Martinique Montserrat Vanuatu Amer Samoa Antig & Barb Djibouti Amer Samoa

better Barbados Cayman Is St Kitts & Nevis Antig & Barb Antig & Barb Palestine St Lucia Antig & Barb

Q Djibouti St Lucia Anguilla Montserrat Palestine Bermuda Amer Samoa Palestine

Grenada Antig & Barb Cayman Is Martinique Andorra Andorra Palestine Andorra

St Lucia Montserrat Palau Andorra Montserrat Montserrat Anguilla Montserrat

Antig & Barb Anguilla Monaco Anguilla Anguilla Anguilla Montserrat Anguilla

Metrics excluded (ex) sequentially include natural forest loss (NFL), natural habitat conversion (HBC), marine captures (MC), fertilizer use (FER), water pollution (WTP),
threatened species (THR), and carbon emissions (CO2). Boldface cells indicate which countries appeared in the full aENV (calculated from 7 composite metrics) for each
reduced aENV (i.e., with one metric removed). For each reduced aENV, Kendall’s t correlation to the full aENV is shown (all P,0.0001 and n = 171 countries).
doi:10.1371/journal.pone.0010440.t005
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index in particular might penalize developing nations more

heavily, even though some European nations still performed

poorly (e.g., Denmark, Netherlands, Malta). Nonetheless, future

policies developed using our index cannot address ancient

environmental misconduct – they can only attempt to rectify

current and future destructive practices.

Our composite index also revealed an interesting, perhaps

paradoxical, result with respect to the predictions arising from the

environmental Kuznets curve (EKC) hypothesis [10]. The EKC

predicts that wealthier societies can reduce environmental

degradation beyond a certain threshold [10]. Our explicit tests

of non-linearity in the relationship between per capita wealth and

environmental impact supported only linear (proportional impact)

or no relationship (absolute impact; Fig. 3). Although the EKC

prediction was not supported, we did find a weak correlation

between per capita wealth and proportional environmental

impact, suggesting that some gains in environmental performance

can be achieved with increasing per capita wealth. However, our

general finding that absolute wealth was the principal correlate of

higher environmental impact suggests that any potential improve-

ment resulting from higher per capita wealth is overwhelmed by

the current necessity for economies to grow. We add though that

temporally static (mean) measures of environmental performance

compared across spatial gradients (countries) might obscure

temporal patterns within countries. Therefore, evaluating tempo-

ral progress and the role of more environmentally friendly

technologies and better education within a country might reveal

that the EKC is still valid, at least under certain socio-economic

circumstances and for particular measures of environmental

performance. On the other hand, increasing trade liberation

could make EKCs increasingly difficult to test because of

externalities (import and export).

Governance quality has been linked to environmental degra-

dation [23,37]; however, our analyses revealed that it was the least

important of the three plausible drivers of environmental impact

among countries. We hypothesize that this arises because better

governance drives economic development, urbanization, habitat

loss and the resultant environmental impact (see Table S9 for

correlations). Conversely, countries with poor governance and

political corruption might experience a high deforestation rate

owing to poor forestry practices and illegal logging [20,22,23], and

consequently, high species endangerment. The lack of a strong

effect might also arise from changing governance quality over time

that is not necessarily reflected in average ranks.

Our rankings are not meant to excuse better-ranked countries

from their environmental responsibilities; rather, the correlations

identified suggest that there are several policies that can assist in

reducing overall environmental impact. Human population size

and wealth are intrinsically linked, meaning that one will most

likely change in response to changes in the other, regardless of

Table 6. Ten worst- and best-ranked countries by proportional environmental metrics: proportional natural forest loss (NFL),
proportional natural habitat conversion (HBC), proportional marine captures (MC), proportional fertilizer use (FER), proportional
water pollution (WTP), proportion of threatened species (THR), and proportional carbon emissions (CO2).

NFL1 HBC2 MC2 FER WTP THR CO2

10 Worst

Honduras Bangladesh Peru Singapore Kuwait New Zealand Singapore

Solomon Is N Mariana Is Taiwan Iceland Malta Madagascar Bahrain

Guam Monaco China St Lucia Qatar Philippines Malta

q DPR Korea Denmark Ghana Bahrain Singapore Mexico Netherlands

worse Indonesia Singapore Morocco Israel Bahamas Haiti Rep Korea

Micronesia Hungary Lithuania Dominica Israel Cuba Japan

Cambodia Jersey Thailand Costa Rica Barbados Sri Lanka Qatar

Timor-Leste Thailand Togo Malaysia Jordan Seychelles Kuwait

Zimbabwe El Salvador Namibia St Vincent Gren Denmark Sao Tome Princ Israel

Niue Sierra Leone Senegal UAE Czech Rep Dominican Rep Germany

Ecuador San Marino Netherlands Kuwait Tunisia Fiji Malaysia

10 Best

Bhutan Libya Sudan Namibia Colombia Belgium Burkina Faso

Slovenia Jordan Fr Polynesia Marshall Is Mozambique Denmark Mongolia

Palau Swaziland Bermuda Uganda Cameroon Fr Guiana Bhutan

Swaziland Bahrain Guinea-Bissau Afghanistan Iceland Sweden Namibia

Cuba Saudi Arabia Eritrea Bhutan Peru Suriname Chad

better Viet Nam Iceland Aruba Somalia Bolivia Cayman Is Niger

Q Italy UAE Bahamas Rwanda Niger Anguilla Gambia

Liechtenstein Kuwait New Caledonia Dem Rep Congo Gabon Liechtenstein Viet Nam

Spain Qatar Djibouti Niger Myanmar Luxembourg Swaziland

Austria Greenland Bosnia/Herz Cen Afr Rep Afghanistan San Marino Uruguay

See Materials and Methods for calculation of proportional metrics.
110 Best countries have reported increasing forest cover.
2Countries with zero proportional habitat conversion/marine captures excluded.
doi:10.1371/journal.pone.0010440.t006

Ranking Environmental Impact

PLoS ONE | www.plosone.org 8 May 2010 | Volume 5 | Issue 5 | e10440



setting. Richer countries generally exploit more resources for the

same population size as the relationship between human

population (total and density) and proportional environmental

impact suggests, but as per capita resource availability declines,

environmental impact increases. A fundamental tenet of popula-

tion ecology is that per capita resources decline as populations

near carrying capacity, so the absolute pressure on the

environment is dictated more by variation in a country’s ‘carrying

capacity’ than absolute population size or per capita resources

use.

This assumes though that carrying capacity is not modified via

‘leakage’, that is, externalizing environmental damage via

pollution trading and outsourcing environmentally intensive

production processes [38]. In a more modern context, leakage

might be substantial when measured via carbon outputs from

highly industrialized countries; without full greenhouse gas

accounts available for each country, environmental quality per

nation cannot be linked as directly to within-nation policies and

behaviors. For example, Costa Rica’s recent reduction in

deforestation rate appears to have been offset by increasing

timber imports from elsewhere [39], and Japan’s maintenance of

its forest is supported by extensive timber imports from South

East Asia and beyond [40]. Although we could not consider the

leakage effect directly given that there are few global-scale

datasets available [38,39], we expect that leakage is either

proportional to absolute wealth and intensity of development, or

it could even increase (e.g., exponentially) with increasing wealth.

If leakage is an important phenomenon at the global scale, the

importance of increasing wealth on environmental degradation

would be even greater than we identified here. The existence of

substantial leakage also erodes support for the EKC hypothesis

[38].

Our results show that the global community not only has to

encourage better environmental performance in less-developed

countries, especially those in Asia, there is also a requirement to

focus on the development of environmentally friendly practices in

wealthier countries. However, populous countries currently

undergoing rapid economic development such as China [41],

India and Indonesia might have the fastest increases in

environmental impact and are thus the regions where improved

environmental protection policies stand to benefit the most

people. Improving policy and practice in these regions might also

provide a larger global benefit, because the beneficiaries of the

policies that our ranking system could influence would often be

global in extent (e.g., international trade treaties, carbon tax,

development aid). However, we recommend that policy makers

avoid using our metrics to prioritize biodiversity conservation

spending explicitly because usually finer-scale cost-benefit anal-

yses are required to maximize the number of species protected

per monetary unit spent [42]. While some aspects of environ-

mental impact considered are generally irreversible in the short

term (e.g., forest loss and species endangerment), others can be

reversed by institutionalizing sustainable development policies

that limit consumption [1].

Table 7. Ten worst- and best-ranked countries by individual absolute environmental metrics: natural forest loss (NFL), natural
habitat conversion (HBC), marine captures (MC), fertilizer use (FER), water pollution (WTP), total threatened species (THR), and
carbon emissions (CO2).

NFL1 HBC2 MC2 FER WTP THR2 CO2

10 Worst

Brazil Ukraine China USA China Mexico USA

Indonesia Romania Peru India USA Columbia China

Sudan Brazil USA Brazil India Indonesia Indonesia

q Myanmar Japan Japan France Russia Brazil Brazil

worse Dem Rep Congo Canada Chile Pakistan Japan Ecuador Russia

Zambia Australia Indonesia Indonesia Germany China Japan

Nigeria Hungary Russia Canada Indonesia Peru Germany

Tanzania Tanzania India Germany Brazil India India

Mexico Trin & Tobago Thailand Australia France USA Malaysia

Australia Argentina Norway Viet Nam UK Malaysia Canada

10 Best

Greece Mauritania N Mariana Is Namibia Burkina Faso Denmark Lesotho

Belarus Grenada Tokelau Burundi Barbados Estonia Samoa

Cuba San Marino Aruba Barbados Swaziland St Kitts/Nevis Tonga

France Djibouti Jordan Eritrea Gabon Br Virgin Is Sao Tome/Princ

Austria Ghana Cayman Is Gabon Bahamas Antigua/Barb Vanuatu

better Italy Rep Korea Nauru Malta Niger Sweden Cook Is

Q Viet Nam St Lucia Montserrat Fr Polynesia Grenada Andorra Gambia

India Andorra Pitcairn I Maldives Bermuda Cayman Is Swaziland

Spain Bahrain Bosnia/Herz Samoa St Vincent Gren Monaco Viet Nam

China Fr Polynesia Monaco Marshall Is Afghanistan Anguilla Uruguay

110 Best countries have reported increasing forest cover.
2Countries with zero habitat conversion/marine captures/threatened species excluded.
doi:10.1371/journal.pone.0010440.t007
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Materials and Methods

Environment
The following variables were combined (see Analysis) to produce

relative and absolute ranks of a country’s environmental impact.

We were unable to include variables such as bushmeat extraction,

coral reef quality, seagrass change, and freshwater habitat loss

given a lack of country-specific data (see Discussion).

Natural forest loss. We obtained plantation forest area and

total forest area from 1990 and 2005 from the Food and

Agriculture Organization (FAO) Global Forest Resources

Assessment 2005 (www.fao.org). Area of natural forest of each

country was calculated by subtracting plantation forest area from

total forest area. Absolute natural forest area change was defined

as the difference in natural forest area between years 1990 and

2005. For the proportional index, this difference was converted

Figure 2. Bivariate correlations among environmental impact ranks and socio-economic variable ranks based on Kendall’s t.
Strength of the relationships for which evidence exists between relative and absolute environmental impact ranks (see text for details) and socio-
economic variables (human population size, human population density and human population growth rate, wealth [purchase power parity-adjusted
Gross National Income] and governance quality) as measured by t are given in the Results.
doi:10.1371/journal.pone.0010440.g002
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to a proportion of total country area to standardize among

countries.
Natural habitat conversion. We evaluated the degree of

historical habitat loss by overlaying a modified version of the

Global Land Cover 2000 dataset [43,44] over a map of global

political boundaries [45] in ArcGIS v. 9.2. For the proportional

index, we calculated historical habitat loss by expressing the area

of human-modified land-cover as a proportion of total terrestrial

land area in each ecoregion. Our definition of human-modified

land-cover included cultivated and managed land, cropland

mosaics, and artificial surfaces and associated areas.
Marine captures. We compiled marine capture data using

the FAO FISHSTAT Plus Ver. 2.32 software [46]. Volume of

marine captures by each country was collated from the Capture

Production 1950–2006 dataset (ftp://ftp.fao.org). Fisheries

exploitation was assessed by computing the 10-year average total

capture of marine fish, whales, seals and walruses. For the

proportional index, marine captures were standardized among

countries by expressing the values as a proportion of the total

coastline distance (km) for countries possessing a marine Exclusive

Economic Zone (sourced from www.earthtrends.wri.org). For

countries with no marine captures or coastline, proportions were

set to zero. Although illegal, unreported and unregulated (IUU)

fishing is estimated to comprise a large component of marine

captures worldwide [34], but its very nature, few country-specific

data exist [47]. Therefore, we could not incorporate this additional

measure.

Fertilizer use. The excessive application of nitrogen,

phosphorous and potassium (NPK) fertilizers can result in the

leaching of these chemicals into water bodies and remove, alter or

destroy natural habitats [47,48]. The consumption of nitrogen (N),

phosphorous (P2O5) and potassium fertilizers (K2O) by each

country from years 2002 to 2005 was compiled from the

FAOSTAT database (www.faostat.fao.org). The countries were

ranked by the average annual consumption of all three categories

of fertilizers. For the proportional index, we calculated the average

NPK fertilizer consumption per unit area of arable land (100 g/ha

of arable land) [49].

Water pollution. We obtained data describing the total

yearly (1995–2004) emissions of organic water pollutants measured

by biochemical oxygen demand (BOD); this index describes the

amount of oxygen consumed by bacteria decomposing waste in

water (kg/day) [49]. For the proportional index, we divided the

BOD values by the maximum theoretical yearly amount of water

available for a country at a given moment (Total Actual

Renewable Water Resources obtained from the FAO

AQUASTAT database [50]. We took the mean of the Total

Actual Renewable Water Resources data from three time slices

(1993–1997, 1998–2002, 2003–2007) which correspond to the

periods covered by the BOD data.

Carbon emissions. The two main anthropogenically driven

sources of atmospheric CO2 driving rapid climate change [51] are

large-scale burning of fossil fuels for energy and the clearing of

forest and woodlands [52]. CO2 emissions data from the flaring of

natural gas and burning of fossil fuels were compiled from the

Energy Information Administration (EIA) database (www.eia.doe.

gov). Countries were ranked by computing the most recent 10-

year average (years 1996–2005) CO2 emissions.

CO2 emissions from land-use change and forestry were

compiled using the Climate Analysis Indicators Tool (CAIT)

(http://cait.wri.org). These estimates were based on a global and

regional analysis of land-use change [53]. The types of land-use

change and forestry activities assessed included 1. clearing of

natural ecosystems for permanent croplands, 2. clearing of natural

ecosystems for permanent pastures, 3. abandonment of croplands

and pastures with subsequent recovery of carbon stocks to those of

the original ecosystem, 4. shifting cultivation, and 5. industrial and

fuel wood harvest (emissions of carbon from wood products

included) (http://cait.wri.org). We could not include emissions

from shipping and flights because the data are not yet

incorporated into country-specific accounting methods. Data

collected were the most recent 10-year average (years 1991–

2000) CO2 emissions from land-use change and forestry datasets.

Total CO2 emissions were the sum of fossil fuel and land-use

means, and these were standardized among countries for the

proportional index by dividing by total country area.

Biodiversity threat. To quantify the threat to biodiversity in

each country, we chose for our analyses the three best-documented

animal taxa (i.e., birds, amphibians, and terrestrial mammals)

assessed using standardized IUCN Red List (www.iucnredlist.org)

criteria. These three taxa have either been completely assessed

(birds, amphibians) or almost completely assessed (mammals) [54].

BirdLife International, the Red List Authority for birds, has

assessed all 10104 bird species in its 2008 Red List [55]. Similarly,

6260 amphibian species have been evaluated by the IUCN (www.

Figure 3. Tests for the environmental Kuznets curve (EKC)
hypothesis. The EKC asserts that environmental impact is a non-linear
function of per capita wealth [10]. Top panel: the intercept-only, linear,
and quadratic (on log10 scale) models fitted to the proportional
environmental impact rank. The linear model had the highest Bayesian
inference support (see Results). Bottom panel: the intercept-only model
(i.e., no relationship) had the highest support for the absolute
environmental rank. The ‘*’ indicates an opposite rank direction to that
presented in Fig. 2 for mathematical convenience (i.e., fitting a
nonlinear function to the data).
doi:10.1371/journal.pone.0010440.g003
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iucnredlist.org/amphibians/). As for the mammals, all species

listed in [56] were assessed in the 1996 Red List. Some species

were re-evaluated and newly-described species evaluated in

subsequent editions of the Red List. However, owing to

taxonomic changes in existing mammal species and discoveries

of new species, assessment gaps still exist (www.iucnredlist.org).

Despite this, because mammals represent one of the most

important groups of species in terms of evolution, ecology and

economic impact (www.iucnredlist.org), we believe that the

inclusion of terrestrial mammals in our analyses is merited.

Threat status of birds native to each country was compiled from

the World Bird Database (www.birdlife.org). Threat status of

amphibians native to each country was compiled from the IUCN

Amphibian database (www.iucnredlist.org/amphibians/). Threat

status of mammals native to each country was compiled from the

2008 IUCN Red List (www.iucnredlist.org). For the proportional

index, the number of threatened species was divided by the total

number of species listed in the 2008 IUCN Red List. It is logical to

posit that species endemic to a large country are less likely to be

threatened because their potential range size is larger than that of

species endemic to smaller countries. However, Giam et al. [57]

found little evidence for an effect of country area on endemic plant

threat risk, so the potential bias owing to country area is likely

absent or weak.

Socio-economic variables
We collected the following socio-economic variables summa-

rized per country to examine their relationship with environmental

impact ranks.

Human population size and growth. Total population size

of each country was collated from the series ‘Population total (UN

Population Division’s annual estimates and projections)’ in the

United Nations Common Database (http://unstats.un.org).

Annual population figures were recorded for the period 1990–

2005 (Fig. S3, top panel). These figures were used to derive the

annual rate of population change, 15-year average population,

and population density for each country.

Wealth. The purchasing power parity-adjusted gross national

income (GNI-PPP) of each country for the period 1990–2005 was

collated from the World Resources Institute (WRI) EarthTrends

database (www.earthtrends.wri.org) (Fig. S3, middle panel).

Governance quality. Governance quality for each country

was obtained from the Worldwide Governance Indicators (WGI)

project [58], a metric that is strongly correlated with the better-

known Corruption Perception Index (CPI; www.transparency.org)

(mean 1996–2005 CPI versus the 2002–2006 World Bank

governance indicator; Kendall’s t = 0.755; P,0.0001). We used

the former metric because the WGI project appraised countries

using indicators of six dimensions of governance: 1. voice and

accountability, 2. political stability, 3. government effectiveness, 4.

regulatory quality, 5. rule of law, and 6. control of corruption. For

each of the six indicators, a score from 22.5 (lowest quality) to 2.5

(highest quality) was allocated to each country. We calculated

average values of each of these six dimensions for each country

from (2002–2006) to obtain a reasonable estimate of governance

quality of each country. Factor analysis (not shown) extracted only

one component consisting of all six dimensions revealing strong

inter-correlations. We therefore reduced the six indicators into a

single principal component that explained 87.7% of the total

variance (Fig. S3, bottom panel).

Analysis
Composite scores and ranks of variables. Statistical

problems of autocorrelation render classic interpretations of

socio-economic drivers of deforestation problematic [15], and

conclusions vary depending on the technique used [8,28]. To

Table 8. Ranking of six candidate path models relating socio-economic variables to the (i) proportional (pENV) and (ii) absolute
environmental impact rank (aENV) based on the Bayesian Information Criterion (BIC).

Model Index Model df x2 AGFI BIC DBIC wBIC

(i) Proportional environmental impact rank

A pENV,gni 2 4.803 0.930 25.433 0.000 0.439

D pENV,pop + gni 1 0.508 0.985 24.610 0.823 0.291

E pENV,gni + gov 1 0.673 0.980 24.445 0.988 0.268

F pENV,pop + gov 1 10.453 0.704 5.335 10.768 0.002

B pENV,pop 2 32.521 0.592 22.285 27.718 ,0.001

C pENV,gov 2 37.776 0.538 27.540 32.973 ,0.001

(ii) Absolute environmental impact rank

D aENV,pop + gni 1 0.669 0.980 24.449 0.000 0.763

F aENV,pop + gov 1 3.114 0.908 22.004 2.445 0.225

B aENV,pop 2 13.965 0.806 3.729 8.178 0.013

E aENV,gni + gov 1 34.207 0.148 29.089 33.538 ,0.001

A aENV,gni 2 60.462 0.338 50.226 54.675 ,0.001

C aENV,gov 2 203.537 20.305 193.301 197.749 ,0.001

(i) For pENV, models A, D and E have high adjusted goodness-of-fit index (AGFI). Model A is the most highly ranked relative to other models in the candidate set based
on BIC weights (wBIC), with lower support for models D and E. All remaining models have little support. (ii) For aENV, only models D and F have high AGFI. Model D is
the most highly ranked relative to other models in the candidate, and with less support for model F. All remaining models have little support. Shown also are the model
degrees of freedom (df), associated model Chi-square value (x2), and the difference between the top-ranked model’s BIC and that of the model under consideration
(DBIC). Model variables include environmental rank (pENV or aENV), total human population size rank (pop), purchasing power parity-adjusted Gross National Income
(gni) rank and governance quality rank (gov) (see text for details). Each model is described by the hypothetical causal paths between socio-economic indicators and
environmental impact. Refer to Fig. S4 for full path model details.
doi:10.1371/journal.pone.0010440.t008
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avoid temporal autocorrelation [15], we took temporal means over

the periods indicated above for each environmental (or population)

metric for both proportional and absolute composite ranks. For

each environmental impact, human population density, human

population growth rate, governance quality and wealth

(purchasing power parity-adjusted Gross National Income)

variable, we made simple hierarchical rankings (i.e., we did not

consider the magnitude of the values’ difference between

countries; however, geometric mean rankings presented provide

a measure of relative distance between countries in the final

composite rank). Instead of averaging raw ranks for composite

indices (environmental impact and human population pressure),

we took the back-transformed mean of the log10-transformed rank

value to avoid the undue influence of outliers (analogous to a

geometric mean) [8]:

mean rank~10
Pk

i~1

log10 rank xið Þð Þ
k

where xi = environmental metric i (for k metrics considered). For

human population growth, we considered the back-transformed

mean of the log10-transformed ranks derived from population

density and population growth. For the environmental impact

ranks (absolute and proportional), countries were removed if three

or more indices contained no data; the final ranking was

reasonably insensitive to the choice of the number of missing

values allowed (Tables S1, S2, S3).

Correlations with other ranking indices. To determine

the degree of concordance between the composite environmental

degradation rank and other global indicators, we examined the

relationship between our ranking and that derived from four other

indicators covering a broad range of countries: the Environmental

Performance Index (EPI), the Human Development Index (HDI),

the Genuine Savings Index (GSI) and the Environmental

Footprint (EF) index (other indices were excluded due to poor

global coverage). General descriptions of the EPI, HDI, GSI and

EF are provided in File S2. Ranks were compiled for each

indicator and compared using Kendall’s t and concordance tests

as described above.

Correlations with socio-economic variables. We

examined bivariate correlations among ranks using Kendall’s t
for ranked data, and concordance among composite variables was

assessed using Kendall’s W. We tested the environmental Kuznets

curve (EKC) hypothesis [10] directly by contrasting three models

Figure 4. Structural equation models for environmental impact ranks. Top Bayesian Information Criterion- (BIC-) ranked structural equation
models for the (i) proportional environmental impact rank (Model A; Table 4i) and (ii) absolute environmental impact rank (Model D; Table 4ii). Wealth
(purchasing power parity-adjusted Gross National Income) had the highest correlation with proportional and absolute rank, with some additional
contribution of total human population size to the absolute rank. Numbers shown are path coefficients with associated Type I error (P) probabilities.
See full model rankings in Table 4.
doi:10.1371/journal.pone.0010440.g004
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to the proportional rank versus the log10-transformed per capita

purchasing power parity-adjusted GNI: (1) the intercept-only

model, (2) a log-linear model (i.e., linear on the log10 scale) and (3)

a log-quadratic model. Evidence for the log-quadratic model

would support the EKC hypothesis. We could not apply non-

linear models to the fully ranked data; hence, it was necessary to

compare the geometric mean proportional ranks and the raw

wealth data (we used the log10 scale due to highly right-skewed per

capita GNI-PPP). The Bayesian information criterion (BIC) was

used to assign relative strengths of evidence to the different

candidate models. The relative likelihoods of candidate models

were calculated using BIC weights [59,60], with the weight (wBIC)

of any particular model varying from 0 (no support) to 1 (complete

support) relative to the entire model set.

Identifying the causative aspect of socio-economic correlates is

problematic because, while socioeconomic variables are correlated

with environmental degradation, some are also inter-correlated

(see Table S9). To overcome this problem, we used structural

equation models (SEM) that involve partitioning simple correla-

tions among a set of variables according to each hypothesized

causal link (also commonly known as ‘path’ models) to test the

descriptive ability of different models [61]. First, we built six

candidate path models based on logic and previous studies to

examine the socio-economic drivers of environmental impact (see

also Fig. S4). The relationship between socio-economic variables is

kept constant in all six models that can consider a maximum of

two contributing correlates to environmental impact rank. Total

human population (used instead of population density or growth

rate because neither density nor growth rate is correlated with

total population rank) is correlated with total wealth (Table S9),

but imperfectly, so the inclusion of this path reveals whether

population has any additional explanatory power after taking

wealth into account. We also hypothesized that high total human

population drives ineffective governance because high populations

place a strain on governmental resources, thus increasing a

country’s susceptibility to low governance quality. Lastly, we

hypothesized that good governance is a driver of higher wealth

[62].

We fitted the six candidate path models (Fig. S4) to the data

using the sem function implemented in R 2.7.2 [63]. We used BIC

weights to assign relative strength of evidence to the candidate

models. The goodness-of-fit of the candidate models to the data

was evaluated using the adjusted goodness-of-fit statistic provided

by the sem function.

Supporting Information

File S1

Found at: doi:10.1371/journal.pone.0010440.s001 (0.07 MB

RTF)

File S2

Found at: doi:10.1371/journal.pone.0010440.s002 (0.08 MB

RTF)

Table S1 Twenty worst-ranked countries by proportional

composite environmental (pENV) rank (lower ranks = higher

negative impact) when only two environmental variables were

allowed to be missing (cf. three missing for rankings in main text

and four missing in Table S2). Shown are country names and

codes, population density (PD) rank, population growth rate (PGR)

rank, governance quality (GOV) rank, Gross National Income

(GNI) rank, natural forest loss (NFL) rank, natural habitat

conversion (HBC) rank, marine captures (MC) rank, fertilizer

use (FER) rank, water pollution (WTP) rank, proportion of

threatened species (PTHR) rank, and carbon emissions (CO2)

rank. Constituent variables used to create the pENV are in

boldface. See text for details. Missing values denoted by ‘-’.

Found at: doi:10.1371/journal.pone.0010440.s003 (0.17 MB

RTF)

Table S2 Twenty worst-ranked countries by proportional

composite environmental (pENV) rank (lower ranks = higher

negative impact) when four environmental variables were allowed

to be missing (cf. three missing for rankings in main text and two

missing in Table S1). Shown are country names and codes,

population density (PD) rank, population growth rate (PGR) rank,

governance quality (GOV) rank, Gross National Income (GNI)

rank, natural forest loss (NFL) rank, natural habitat conversion

(HBC) rank, marine captures (MC) rank, fertilizer use (FER) rank,

water pollution (WTP) rank, proportion of threatened species

(PTHR) rank, and carbon emissions (CO2) rank. Constituent

variables used to create the pENV are in boldface. See text for

details. Missing values denoted by ‘-’.

Found at: doi:10.1371/journal.pone.0010440.s004 (0.17 MB

RTF)

Table S3 Twenty top-ranked countries by proportional com-

posite environmental (pENV) rank (higher ranks = lower negative

impact) when only two environmental variables were allowed to be

missing (cf. three missing for rankings in main text and four

missing in Table S4). Shown are country names and codes,

population density (PD) rank, population growth rate (PGR) rank,

governance quality (GOV) rank, Gross National Income (GNI)

rank, natural forest loss (NFL) rank, natural habitat conversion

(HBC) rank, marine captures (MC) rank, fertilizer use (FER) rank,

water pollution (WTP) rank, proportion of threatened species

(PTHR) rank, and carbon emissions (CO2) rank. Constituent

variables used to create the pENV are in boldface. See text for

details. Missing values denoted by ‘-’.

Found at: doi:10.1371/journal.pone.0010440.s005 (0.17 MB

RTF)

Table S4 Twenty top-ranked countries by proportional com-

posite environmental (pENV) rank (higher ranks = lower negative

impact) when four environmental variables were allowed to be

missing (cf. three missing for rankings in main text and two missing

in Table S3). Shown are country names and codes, population

density (PD) rank, population growth rate (PGR) rank, governance

quality (GOV) rank, Gross National Income (GNI) rank, natural

forest loss (NFL) rank, natural habitat conversion (HBC) rank,

marine captures (MC) rank, fertilizer use (FER) rank, water

pollution (WTP) rank, proportion of threatened species (PTHR)

rank, and carbon emissions (CO2) rank. Constituent variables

used to create the pENV are in boldface. See text for details.

Missing values denoted by ‘-’.

Found at: doi:10.1371/journal.pone.0010440.s006 (0.17 MB

RTF)

Table S5 List of 49 missing countries from the proportional

environmental impact ranking; minimum criterion for inclusion

was #3 missing environmental variable values.

Found at: doi:10.1371/journal.pone.0010440.s007 (0.09 MB

RTF)

Table S6 Full list of 179 countries ranked by proportional

composite environmental (pENV) rank (lower ranks = higher

negative impact). Shown are country names and codes, population

density (PD) rank, population growth rate (PGR) rank, governance

quality (GOV) rank, Gross National Income (GNI) rank, natural

forest loss (NFL) rank, natural habitat conversion (HBC) rank,

marine captures (MC) rank, fertilizer use (FER) rank, water
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pollution (WTP) rank, proportion of threatened species (PTHR)

rank, and carbon emissions (CO2) rank. Constituent variables

used to create the pENV are shaded. See text for details. Missing

values denoted by ‘-’.

Found at: doi:10.1371/journal.pone.0010440.s008 (0.83 MB

RTF)

Table S7 List of 57 missing countries from the absolute

environmental impact ranking; minimum criterion for inclusion

was #3 missing environmental variable values.

Found at: doi:10.1371/journal.pone.0010440.s009 (0.10 MB

RTF)

Table S8 Full list of 171 countries ranked by absolute composite

environmental (aENV) rank (lower ranks = higher negative

impact). Shown are country names and codes, population density

(PD) rank, population growth rate (PGR) rank, governance quality

(GOV) rank, Gross National Income (GNI) rank, natural forest

loss (NFL) rank, natural habitat conversion (HBC) rank, marine

captures (MC) rank, fertilizer use (FER) rank, water pollution

(WTP) rank, proportion of threatened species (PTHR) rank, and

carbon emissions (CO2) rank. Constituent variables used to create

the aENV are shaded. See text for details. Missing values denoted

by ‘-’.

Found at: doi:10.1371/journal.pone.0010440.s010 (0.82 MB

RTF)

Table S9 Kendall’s rank correlation (t) matrix for socio-

economic ranks: POP = human population size (2005), POPD =

human population density (2005), PGR = human population

growth rate (1990–2005), GNI = purchasing power parity-adjusted

Gross National Income, GOV = governance quality. Lower-left

quadrant values are Kendall’s t; upper-right quadrant values are

Type I error probabilities for the coefficients. Boldface t indicate

sufficient evidence of a relationship.

Found at: doi:10.1371/journal.pone.0010440.s011 (0.09 MB

RTF)

Figure S1 Rank correlations between existing environmental

indicators. EPI = Environmental Performance Index, HDI =

Human Development Index, GSI = Genuine Savings Index,

EF = Ecological Footprint [reviewed in 8].

Found at: doi:10.1371/journal.pone.0010440.s012 (0.83 MB TIF)

Figure S2 Rank correlations between proportional environmen-

tal impact (pENV) ranks and four existing environmental indicator

ranks. EPI = Environmental Performance Index, HDI = Human

Development Index, GSI = Genuine Savings Index, EF = Ecolo-

gical Footprint [reviewed in 8].

Found at: doi:10.1371/journal.pone.0010440.s013 (0.86 MB TIF)

Figure S3 World distribution of socio-economic variables.

Relative distributions of global human population (2005) (top

panel: dark red = highest population), wealth rank (middle panel:

dark blue = wealthiest based on purchasing power parity-adjusted

Gross National Income) and governance quality rank (bottom

panel: dark green = highest quality) among countries.

Found at: doi:10.1371/journal.pone.0010440.s014 (1.44 MB TIF)

Figure S4 Path diagrams for the seven competing structural

equation models A to G. Single-headed arrows represent

hypothesized direct effects of one variable on another.

Found at: doi:10.1371/journal.pone.0010440.s015 (1.90 MB TIF)
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