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Abstract

Interferon regulatory factor 3 (IRF3) is important for innate antiviral responses; accordingly, many viruses target and
inactivate IRF3. The ability of the Herpes simplex virus type 1 (HSV-1) immediate early protein ICP0 to inhibit IRF3 is
controversial and has not been studied solely in the context of a wild type HSV-1 infection. Discrepancies in the literature
surround the mechanism by which ICP0 antagonizes the IRF3 pathway, the cellular localization of ICP0 inhibitory activity
and the ability of ICP0 to interfere with interferon and interferon-stimulated gene induction. In this study, we set out to
investigate the role of ICP0 localization and the requirement of the proteasome during the inhibition of IRF3 activation
within the context of an HSV-1 infection. Collectively, the results presented herein demonstrate that incoming wild type
HSV-1 activates IRF3 and that de novo produced ICP0 prevents sustained IRF3 activation following its translocation from the
nucleus to the cytoplasm. While previous studies implicate the E3 ubiquitin ligase domain of ICP0 in mediating its biological
functions, including the inhibition of IRF3, we show that cytoplasmic ICP0 does not require the proteasome for this activity.
Instead, proteasome function is required to localize ICP0 to the cytoplasm where it mediates its inhibitory effect
independent of E3 ubiquitin ligase activity. The importance of these findings is discussed within the context of an HSV-1
infection.
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Introduction

Interferon (IFN) regulatory factor 3 (IRF3) is a constitutively

expressed transcription factor that controls the expression of IFN

and IFN-stimulated genes (ISGs) following virus recognition. All

identified innate immune receptors are capable of signaling

through IRF3 to mediate their antiviral effects, including toll-like

receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like

receptors and DNA sensors such as DAI [1,2]. In addition, the

entry of enveloped virus particles, such as HSV-1, elicits an IRF3-

dependent but IFN-independent cellular antiviral response

[3,4,5,6]. As a result, there are several avenues the host defense

machinery can employ to activate IRF3-mediated antiviral

responses. The activation of IRF3 has been intensively studied

and is reviewed in detail elsewhere [7,8,9]. The hallmarks of IRF3

activation are phosphorylation by TANK-binding kinase-1 (TBK-

1) or I kappa B kinase e (IKKe), dimerization and nuclear

translocation. Following its activation, IRF3 is degraded via the

ubiquitin-proteasome pathway [10,11]. The critical nature of

IRF3 was shown in studies where its absence results in abrogation

of innate antiviral responses [4,12,13]. Accordingly, diverse viruses

encode proteins that inhibit IRF3 activation [14].

HSV-1 is an enveloped, dsDNA virus that is capable of

undergoing both lytic and latent infections within its host. The

success of HSV-1 as a human pathogen can, in part, be attributed

to the temporal expression of proteins that combat host antiviral

barriers. ICP0 is a multifunctional, immediate-early protein that

plays a pivotal role during lytic and latent infections [15,16,17]

due in part to evasion of host IFN responses [18]. Upon infection

with HSV-1, ICP0 localizes to the nucleus (1–4 hours), then the

cytoplasm (6–8 hours) and then shuttles between the two

compartments [19,20,21,22]. ICP0 interacts with several cellular

and viral proteins, ultimately mediating its effects by regulating

gene expression, cell cycle progression and protein expression

[16,17].

ICP0 possesses several functional domains including a RING

finger domain which mediates E3 ubiquitin ligase activity

[23,24,25] and is thought to be required for all but one of ICP0’s

known functions, namely its ability to modulate rRNA degrada-

tion [26]. Experimentally, the E3 ubiquitin ligase activity of ICP0

is assessed through the use of RING finger mutants such as FXE

[27] or by employing proteasome inhibitors such as MG132. As

ICP0 is thought to function primarily within the nucleus, the role

of localization in dictating the function of ICP0 has been

understudied. However, ICP0 undergoes various posttranslational

modifications within different subcellular compartments

[28,29,30,31], suggesting that ICP0 may possess different activities

within different cellular locations.

With respect to evasion of host innate responses, ICP0 was first

shown to interfere with IFN-mediated inhibition of HSV-1

transcription [5,32]. Subsequent studies found that amongst all

immediate-early genes, ICP0 is responsible for dampening the
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production of IFN and ISGs during infection [33,34]. Although

experimentally the RING finger of ICP0 was required for this

activity, degradation of known IRF3 components was not

observed. Studies employing a co-infection model with HSV-1

and Sendai virus (SeV) found that ICP0 inhibited IRF3 nuclear

translocation and mediated its degradation [35,36]. Within the

same model, nuclear ICP0 sequestered IRF3 and CBP/p300 away

from host chromatin, preventing ISG and IFN induction [35]. In

an apparent contradiction, expression of ICP0 from a tetracycline-

inducible plasmid system, which restricts ICP0 expression to the

nucleus, failed to block ISG induction following IFN or dsRNA

treatment [37].

Given the apparent contradictory results regarding the role of

ICP0 in combating IRF3-mediated responses, we investigated the

mechanism by which ICP0 blocks IRF3 activity within the context

of an HSV-1 infection. We employed a non-immortalized, non-

transformed primary fibroblast cell line that is fully competent for

IRF3 signaling and is susceptible and permissive to infection by

HSV-1. This approach avoids the complications that result from

using reporter assays or co-infection models and takes into account

the recent appreciation that diverse viruses and viral ligands

differentially modify and activate IRF3 [3,38,39] and that

interferon pathways are altered following cellular immortalization

[40]. We carefully monitored the localization of ICP0 as recent

studies have begun to address the biological relevance of its

localization during the course of an HSV-1 infection

[19,35,37,41,42]. IRF3 activation was monitored by native

western blots to examine IRF3 dimerization, phospho-specific

antibodies to assess IRF3 phosphorylation and microscopy to

monitor IRF3 localization. ISG induction was examined to

corroborate the activation status of IRF3 following HSV-1

infection. Collectively, the data presented herein demonstrate that

IRF3 is activated upon infection with WT HSV-1. However,

during the course of infection ICP0 inhibits IRF3 phosphorylation,

dimerization and nuclear translocation when localized in the

cytoplasm but has no apparent inhibitory activity when located

within the nucleus. Surprisingly, our data also suggest that the E3

ubiquitin ligase activity associated with the RING finger domain is

not directly required to inhibit the activation of IRF3 but instead

plays a critical role in modulating the cellular localization of ICP0.

Results

ICP0 inhibits IRF3 activation and ISG induction at later
stages of infection

Previously, characterization of the cellular response to envel-

oped virus particle entry utilized cycloheximide, UV-inactivation

or genetic inactivation to study IRF3 function in the absence of

virus replication and/or de novo protein production. To assess IRF3

activation during the course of a WT HSV-1 infection and

examine the effects of ICP0, we conducted a time course

experiment examining IRF3 dimerization and nuclear transloca-

tion following infection with WT HSV-1 and a corresponding

ICP0-null mutant in non-immortalized, non-transformed human

fibroblasts. To correlate IRF3 activation with a functional antiviral

response, induction of ISG56 was examined by western blot

analysis, as this protein is induced rapidly and efficiently during an

IRF3-dependent antiviral response [12,43]. Infection with SeV

served as a positive control for IRF3 activation and ISG56

induction [43,44].

IRF3 dimers were absent in mock-infected samples but present

in both the cytoplasmic and nuclear fractions following SeV

infection (Figure 1A). Upon infection with WT HSV-1 (strain F),

nuclear IRF3 dimers were observed at 4 and 6 hours post-

infection (hpi) but diminished at later times. Following infection

with a corresponding ICP0-null HSV-1 (R7910), IRF3 dimeriza-

tion and nuclear translocation were sustained up to 8 hours. In

agreement with the activation of IRF3, ISG56 induction was

detected following infection with SeV or ICP0-null HSV-1 but not

with WT HSV-1 (Figure 1B). Similar results were observed with

additional strains of HSV-1, namely KOS and 17syn, and their

ICP0 null counterparts, n212 and dl1403, respectively (data not

shown). Similar to previous studies [19,21,22], ICP0 was found to

initially localize to the nucleus and subsequently translocate to the

cytoplasm. Immunofluorescence microscopy performed in parallel

with the western blots confirmed the cellular localization of ICP0

and the activation status of IRF3 following WT HSV-1 infection

(Figure 1C). In summary, these results demonstrate that upon

infection with WT HSV-1, IRF3 is activated but is subsequently

inhibited by ICP0 at a time point that correlates with its

cytoplasmic localization. Furthermore, the transient induction of

IRF3 following infection with WT HSV-1 is insufficient to

promote accumulation of ISG56 protein.

Cytoplasmic, but not nuclear, ICP0 mediates the
inhibition of IRF3

To date, the biological activities ascribed to ICP0 occur early in

infection when ICP0 is localized to the nucleus. Despite evidence

that ICP0 blocks IRF3 activity [34,35,36], nuclear restricted ICP0

produced by plasmid transfection fails to dampen IRF3-mediated

IFN production [37]. Given our finding that inhibition of IRF3

activation during a WT HSV-1 infection correlates with ICP0

cytoplasmic localization, we employed different experimental

systems to limit the subcellular localization of ICP0 during

HSV-1 infection to address the hypothesis that cytoplasmic ICP0

inhibits IRF3 activation. In this regard, IRF3 activation was

examined following infection with HSV-1 mutant viruses that

restrict ICP0 expression to either the nucleus (R7914; F strain) or

the cytoplasm (D8; 17syn strain) or following HSV-1 infection in

the presence of chemical inhibitors that restrict the expression of

ICP0 within the nuclear compartment. Lastly, since previous

studies examined the ability of ICP0 to inhibit IRF3 following

activation by SeV [35,36] or polyI:C [37], we investigated whether

ICP0 localization plays a role in its ability to inhibit IRF3 activated

by different stimuli.

Infection of fibroblasts with R7914 or D8 resulted in the

exclusive nuclear and cytoplasmic localization of ICP0, respec-

tively (Figure 2), in agreement with previous studies [19] [45]. To

confirm that ICP0 expressed from these mutants retained their

predicted biological function, we measured the ability of each

mutant virus to degrade promeylocytic leukemia protein (PML), as

PML degradation is a well-characterized feature of nuclear ICP0.

As expected, infection with R7914 led to the degradation of PML

[19] while infection with D8 did not [45] (Figure 3). With respect

to IRF3 activation, infection with D8 and R7914 mirrored that of

WT and ICP0-null virus, respectively, in that IRF3 phosphory-

lation, dimerization and nuclear translocation were inhibited by

cytoplasmic ICP0 only (Figure 4A and B). Although the kinetics of

IRF3 dimerization between the ICP0-null mutant and R7914

appear to differ slightly, this is not a consistent observation (data

not shown). Similar effects on IRF3 localization were observed

following infection of two additional human primary fibroblasts

cells (MRC-5 and BJ; data not shown). Interestingly, the early

activation of IRF3 observed with WT HSV-1 (Figure 1) was not

seen following infection with D8, likely owing to the early and

exclusive cytoplasmic localization of ICP0 from this mutant. The

rescued version of R7914, namely R7915 [46], demonstrated the

same properties as the WT F strain HSV-1 in all respects (data not

Cytoplasmic ICP0 Blocks IRF3
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shown). In addition, experiments conducted with the D8 parental

strain (17syn) demonstrated similar results to the F strain virus

(data not shown). Although phosphorylation of IRF3 precedes

dimerization and nuclear translocation [10,47,48], we were only

able to efficiently detect phospho-IRF3 at 5 hpi. The sustained

IRF3 activation observed following either ICP0-null or R7914

infections correlated with ISG56 production (Figure 4C). We

consistently observed weak detection of ICP0 on western blots

following infection with the R7914 mutant but intense levels

following D8 infection (Figure 4C). This difference in ICP0

detection was determined to result from the protein extraction

protocol employed in our studies, which favored the isolation of

cytoplasmic proteins (Figure S1). In summary, these data support

the hypothesis that cytoplasmic and not nuclear ICP0 is

responsible for inhibiting IRF3 activation during HSV-1 infection.

Proteasome inhibitors, such as MG132 and lactacystin, as well

as the viral DNA replication inhibitor phosphonoacetic acid

(PAA), mediate ICP0 nuclear localization and retention

[19,25,49]. These reagents were used to confirm the importance

of ICP0 localization with respect to IRF3 inhibition. Nuclear

retention of WT ICP0 by MG132 as observed in Figure 3, panel

II, prevented ICP0 from blocking IRF3 activation and

subsequent ISG56 induction (Figure 5A and B). Similar results

were observed with lactacystin (data not shown). Nuclear

retention of ICP0 by PAA also blocked the inhibition of IRF3-

mediated ISG induction (Figure 5C). In summary, these results

further support our hypothesis that cytoplasmic but not nuclear

ICP0 inhibits IRF3 activation. Since PAA retains ICP0 within

the nucleus in a proteasome-independent manner [50,51,52,53],

this observation suggests that in the presence of WT ICP0 and a

functional proteasome, nuclear retention of ICP0 restricts its

ability to block IRF3 activation during the early stages of an

HSV-1 infection.

Figure 2. ICP0 expressed from the D8 mutant localizes
exclusively in the cytoplasm. HEL cells were infected with WT
HSV-1 (F strain), R7914 or D8 for 8 hours. ICP0 localization was
monitored by immunofluorescence microscopy. Cell nuclei were
hoechst stained (DAPI).
doi:10.1371/journal.pone.0010428.g002

Figure 1. ICP0 inhibits the sustained activation of IRF3 during the later stages of an HSV-1 infection. (A) HEL cells were mock treated,
infected with WT HSV-1 (strain F) or a corresponding ICP0 null virus (R7910). Cytoplasmic and nuclear protein extracts were resolved using native
western blotting to assess IRF3 dimerization. (B) Western blot analysis of whole cell protein lysates collected from HEL cells after 8 hours of infection
as indicated. (C) Immunofluorescence microscopy examining ICP0 and IRF3 subcellular localization following a time course infection of HEL cells with
WT HSV-1. Cell nuclei were hoechst stained (DAPI). A representative field of view is shown for mock treated cells. In all cases, SeV served as a positive
control for activation of the IRF3 pathway.
doi:10.1371/journal.pone.0010428.g001
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Studies utilizing a co-infection model or an inducible ICP0

expression model provide contradictory evidence regarding the

ability of ICP0 to block IRF3 activation by an exogenous source

[35,37]. As a result, we examine the requirement of ICP0

localization during the inhibition of SeV- or polyI:C-mediated

IRF3 activation using the ICP0 mutant viruses, R7914 and D8.

Fibroblasts were pre-infected with either WT or ICP0 mutant

HSV-1, and then subsequently treated with SeV or polyI:C for

8 hours before IRF3 activation was examined. Despite a higher

overall level of IRF3 activation following SeV infection, WT and

D8 infection blocked ISG56 production whereas ICP0-null and

R7914 infection did not (Figure 5D). Similar results were observed

when cells were treated with polyI:C (Figure 5E), with the

exception that phospho-IRF3 was not readily observed following

polyI:C treatment, consistent with published data [39]. Collec-

tively, these results demonstrate a requirement for ICP0

cytoplasmic localization during the inhibition of IRF3 by a variety

of exogenous stimuli.

Proteasome activity modulates ICP0 localization but is
not required for ICP0-mediated inhibition of IRF3

Since inhibition of cellular proteasome activity precludes ICP0

E3 ubiquitin ligase activity and restricts the localization of ICP0 to

the nucleus [19,49], we tested the effect of MG132 treatment on

the activity of cytoplasmic ICP0. Following infection of fibroblasts

with D8, MG132 did not alter the cytoplasmic localization of

ICP0 or the ability of cytoplasmic ICP0 to block IRF3 nuclear

accumulation (Figure 6A) or ISG56 induction (Figure 6B). The

weak staining of IRF3 following D8 infection is consistent with

studies suggesting that antibody detection of IRF3 favors its

activated forms [35,36,54,55]. As expected, no difference in ICP0

or IRF3 localization or ISG induction was observed following

infection with R7914 in the presence or absence of MG132. We

verified that the concentration of MG132 used effectively blocked

proteasome activity by monitoring ICP0-mediated PML degrada-

tion [23,25,49] (Figure 3, panel II).

To further confirm that proteasome activity does not play a

direct role in inhibiting IRF3 activation by ICP0, we examined the

expression of IRF3 pathway constituents following WT and ICP0-

null HSV-1 infection. As shown in Figure 6C, expression of IRF3,

TBK-1, IKKe, DDX3 or HSP90 remain unchanged by the

presence of ICP0 during infection. These data support and extend

our original findings [33]. Collectively, these results suggest that

the E3 ubiquitin ligase activity of ICP0 is not directly required for

inhibiting IRF3-mediated ISG induction but rather functional

proteasome activity is required to ensure proper ICP0 cellular

localization.

Discussion

Our current study highlights the importance of ICP0 subcellular

localization and delineates the necessity of the proteasome during

the inhibition of IRF3-mediated ISG induction. ICP0 is classically

thought to perform the majority of its functions early in infection

while localized in the nucleus [15,16,17]. To the best of our

knowledge, a biological role for ICP0 in the cytoplasm has only

been predicted based on the interaction and modification of

elongation factor 1 d [21]. In our current study, we found that

cytoplasmic, but not nuclear, ICP0 inhibits IRF3-mediated ISG

induction. This conclusion is based on the cumulative findings

from diverse experimental systems, which included the use of

genetic mutants or chemical inhibitors that limit the subcellular

localization of ICP0. Utilizing multiple approaches helped

minimize the experimental caveats associated with viral mutants

and chemical inhibitors. Collectively, these experiments provide

evidence that in addition to the nuclear functions of ICP0,

cytoplasmic roles for ICP0 also exist.

Several studies have established that the entry of HSV-1 into

host cells elicits activation of an IRF3-dependent antiviral response

[4,5,6]. This response was demonstrated using UV-treated virus

particles [3,5,56,57], cycloheximide [4,6], glycoprotein-deficient

mutants [4,5] or replication-deficient amplicon vectors [55]. In

our current study, however, we observed activation of endogenous

IRF3 during the early stages of infection with WT HSV-1 in

human fibroblasts. These results support and extend a previous

report by Preston and colleagues where they observed an IRF3-

dependent response in selective fibroblast cell lines following WT

HSV-1 infection [4]. Collectively, our studies support the idea that

Figure 3. Inhibition of the proteasome precludes PML degradation during WT or ICP0 mutant HSV-1 infection. HEL cells were treated
with WT HSV-1 or ICP0 mutant viruses, R7914 or D8, for 8 hours in the presence or absence of MG132. ICP0 and PML expression was examined using
immunofluorescence microscopy. Cell nuclei were labelled with a hoechst stain (DAPI). A representative field of view is shown for mock treated cells.
doi:10.1371/journal.pone.0010428.g003

Cytoplasmic ICP0 Blocks IRF3
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non-immune cells such as fibroblasts are capable of mounting

innate antiviral responses against WT HSV-1 during the early

stages of infection. We believe that this response is biologically

relevant, particularly under conditions of low level virus exposure

[57].

In agreement with the early activation of IRF3, we sometimes

detect small amounts of ISGs following a WT HSV-1 infection

(e.g. Figure 4C), a finding that others have reported as well [4].

This level of ISG induction, however, is insufficient to combat a

high multiplicity infection. Accordingly, we propose that the

cellular response to HSV-1 elicits a small amount of ISGs due to

the early activation of IRF3 but accumulating cytoplasmic ICP0

prevents the sustained activation of IRF3, thus limiting the

production of ISGs and offering a survival advantage to the virus.

However, under conditions where the MOI of HSV-1 is low, the

production of ISGs that ensues may outweigh the inhibitory effects

of a sub-threshold amount of ICP0, thereby giving the host a

survival advantage. The interaction between virus and host is a

dynamic process, and a successful outcome will be determined by

the species that is able to endure the battle between the production

of cellular antiviral factors and viral immune evasion proteins.

It is intriguing that ICP0 delays inhibition of the IRF3 pathway

until it is localized to the cytoplasm. Of interest, Everett and

colleagues observed that depletion of PML, but not IRF3, increased

plaque formation with an ICP0-deleted HSV-1 [58]. Their data

suggests that PML is predominantly responsible for repressing

HSV-1 infection at the earliest stages of infection. During the course

of infection, ICP0 circumvents PML-mediated repression while

localized within the nucleus [49,59,60]. Data presented with R7914

has shown that nuclear-restricted ICP0 is capable of degrading

PML [19] but under the same conditions we failed to observe an

inhibition of IRF3 activation, suggesting that the inability to localize

to the cytoplasm precludes the inhibition of IRF3 but not PML.

Taken together, both PML and IRF3 likely play a role in limiting

HSV-1 infection but they appear to act at different times during the

course of infection, and in turn, HSV-1 counters these respective

responses accordingly. Consistent with this hypothesis, we found

that D8, which retains IRF3 inhibitory activity but not PML

inhibitory activity, and R7914, which retains PML inhibitory

activity but not IRF3 inhibitory activity, displayed similar growth

kinetics, which were reduced relative to parental HSV-1, in primary

human fibroblasts (data not shown). However, to truly appreciate

Figure 4. Cytoplasmic but not nuclear ICP0 inhibits IRF3 activation and subsequent ISG induction. (A) HEL cells were infected with WT
HSV-1 (strain F), ICP0 null HSV-1 (R7910), R7914, or D8 for the indicated times. Cytoplasmic and nuclear protein extracts were resolved using native
western blots to examine IRF3 dimerization. (B) HEL cells were infected as denoted in part A. Total and phospho-IRF3 (ser-396) levels were examined
by western blotting. (C) ISG56 and ICP0 expression were measured using western blot analysis following an 8 hour infection as indicated. In all cases,
SeV served as a positive control for activation of the IRF3 pathway.
doi:10.1371/journal.pone.0010428.g004

Cytoplasmic ICP0 Blocks IRF3
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the role of host innate immune factors in virus pathogenesis, the use

of relevant model systems are required. While gene deleted cell lines

are useful tools for in vitro analysis, they often do not recapitulate

cellular events within a host. For example, although IRF3-null mice

were significantly more vulnerable to viral infection than WT mice,

fibroblasts harvested from IRF3-null mice displayed normal

antiviral responses [61]. Despite considerable effort, no murine

alphaherpesviruses have been identified [62], precluding the use of

mice as a relevant model system to study the role of ICP0 in

herpesvirus pathogenesis.

Previous studies argued a necessity for the proteasome during

ICP0-mediated inhibition of ISG induction [33,34], and our

results do not argue this point. However, previous studies did not

investigate the role of the proteasome in dictating ICP0

localization versus mediating E3 ubiquitin ligase activity. We

failed to observe degradation of any known components of the

IRF3 pathway following WT infection, either in this study or a

previous report [33], suggesting that proteasome function may be

indirect. Data from the present study support the hypothesis that

the E3 ubiquitin ligase activity of ICP0 is required for the

appropriate subcellular localization of ICP0 during the inhibition

of IRF3 activation. Consistent with this observation, we previously

demonstrated that the ICP0 RING finger mutant FXE was unable

to inhibit IRF3-mediated ISG induction [33]. While we did not

monitor the localization of ICP0 within our previous study, others

have shown that ICP0 RING finger mutants localize predomi-

nantly within the nucleus [22,63]. Therefore, inappropriate

cellular localization of ICP0 RING finger mutants likely explains

this observation. In our current study, we confirmed that the

RING finger mutant FXE was unable to inhibit IRF3 activation

and predominantly localized to the nucleus, consistent with

previous reports (data not shown). Collectively, these data suggest

that ICP0 possesses biological activities that are independent of its

RING finger domain. Accordingly, studies performed with

proteasome inhibitors in the context of an HSV-1 infection should

consider both ICP0 localization and E3 ubiquitin ligase activity.

Although previous reports investigating the ability of ICP0 to

block IRF3 activation and subsequent ISG induction appear

controversial [35,36,37], ICP0 localization varied within these

different model systems. Our data agrees with two of the studies, in

that cytoplasmic, but not nuclear, ICP0 blocks IRF3 activation.

Our observations differ, however, when considering the mecha-

Figure 5. Nuclear retention of ICP0 blocks inhibition of IRF3 activation and ISG induction during WT infection. (A) HEL cells were mock
treated or infected with WT HSV-1 for 8 hours in the absence or presence of MG132. IRF3 dimerization was examined by native western blotting in
cytoplasmic and nuclear protein extracts. (B) Whole cell lysates were collected following an 8 hour infection as indicated. ISG56 levels were measured
by western blot. In parts A & B, SeV was employed as a positive control for the activation of IRF3. (C) ISG56 expression was examined in protein lysates
collected from HEL fibroblasts following an 8 hour infection with WT HSV-1 in the absence or presence of PAA. (D and E) Cytoplasmic ICP0 is capable
of inhibiting activation of the IRF3 pathway following treatment with SeV or polyI:C. HEL cells were infected with WT HSV-1 or an ICP0 mutant virus
for 12 hours and then treated with SeV (D) or polyI:C (E) for 8 hours. Expression of the indicated target proteins was examined by western blot.
doi:10.1371/journal.pone.0010428.g005

Cytoplasmic ICP0 Blocks IRF3
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nism of ICP0 activity. Whereas in a SeV co-infection model, ICP0

appeared to elicit IRF3 degradation, we failed to observe

degradation of any known components of the IRF3 pathway in

the context of an HSV-1 infection. Furthermore, proteasome

activity was not required for cytoplasmic ICP0 activity. As SeV

induces the proteasome-mediated degradation of IRF3 at late

times post-infection [10,11], it is likely that these differences stem

from the model systems used. Recent data has brought to light

differences in IRF3 activation following recognition of different

pathogenic stimuli [38,39,64]. Despite the differences in our

conclusions, our data agree with the idea that ICP0 is capable of

inhibiting IRF3 activation by exogenous stimuli such as SeV or

polyI:C. These data suggest that the component of the IRF3

pathway inhibited by ICP0 is common to the signaling cascades

activated by each of the stimuli tested (HSV-1, SeV, or polyI:C),

and most likely occurs upstream of IRF3 phosphorylation.

At this time, the exact mechanism utilized by ICP0 during the

inhibition of IRF3 activation remains unclear. Given its role as a

transcriptional activator, one possible mechanism may include that

ICP0 facilitates the expression of a late viral gene product that in

turn elicits IRF3 inhibitory effects. However, this possibility seems

unlikely given that ICP0 is not essential for viral gene expression at

the MOIs employed in our study [65], yet ICP0-null mutants

failed to inhibit IRF3 activation. Accordingly, we failed to identify

significant differences in early (ICP8) or late (gB) viral gene

expression between WT and ICP0 null HSV-1 at the MOIs used

in our study (Data not shown). In agreement with other studies

[33,34], ICP0 is necessary and sufficient to inhibit IRF3 activation

during WT HSV-1 infection. We attempted to verify our results

using ICP0 expression plasmids but were limited in that over-

expression of WT or mutant ICP0 localized within the nucleus of

fibroblasts (including the D8 mutant) and had strong toxic effects

Figure 6. Proteasome activity facilitates appropriate subcellular localization of ICP0 and not degradation of IRF3 constituents. (A)
Immunofluorescence microscopy was used to examine the localization of ICP0 and IRF3 in HEL cells following an 8 hour infection with R7914 or D8 in
the absence or presence of MG132. (B) HEL cells were treated as described in part A and ISG56 expression was assessed by western blot analysis. (C)
The expression of IRF3 pathway constituents was examined by western blot analysis following a time course infection of HEL cells with WT HSV-1
(strain F) or an ICP0 null virus (R7910). SeV was employed as a positive control for the activation of IRF3.
doi:10.1371/journal.pone.0010428.g006

Cytoplasmic ICP0 Blocks IRF3
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in this non-immortalized cell line (Figure S2). Similar observations

of nuclear retention of exogenously delivered ICP0 have been

reported elsewhere [37,45], and likely reflect the growing evidence

that additional viral proteins are required for the transition of

ICP0 from the nucleus to the cytoplasm during viral infection [19].

We are currently investigating the mechanism employed by

cytoplasmic ICP0 to inhibit IRF3 activation. Given that ICP0 does

not lead to degradation of IRF3 pathway constituents, we

speculate that ICP0 may inhibit IRF3 activation in a manner

similar to USP7-mediated inhibition of TLR responses [41],

wherein ICP0 recruits a protein that in turn elicits the inhibitory

effect. Experiments are being conducted to identify cytoplasmic

partners of ICP0 that may carry out such a role. Another avenue

of investigation centers on the knowledge that ICP0 is highly

modified as it has been shown to homodimerize [66,67] as well as

undergo phosphorylation and nucleotidylylation [29,68,69]. Post-

translational modifications are known to play a role in the

appropriate subcellular localization of ICP0 as well as affecting

transactivating and E3 ubiquitin ligase activity [30,31]. The

modifications of ICP0 required during the inhibition of IRF3-

mediated ISG induction are of interest, especially in light of data

showing that ICP0 is differentially modified in the nucleus as

compared to the cytoplasm [29]. Therefore, in addition to

subcellular localization, the post-translational modifications that

ICP0 undergoes in each of the respective subcellular compart-

ments likely also play a role in dictating function. An additional

observation from these studies is the disappearance of activated

forms of IRF3 concomitant with ICP0 cytoplasmic localization. It

is unclear at this time whether ICP0 directly affects the loss of

activated forms of IRF3 or whether activated IRF3 is relatively

short-lived and the loss of nuclear IRF3 reflects the lack of newly

activated molecules translocating into the nucleus.

Altogether, this study adds to our understanding of HSV-1

virus:host interactions and the role of ICP0 in inhibiting innate

antiviral responses mediated by IRF3. Furthermore, this study

stresses the importance of localization as a factor that influences

the function of ICP0 but also highlights the importance of

identifying post-translational modifications or additional activities

that facilitate the functions of ICP0.

Materials and Methods

Reagents
MG132 (Sigma) was used at a concentration of 5 mM. An equal

volume of DMSO (Sigma) was used as a vehicle control. MG132

was added to cultures 30 minutes prior to infection and remained

within the cultures for all steps. Polyinosinic/polycytidylic acid

(polyI:C) (GE Healthcare), was added to media at a concentration

of 100 mg/ml. Phosphonoacetic acid (PAA), an inhibitor of viral

DNA polymerase [51,52,53], was added during infection and in all

subsequent steps at a concentration of 400 mg/ml.

Cell lines
Human embryonic lung (HEL) fibroblasts and U2OS cells were

purchased from the American Type Culture Collection (ATCC)

and maintained in DMEM supplemented with 10% FBS, 2 mM

L-glu, 100 U/ml penicillin, and 100 mg/ml streptomycin (pen/

strep). Vero cells (ATCC) were maintained in DMEM supple-

mented with 5% FBS with L-glu and pen/strep.

Viruses and infections
The WT HSV-1 strains used in this study include KOS, F, and

strain 17 syn+ (17syn). HSV-1 ICP0 mutant viruses are described

in Table 1. All WT strains were grown on Vero cells while mutant

viruses were propagated on U2OS cells with 3 mM HMBA. All

viruses were purified over a 36% sucrose cushion. All WT and

mutant HSV-1 infections were performed with a MOI of

10 PFU/cell, unless otherwise stated, for 1 hour in serum-free

media at 37uC. Infections with SeV (Cantell strain; Charles River

Laboratories) were performed at 80 HA units per 106 cells.

Protein sample preparation
Whole cell extract protocol. Cells were washed twice and

collected in PBS. Following centrifugation at 3000 rpm for 5

minutes, cell pellets were incubated in whole-cell extract buffer [3]

for 15 minutes on ice followed by centrifugation for 10 minutes at

12,000 rpm. Protein quantification was performed using a

Bradford assay kit (Bio-Rad Laboratories). Samples were stored

in SDS-loading dye.

Cytoplasmic & nuclear protein extraction protocol. Cell

extracts were washed with PBS followed by incubation in a

hypotonic buffer [70] for 10 minutes on ice. Hypotonic buffer

supplemented with 5% Triton X-100 was added to the cell

extracts before centrifugation at 12,000 rpm for 3 minutes at 4uC.

The supernatant (cytoplasmic protein) was mixed with loading dye

(0.5 M Tris, pH 6.8; 20% glycerol; bromophenol blue). The pellet

was incubated in a high salt buffer [70] for 30 minutes on ice and

centrifuged at 12,000 rpm for 15 minutes at 4uC. The supernatant

(nuclear protein) was mixed with loading dye. Protein

quantification was performed using a Bradford assay kit (Bio-

Rad Laboratories).

Western Blotting
Whole cell protein extracts were resolved using denaturing

polyacylamide gel electrophoresis and blocked in 5% skim milk.

Blots were incubated with either rabbit anti-ISG56 (provided by

G. Sen, Cleveland Clinic), rabbit anti-IRF3 (Santa Cruz

Biotechnology), rabbit anti-phospho IRF3 (ser-396) (Cell Signal-

ling), rabbit anti-TBK-1 (Millipore), rabbit anti-IKKe (Abcam),

rabbit anti-DDX3 (Bethyl laboratories), rabbit anti-SeV [71],

mouse anti-HSP90 (R&D Systems), mouse anti-ISG15 (provided

by Dr. Borden, Cleveland Clinic), mouse anti-ICP0 (Virusys

corporation), or goat anti-Actin (Santa Cruz Biotechnology).

Table 1. Description of ICP0 mutant viruses employed in this
study.

VIRUS MUTATION PHENOTYPE REFERENCE

kOS STRAIN

n212 Insertion of a linker containing a
nonsense mutation at residue 212

ICP0 null virus [72]

F STRAIN

R7910 Complete deletion of both
copies of the ICP0 gene

ICP0 null virus [20]

R7914 Aspartic acid substituted for
alanine at amino acid position 199

Nuclear
retention of
ICP0

[46]

GLASGOW STRAIN

17 SYN

dl1403 2 Kb deletion in both copies
of the ICP0 gene

ICP0 null virus [73]

D8 Deletion of amino acids 475–548
(nuclear localization signal)

Cytoplasmic
retention of
ICP0

[63]

doi:10.1371/journal.pone.0010428.t001
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Membranes were subsequently probed with an HRP-conjugated

goat anti-rabbit, goat anti-mouse, or rabbit anti-goat secondary

antibody. Protein bands were visualized with ECL western blotting

reagent (GE Healthcare Life Sciences).

Native western blotting
Cytoplasmic and nuclear protein extracts were resolved on a

non-denaturing gel in a buffer containing 25 mM Tris, pH 8.4

and 192 mM glycine with 0.2% deoxycholate present only in the

cathode chamber. Membranes were blocked in 5% skim milk and

subsequently incubated with rabbit anti-IRF3 (Immuno-Biological

Laboratories, Co. Ltd.). Membranes were probed with HRP-

conjugated goat anti-rabbit secondary antibody and protein bands

were visualized with ECL western blotting reagent.

Immunofluorescence Microscopy
Cells were grown to 50% confluency on coverslips. Following

treatment, cells were fixed with 4% paraformaldehyde, permea-

bolized with 0.1% Triton X-100 and blocked with 2% goat serum.

Cells were incubated with mouse anti-ICP0 and/or rabbit anti-

IRF3 primary antibodies then incubated with anti-mouse or anti-

rabbit Alexa fluor-conjugated secondary antibody (Invitrogen).

Nuclei were stained with Hoechst dye (Dapi). All images were

taken using a Leica DM-IRE2 microscope and analyzed using

Openlab software (Improvision).

Supporting Information

Figure S1 Proteins retained within the nucleus are difficult to

detect by western blot analysis. (A) Immunofluorescence micros-

copy was used to examine the localization of ICP0 in HEL

fibroblasts following an 8 hour infection with WT HSV-1 (F strain)

in the absence or presence of PAA. (B) Western blot examining

ICP0 expression following the collection of whole cell protein

lysates from HEL fibroblasts following an 8 hour infection with

WT HSV-1 in the absence or presence of PAA.

Found at: doi:10.1371/journal.pone.0010428.s001 (2.71 MB TIF)

Figure S2 ICP0 expressed following plasmid transfection

localizes to the nucleus. Immunofluorescence microscopy was

used to examine the localization of IRF3 and ICP0 in HEL

fibroblasts following transfection of expression plasmids encoding

wild type (WT), RING finger mutant (FXE) or NLS mutant (D8)

versions of ICP0.

Found at: doi:10.1371/journal.pone.0010428.s002 (6.17 MB TIF)
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