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Abstract

Background: Discovering genetic associations between genetic markers and gene expression levels can provide insight into
gene regulation and, potentially, mechanisms of disease. Such analyses typically involve a linkage or association analysis in
which expression data are used as phenotypes. This approach leads to a large number of multiple comparisons and may
therefore lack power. We assess the potential of applying canonical correlation analysis to partitioned genomewide data as
a method for discovering regulatory variants.

Methodology/Principal Findings: Simulations suggest that canonical correlation analysis has higher power than standard
pairwise univariate regression to detect single nucleotide polymorphisms when the expression trait has low heritability. The
increase in power is even greater under the recessive model. We demonstrate this approach using the Childhood Asthma
Management Program data.

Conclusions/Significance: Our approach reduces multiple comparisons and may provide insight into the complex
relationships between genotype and gene expression.
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Introduction

The usefulness of examining associations between genetic

markers and gene expression is due to the immediate and direct

relationship between the gene expression phenotype and DNA

sequence variation. As Rockman and Kruglyak stated, ‘‘The road

from genotype to phenotype runs through gene expression’’ [1].

Most studies of transcriptional regulation have relied on

univariate tests to find significant associations, each between a

single genetic marker and a single expression probe. In genome-

wide association scans, one can easily imagine having a million

single nucleotide polymorphisms (SNPs) and thousands of

expression probes. The number of tests required to search for

associations between individual SNPs and individual probes

severely reduces power.

Canonical correlation analysis (CCA) is a statistical method that

can reduce the number of tests by using multiple phenotypes and

genotypes in each test. CCA compares two sets of variables (in this

case, a set of SNP genotypes and a set of expression levels) to assess

the correlation between them [2]. CCA finds a linear combination

of the genotypes and a linear combination of the expression levels

such that the correlation between the two is maximized. As it is,

CCA cannot be applied to all SNPs and expression probes in a

genomewide association study since the number of variables is

greater than the number of subjects. Two modifications of CCA

have recently been proposed for use with genetic marker and gene

expression data: penalized CCA [3] and sparse CCA [4]. These

methods are computationally intensive and are sometimes sensitive

to starting parameters. Futhermore, they have not been simulated

or applied to datasets as large as a genomewide association study.

Here, we assess the power of a more straightforward approach:

partitioning the data so that CCA can be applied to each subset of

the data. CCA is used to construct one association test for a group

of gene expression traits and a group of SNPs, thus reducing the

burden of multiple comparisons. Using CCA in this way, we can

not only pick out regions of the genome in which genotype is

highly associated with gene expression, but can also potentially

discover more complex relationships among the variables by

examining the coefficients of the linear combinations with

maximum correlation. We examine the potential of CCA to

assess correlation between SNP data and expression data using

simulations and a data analysis.

Methods

Canonical Correlation Analysis
In the ith proband, i~1, . . . ,n, we denote the p expression

measurements to be used in a single test by yij ,j~1, . . . ,p, and the

q genotypes at the q SNPs by xij ,j~1, . . . ,q. The corresponding

matrices of expression profiles and genotypes are given by Y and
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X. Without loss of generality, we assume the number of measured

profiles, p, is less than or equal to the number of SNPs, q. (If not,

the notation for profiles yi and the genotypes xi can be switched.) p

and q must each be less than the number of subjects, n.

We denote the (p|p) covariance matrix of gene expressions byP
11, the (q|q) covariance matrix of genotypes by

P
22, and the

(p|q) covariance of gene expressions and genotypes by
P

12.
P

22

can be thought of as a measure of the linkage disequilibrium

among SNPs. In the application, all three variance/covariance

matrices are obtained from their empirical estimators based on Y
and X. Note that p and q must be chosen to be small enough to

ensure that the covariance matrices are not nearly singular.

The maximum correlation r1 between the set of expression

profiles and the set of SNPs is given by the maximum eigenvalue of

the matrix
P{1=2

11

P
12

P{1
22

P
21

P{1=2
11 where

P{1=2
~

(
P1=2

){1 [5]. The weights for the linear combination of the

expression profiles and for the combination of marker scores are

given by e1
0P{1=2

11 and f1
0P{1=2

22 , respectively, where the vector

e1 is defined to be the eigenvector associated with the maximum

eigenvalue of
P{1=2

11

P
12

P{1
22

P
21

P{1=2
11 and f1, the eigenvec-

tor associated with the maximum eigenvalue of
P{1=2

22P
21

P{1
11

P
12

P{1=2
22 .

This yields the maximally correlated linear combinations, often

referred to as the first pair of canonical variates:

U~e1
0
X

11

{1=2
Y

and

V~f1
0
X

22

{1=2
X:

Further canonical variates that maximize correlation between two

linear combinations, under the constraint that they are indepen-

dent of all preceding canonical variates, can easily be calculated.

The p eigenvalues of
P{1=2

11

P
12

P{1
22

P
21

P{1=2
11 , r1§r2§ � � �

§rp, are the cannonical correlations for the p sets of canonical

variates.

Several tests have been developed to assess whether the two

linear combinations derived using CCA are truly correlated.

Bartlett proposed the following likelihood ratio test of H0 : S12~0
versus H1 : S12=0, i.e., whether the covariance between the gene

expression and genotypes is zero [6]:

x2
pq*{(n{1{(pzqz1)=2) ln P

p

i~1
(1{r̂r2

i ):

This is equivalent to testing whether all the canonical correlations

equal zero.

Simulation Methods
To apply CCA in our simulations, we chose a region of the

genome containing three genes and picked out 20 tag SNPs to

simulate. Using CCA, we found two linear combinations, one of

the expression profiles and one of the SNP data, such that the

correlation between the two linear combinations is maximized.

The observed correlation between the two sets was then tested for

association, using the Bartlett test statistic.

To simulate realistic genotypes, we mimicked the linkage

disequilibrium structure of 20 tag SNPs in the HapMap CEU

sample from a 350 kb region of chromosome 2 (positions

118250000–118600000, NCBI build 36, Figure S1). Tag SNPs

were chosen such that each SNP not chosen had R2
§0:8 with at

least one tag SNP in the HapMap CEU sample. To do this we

used Haploview software v3.32 [7]. To estimate the linkage

disequilibrium structure between each pair of consecutive SNPs,

we estimated the haplotype frequencies for each pair of

consecutive SNPs using the expectation-maximization (EM)

algorithm implemented in the haplotype procedure of SAS/

GeneticsTM software.

We simulated the allele of the first SNP as a Bernoulli random

variable with probability equal to the SNP’s estimated allele

frequency. Each consecutive allele in the 20 SNP haplotype was

simulated conditional on the previous SNP’s allele (using the

conditional probabilities from the SAS haplotype procedure). 2n
haplotypes were simulated.

Three genes lie in the chromosome 2 region: DDX18,

CCDC93 and INSIG2. To determine a realistic correlation

structure for the expression levels of these three genes, we

examined microarray expression data from a study on aging done

at Children’s Hospital of Boston [8]. The covariance matrix,

3014:86 1372:75 512:11

1372:75 1543:98 708:22

512:11 708:22 945:20

2
64

3
75,

and mean expression levels,

178:00

161:34

112:99

2
64

3
75,

were then used to simulate expression levels for three genes

assuming a multivariate normal distribution.

Simulations assuming varying heritabilty of the expression

trait, sample size (200 or 400 individuals), and genetic model

(additive or recessive) were run to assess type one error rate and

power. For each combination of heritability, sample size, and

genetic model, at least 10,000 replications were run with 20

SNPs and three gene expression levels generated for each

individual each time. CCA was performed using the cancor

function in R [9], which standardizes the variables in order to

reduce the chance that the magnitude of the coefficients would

be unduly influenced by variables with larger magnitudes. We

first simulated independent SNP and expression data to

determine the size of Bartlett’s likelihood ratio test for no

correlation between the two variables. To model an association

between a single SNP and a single gene we allowed the mean

expression level to vary according to the genotype of a single

SNP. Gene expression levels were modeled as multivariate

normal with covariance equal to the covariance matrix from

the Children’s Hospital Boston data. The mean was set equal to

zero for genes unaffected and equal to the genetic effect size

times a function of the genotype for affected genes. For the

additive genetic model, the effect size was multiplied by the

number of copies of the risk allele. For the recessive model, the

effect size is multiplied by two if and only if there are two copies

of the risk allele. Simulating a recessive model is equivalent to

simulating a dominant model using the opposite allele. Since we

were not interested in simulating a signal between any

particular SNP and gene, we randomly chose which SNP and

gene would be correlated in each replication, giving all possible

pairs equal probability. All simulations were performed in R

v2.2.1 [9].

Canonical Correlation Analysis
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Results

Simulation Results
Under the null hypothesis, the estimated probability of a type

one error using Bartlett’s likelihood ratio test decreases with

increasing sample size (Table 1). For sample sizes greater than 60,

the type one error is near 5%. Under the alternative hypothesis of

association, the power to detect a significant correlation with

Bartlett’s test is compared with the power to detect the simulated

association by regressing the expression quantitative trait locus

(eQTL) of interest on the number of copies of the risk allele using

Bonferroni correction to adjust for 60 pairwise tests (the number of

pairwise tests needed to test each of the three eQTLs with each of

the 20 SNPs) (Table 2). The type one error of the univariate test,

0.2%, is lower than that of CCA because the Bonferroni correction

is overly conservative.

We assessed the effectiveness of CCA by considering both the

power to detect an association between the SNPs and eQTLs and

the ranking of the magnitude of the coefficient of the SNP of

interest relative to the coefficients of all non-associated SNPs

(Figure 1). More specifically, we considered the power to detect a

correlation (using Bartlett’s test) and have the SNP of interest be

the top ranking SNP or be in the top five ranking SNPs (Figure 2).

When the heritability of the eQTL is moderately high (i.e., greater

than 0.10) both CCA and univariate regression have high power to

detect association, with univariate regression slightly out-powering

CCA. For eQTLs with low heritability, CCA has greater power

than univariate regression in our simulations. This effect is even

more pronounced for the smaller sample size (200 individuals) and

for the recessive model.

Data Analysis - Childhood Asthma Management Program
To apply CCA to a genomewide association study, we

partitioned the expression data into groups of three consecutive

probes and then tested for association between the probes and

SNPs that fell within the window spanned by the three probes and

a 200 kb margin on each side.

We applied CCA to a subset of the data from the Childhood

Asthma Management Program (CAMP), a multi-center, random-

ized, clinical trial involving 1,041 children with asthma [10]. The

subset consisted of 156 children with CD4+ peripheral blood

lymphocyte gene expression data and genomewide SNP genotype

data (Infinium II 550K SNP array) available. Although complete

trios were available in this dataset, we only used the offspring data

to mimic a population-based design.

We searched for local regulatory variants by partitioning the

probes (measuring gene expression) into sets of three and

considering all SNPs located within 200kb from the ends of the

two outer probes. CCA was performed with a maximum of 20

SNPs per group and also with a maximum of 50 SNPs per group.

For many probe trios there were more than the maximum number

(20 or 50) of SNPs in the region. In these cases, we decreased the

number of probes used until the number of SNPs in the region was

low enough. If there were too many SNPs for a single probe, then

the SNPs were divided into groups such that each group was as

close as possible to the maximum number of allowed SNPs. SNPs

were always partitioned by genomic position. For each group of

SNPs and nearby gene expression traits, we applied Bartlett’s

likelihood ratio test. For each test significant after Bonferroni

correction, we examined the canonical variates (Table 3). As a

comparison, each probe-SNP pair was tested for association using

univariate regression (any SNP located within 200kb of the end of

the probe was considered).

For the analysis with a maximum of 20 SNPs per group, 908 of

the SNPs found significant using univariate regression were

located in a group of SNPs that was significantly correlated using

CCA. Using a maximum of 50 SNPs, there were 575 such SNPs.

Although the number of tests significant after Bonferroni

correction was much lower for CCA than for univariate regression

Table 1. Type one error.

Sample Size Type I Error

30 0.124

40 0.068

50 0.057

60 0.054

100 0.047

200 0.047

400 0.049

500 0.049

1000 0.048

Type one error of Bartlett’s test for correlation between 20 SNPs and three gene
expression traits simulated under the null hypothesis of no correlation.
doi:10.1371/journal.pone.0010395.t001

Table 2. Power.

Sample Size Genetic Model Analysis Heritability

0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24

400 additive CCA 4.9 54 91 99 100 100 100 100 100

regression 0.2 56 95 100 100 100 100 100 100

recessive CCA 5.0 18 35 49 58 65 68 72 74

regression 0.2 12 34 50 60 66 71 75 77

200 additive CCA 4.5 25 53 77 92 97 99 100 100

regression 0.2 19 57 84 96 99 100 100 100

recessive CCA 4.9 11 18 25 34 40 47 52 56

regression 0.2 4 14 24 35 44 52 57 60

Estimated percent power of Bartlett’s test and univariate regression after Bonferroni correction. (Genetic model is not applicable when heritability is zero because no
genetic effect is simulated.)
doi:10.1371/journal.pone.0010395.t002

Canonical Correlation Analysis
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(412 for ƒ20 SNPs or 177 for ƒ50 SNPs vs. 1749), the number of

SNPs that were in a significant region was very high (6434 for

ƒ20 SNPs or 5669 for ƒ50 SNPs).

About the Data
The Childhood Asthma Management Program (CAMP) was a 4.5

year multi-center clinical trial of childhood asthmatics aged 5–12

designed to evaluate the long-term efficacy and safety of inhaled anti-

asthma medications. Following completion of the clinical trial,

subjects have been reevaluated yearly as a longitudinal follow-up of

the natural history of childhood asthma. RNA was obtained from

peripheral blood CD4+ lymphocytes collected during a follow-up

visit. CD4+ lymphocytes were isolated by positive selection using anti-

CD4+ antibody-coated microbeads (Miltenyi Biotec, Auburn, CA).

RNA was extracted using the QIAGEN RNeasy Mini Protocol.

Expression profiles were generated with Illumina HumanRef8 v2

BeadChip oligonucleotide arrays (Illumina, San Diego CA) according

to protocol. Arrays were read using the BeadArray scanner (Illumina)

and analyzed using BeadStudio (version 3.1.7) without background

correction. Raw expression intensities were processed using the lumi

package (Du et al., 2008), with background adjustment with RMA

convolution (Irizarry et al., 2003), log2 transformation for variance

stabilization, and combined-sample quantile normalization. 20,589

transcripts (gene expression traits) were considered for association

testing. Adequate DNA for genomewide genotyping was available for

all members of 156 parent-child trios of self-reported white ancestry.

Genotyping was performed using the Illumina Infinium II Human-

Hap550 Genotyping BeadChip. Genotyping was performed by

Illumina (San Diego, CA) according to protocol. All downstream data

analysis was performed locally at the Channing Laboratory.

Genotype evaluation and cleaning was performed using PLINK.

Marker quality was assessed using a variety of measures including

Illumina GC scores, ability to map genomic position of assay

sequences to unique sites, parent-offspring genotype incompatibilities,

and genotype completion rates.

Figure 1. Histograms of the rank of the SNP of interest in simulations. Each panel represents a distinct set of simulations conditions: number
of subjects, genetic model, and heritability. For each simulated dataset in which there was a significant correlation between SNPs and gene
expression traits (pv0:05 for Bartlett’s test), SNPs were ranked according to the magnitude of their coefficients in the top canonical variate. Each
panel is a histogram of ranks of the SNP of interest. The first column shows that the rank is uniformly distributed under the null hypothesis. The axis
labels on the upper left plot apply to all plots.
doi:10.1371/journal.pone.0010395.g001
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Discussion

CCA has the potential to be a powerful tool for identifying

relationships between genotype and gene expression. It out-

powered pairwise univariate regression in simulations where one

SNP affected the expression of one gene when heritability was low.

This difference in power was largest under the recessive model

with a sample size of 200. Univariate regression with Bonferroni

corrected pvalues tends to be overly conservative when heritability

is low. Our results suggest that CCA may be useful for locating

regions with association under difficult circumstances such as small

sample size, small effect size, and recessive genetic models.

Furthermore, the simple and intuitive method of picking the SNP

with the largest coefficient (disregarding sign) is a fairly well-

powered way to recover which SNP was truly correlated among

the set of SNPs found significant by CCA.

This study has several limitations. CCA is a method designed to

detect linear relationships between normally distributed variables

and may not be sensitive to nonlinear relationships between SNPs

and gene expression traits. Also, the simulations were based on a

single region and only one SNP was associated with a single

eQTL. In the data analysis, no gold standard existed for

determining which SNPs were truly associated with an eQTL.

We focused on applying CCA to SNPs and expression quantitative

trait loci (eQTLs) in the same region of the genome; however, this

method could straightforwardly be applied to sets of SNPs and

eQTLs defined by gene pathways or any other criteria.

Furthermore, one could choose one set of eQTLs (or SNPs) and

test for canonical correlation with each set of the partitioned

regulatory variants (or associated eQTLs).

CCA could also straightforwardly be used as a screening

method to find regions of strong regulation and reduce multiple

comparisons. For instance, if the data include parental genotypes,

then, in a preliminary screening stage, the expected offspring

genotypes (given the parental genotypes) could be used in place of

the true genotypes in CCA. Promising areas of the genome could

then be further tested using FBAT [11]. In this case, the screening

stage would not compromise the significance of the second stage

since the FBAT conditions on parental genotypes and phenotypes.

CCA might also be useful for determining hotspots of genetic

Figure 2. Power for three methods of determining a significant finding. The red line shows power to detect a correlation in the simulated
region via Bartlett’s test with pv0:05. The blue line shows power to detect a correlation and have the SNP of interest be in the top five ranking SNPs
(based on magnitude of SNP coefficients). The green shows power to detect a correlation and have the SNP of interest be the top ranking SNP. The
black line shows power to detect an association between the SNP of interest and at least one of the three genes using univariate regression.
doi:10.1371/journal.pone.0010395.g002
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regulation and as a way to search for regulatory variants

controlling the expression of genes in pathways.

CCA is a method to be considered in genetical genomics

studies. It reduces multiple comparisons, is more powerful under

some of the scenarios where univariate regression methods are

underpowered, and may yield further insight into the true

relationships between multiple SNPs and eQTLs by providing

canonical variates.

Supporting Information

Figure S1 Linkage disequilibrium (measured by D9) between 20

tag SNPs. The color red indicates D9 = 1 and a LOD score$2.

Blue indicates D9 = 1 and LOD,2. Pink indicates D9,1 and

LOD$2. White indicates D9,1 and LOD,2.

Found at: doi:10.1371/journal.pone.0010395.s001 (2.27 MB TIF)
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