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Abstract

Background: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify
their organismal and environmental aspects. However, major topics remain to be resolved, including when and how
organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by
different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become
isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based
communities, thus investigations of their origin and evolution contribute to resolving questions about life in those
communities.

Methodology/Principal Finding: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels
and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and
NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that
mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the
subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline
mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary
history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of
bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the
early to middle Miocene.

Conclusions/Significance: The phylogenetic relationships support the ‘‘Evolutionary stepping stone hypothesis,’’ in which
mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments.
This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea
proceeded from extracellular to intracellular symbiotic states in whale carcasses. The estimated evolutionary time suggests
that the mytilid ancestors were able to exploit whales during adaptation to the deep sea.
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Introduction

Deep-sea mussels of the genus Bathymodiolus (Mytilidae, Bath-

ymodiolinae) are one of the dominant macroorganisms in

chemosynthesis-based communities in hydrothermal vents on

spreading ridges and back-arc basins and in cold-water seeps

along subduction zones. Since the original description of the genus

[1], 22 Bathymodiolus species have been described [2–13], and their

biogeographic distributions are as follows. There are: 1) 14 Pacific

species, B. japonicus Hashimoto & Okutani 1994, B. platifrons

Hashimoto & Okutani 1994, B. septemdierum Hashimoto & Okutani

1994, B. hirtus Okutani et al. 2004, B. securiformis Okutani et al.

2004, B. aduloides Hashimoto & Okutani 1994, B. taiwanensis Cosel

2008, B. brevior Cosel et al. 1994, B. elongates Cosel et al. 1994, B.

tangaroa Cosel & Marshall 2003, B. manusensis Hashimoto & Furuta

2007, B. edisonensis Cosel and Janssen 2008, and B. anteumbonatus

Cosel and Janssen 2008 from the West Pacific and B. thermophilus

Kenk & Wilson, 1985 from the East Pacific; 2) seven Atlantic

species, B. childressi Gustafson et al. 1998, B. heckerae Gustafson et

al. 1998, and B. brooksi Gustafson et al. 1998 from the West

Atlantic, B. azoricus Cosel & Comtet 1999 and B. puteoserpentis Cosel

et al. 1994 from the Mid-Atlantic Ridge, and the trans-Atlantic B.

mauritanicus Cosel 2002 and B. boomerang Cosel & Ole 1998; and 3)

one Indian Ocean species, B. marisindicus Hashimoto 2001. Two

species of the genus Gigantidas from the West Pacific, G. horikoshii

Hashimoto &Yamane 2005 and G. gladius Cosel & Marshall 2003,

and one species of the genus Tamu from the Atlantic, T. fisheri

Gustafson et al. 1998, belong to the subfamily Bathymodiolinae
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[5,9,14]. Active exploration of new localities and careful surveys of

known localities suggests the existence of many cryptic species.

The species diversity is very high in the West Pacific compared

with other areas, and thus the origin of the bathymodioline

mussels seems to be located in the West Pacific. However, the

mismatch distributions of the West Pacific B. septemdierum and B.

brevior and the Indian Ocean B. marisindicus suggest that the

Southern Central Indian Ridge of the Indian Ocean might be the

more ancient residence rather than the Izu-Ogasawara Island-arc

and the North Fuji Basin of the West Pacific, if periods from

formation to expansion of their populations were not significantly

different among them [15].

In Japanese waters (Figs. 1 and 2), six Bathymodiolus and one

Gigantidas species have steady residences as evidenced by a stable,

constant supply of their propagules [3, 10. 14]. Some species

possibly have transient residences through incident, leaky supply of

propagules as mentioned below. Bathymodiolus japonicus and B.

platifrons are distributed in seeps in Sagami Bay and vents of the

Okinawa Trough, which are separated by approximately

1,500 km. Bathymodiolus aduloides is distributed in seeps in Sagami

Bay, the Nankai Trough, and the subduction zone of the Nansei-

shoto Trench and vents of the Okinawa Trough. However, our

genetic analyses have not confirmed its existence in the Nankai

Trough. The Nankai Trough is situated between Sagami Bay and

the Okinawa Trough. There appear to be some barriers to gene

flow between the Nankai Trough and Sagami Bay and between

the Nankai Trough and Okinawa Trough. Only one specimen,

identified genetically as B. aduloides, has been obtained so far from

vents in the Izu-Ogasawara Island-arc. The three species of

Bathymodiolus mussels can exploit both seeps and vents as habitats.

No significant genetic differentiation was discernible between seep

and vent populations of B. platifrons [15]. Our studies also

suggested a genetic similarity between seep and vent populations

of B. japonicus [16], indicating the high adaptability of these species

to deep-sea environments, albeit the seemingly large environmen-

tal differences between seeps and vents. Bathymodiolus septemdierum is

distributed in vents in the Izu-Ogasawara Island-arc, but not in

Sagami Bay, which is approximately 500 km from the Myojin

Knoll and Suiyo Seamount in the Izu-Ogasawara Island-arc. Only

one specimen, identified genetically as B. septemdierum, has been

obtained so far from the Okinawa Trough. There are relatively

large obstacles to gene flow between Sagami Bay and the Izu-

Ogasawara Island-arc. Our genetic studies suggested that this

species was conspecific to B. brevior and might possibly be

conspecific to B. marisindicus [15]. If this is the case, this species

has the widest habitat range among Bathymodiolus species from

Japanese waters southeastward to the North Fuji Basin in the West

Pacific Ocean and southwestward to the Kairei Field in the Indian

Ocean. The two remaining species, B. hirtus and B. securiformis, are

distributed in seeps of the subduction zone of the Nansei-shoto

Trench. The latter is also distributed in seeps in the Nankai

Trough. Gigantidas horikoshii is distributed in vents in the Izu-

Ogasawara Island-arc. One specimen from Sagami Bay has been

identified as Sissano B. sp. 1, which resides mainly in Sissano in the

West Pacific Ocean.

Organisms initially invading the deep sea encounter serious

difficulties and must alter their feeding strategies to overcome poor

nutrition and acquire tolerance to high pressure and cold seawater.

Furthermore, organisms in vents and seeps must establish

symbiosis with chemosynthetic bacteria as an effective feeding

strategy and tolerance to toxic H2S. The ‘‘Evolutionary stepping

stone hypothesis’’ has been proposed, in which the ancestors of

bathymodioline mussels exploited sunken wood and whale

carcasses in their progressive adaptation to deep-sea environments

[17,18]. Further studies are required to elucidate the origin and

adaptive process of bathymodioline mussels as a representative of

organisms in chemosynthesis-based communities. Our previous

research suggested an evolutionary transition from shallow water

to vent/seep sites via sunken wood/whale carcass sites and

supported the hypothesis [15,19], although deeper branching was

poorly supported. However, the process did not occur in a single,

unidirectional manner. Our research also suggested independent

invasion into vents and seeps and reversion into whale carcass sites

from vent or seep sites in the mytilid lineages.

Only some Bathymodiolus species from limited areas were the

subjects of earlier molecular phylogenetic studies [18,20–22].

Subsequently, using updated databases, molecular phylogenetics

searched for the phylogeny of about 10 species [16,23,24], and

mytilid relatives from whale carcasses and wood were included to

trace the origins of Bathymodiolus mussels [25,26]. In our previous

studies [15,19], we sequenced the mitochondrial genes of more

than 15 nominal and cryptic species, and showed that mussels in

Figure 1. The sampling sites for deep-sea Bathymodiolus mussels and their relatives used in this study. Refer to Table 2 for details of the
sampling sites. #, hydrothermal vent; N, cold-water seep; &, wood/whale bone; m, shallow.
doi:10.1371/journal.pone.0010363.g001
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the subfamily Bathymodiolinae comprised four groups. The first

group (Group1) includes seven West Pacific and Atlantic Bath-

ymodiolus species (Group 1-1) and two West Pacific Gigantidas

species (Group 1-2). The group includes members of the B.

childressi clade (B. childressi, B. mauritanicus, B. platifrons, B. hirtus, B.

anteumbonatus, B. japonicus, B. tangaroa. B. securiformis, B. edisonensis,

and two Gigantidas species) based on morphological traits [13]. The

second group (Group 2) includes six or seven Bathymodiolus species,

which are subdivided into three subclusters consisting of the Indo-

West Pacific, Atlantic, and East Pacific species, respectively, with

the exception of B. brooksi that diverges basally to the subclusters.

Group 2 includes members of Cosel’s B. thermophilus clade (B.

thermophilus and East Pacific B. sp., B. brevior, B. azoricus, B. elongates,

B. puteoserpentis, B. septemdierum, B. boomerang, B. heckerae, and B.

brooksi). The third group (Group 3) includes two West Pacific

Bathymodiolus species, and the fourth group includes only one

species, T. fisheri. The group includes members of Cosel’s B.

aduloides clade (B. aduloides and B. manusensis). Our studies also

showed that the subfamily Bathymodiolinae and the genus

Bathymodiolus were not monophyletic, suggesting the need to

reevaluate the classification.

In the present study, we investigated worldwide phylogenetic

relationships of Bathymodiolus mussels and their mytilid relatives by

analyzing concatenated sequences of the mitochondrial cyto-

chrome c oxidase subunit I (COI) and NADH dehydrogenase

subunit 4 (ND4) genes. We also investigated the evolutionary

processes of Bathymodiolus mussels by estimating evolutionary

divergence times with variable rates over time.

Results

Phylogenetic relationships of Bathymodiolus mussels and
their relatives

Mussels of the subfamily Bathymodiolinae were divided into

four groups (Fig. 3). The first group (Group 1) was subdivided into

two subgroups. One subgroup (Group 1-1) consisted of seven

Figure 2. The sampling sites for deep-sea Bathymodiolus mussels and their relatives in Japanese waters. The boxed region in Fig. 1 is
enlarged. Refer to Table 2 for details of the sampling sites. #, hydrothermal vent; N, cold-water seep; &, wood/whale bone; m, shallow.
doi:10.1371/journal.pone.0010363.g002

Figure 3. Phylogenetic relationships of deep-sea Bathymodiolus mussels and their relatives based on the 401-bp COI and 423-bp ND4
sequences. The NJ tree was constructed based on the genetic distances calculated according to Kimura’s two-parameter method using Modiolus
nipponicus as an outgroup species. The MP and Bayesian trees presented essentially the same topology as the NJ tree. Only the NJ (left) and MP (middle)
bootstrap values .50% and Bayesian posterior probabilities (right) .0.50 are specified. The scale bar indicates 0.01 substitutions per site. See Table 1 for
abbreviations of Bathymodiolus mussels and their relatives. #, hydrothermal vent; N, cold-water seep; &, wood/whale bone; m, shallow.
doi:10.1371/journal.pone.0010363.g003
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nominal species, B. hirtus, B. japonicus, B. platifrons, and B. securiformis

from Japanese waters, B. tangaroa from the West Pacific, B.

mauritanicus and B. childressi from the Atlantic, and five unidentified

(not morphologically examined) Bathymodiolus-related mussels from

Sissano (Sissano B. sp. 1, B. sp. 2, and B. sp. 3), the Chamorro

Seamount (Chamorro B. sp.), and off Kikaijima Island (Kikaijima

B. sp.) in the West Pacific. All the members so far examined in

Group 1-1 (6 nominal species and Sissano B. sp.) have

methanotrophic endosymbionts [27–28]. Group 1-2 included

two nominal species, G. horikoshii and G. gladius, and four

unidentified Gigantidas-related mussels from the Nikko Seamount

(Nikko G. sp.), Sumisu Caldera (Sumisu G. sp.), Aitape (Aitape G.

sp.), and off Ashizuri Cape (Ashizuri G. sp.) in the West Pacific.

The former two unidentified mussels are likely to be conspecific

with G. horikoshii because of their genetic similarity. The species has

thioautotrophic endosymbionts (the data will be published

elsewhere).

The second group (Group 2) consisted of eight nominal and one

undescribed (morphologically examined but not yet described)

Bathymodiolus species. This group was subdivided into three

subclusters including the Indo-West Pacific B. septemdierum, B.

brevior, and B. marisindicus, Atlantic B. azoricus, B. puteoserpentis, and

B. heckerae, and East Pacific B. thermophilus and undescribed species

(East Pacific B. sp.), with the exception of the Atlantic B. brooksi,

which diverged basally to the three clusters. Bathymodiolus

septemdierum, B. brevior, and B. marisindicus comprised the closely

related species group (Cluster A [16]). We showed in our previous

study that a high gene flow occurred between B. septemdierum and

B. brevior and that the gene flow between B. marisindicus and B.

septemdierum or B. brevior was low but not negligible, although their

habitats are approximately 5,000–10,000 km apart [15]. Mussels

from the Lau Basin (Lau B. sp.1) and Eifuku Seamount (Eifuku B.

sp.) included in the cluster are likely to be conspecific to B.

septemdierum because of their genetic similarity. Four species in

Group 2, B. septemdierum, B. brevior, B. marisindicus, and B.

thermophilus, contain solely thioautotrophs, and B. puteoserpentis, B.

azoricus, B. heckerae, and B. brooksi harbor both thioautotrophs and

methanotrophs [27,29–35].

The third group (Group 3) consisted of two nominal species, B.

aduloides and B. manusensis, restricted to the West Pacific. Mussels

from the Lau Basin (Lau B. sp. 2) and off New Zealand (NZ B. sp.)

are likely to be conspecific with B. manusensis because of their

genetic similarity. Species in this group contain thioautotrophic

endosymbionts [36]. The above three groups, two subgroups, and

three subclusters were well supported. The fourth group (Group 4)

consisted only of T. fisheri. Groups 3 and 4 were allied and in turn

they were allied with Group 1, but the relationships were poorly

supported.

Mussels of the subfamily Modiolinae from sunken wood and

whale carcasses assumed the outgroup position to the bath-

ymodioline mussels from vents and seeps, with the exception of

Adipicola crypta (Dall et al. 1938) from whale carcasses. The species

was allied with Group 1 with marginal support. The cluster

including vent/seep bathymodioline mussels and wood/whale

modioline mussels was well supported. Mytilid mussels flourishing

in shallow water were positioned more distantly to the vent/seep

bathymodioline mussels. Although only the modioline Modiolus

nipponicus (Oyama 1950) was included in the present tree,

modioline Modiolus modiolus (Linnaeous 1758) and three species

of the subfamily Mytilinae were also positioned, as was M.

nipponicus in our previous studies [15]. The unity of Bathymodiolus

mussels was not supported, because two species of Gigantidas in the

Bathymodiolinae and A. crypta in the Modiolinae perturbed the

unity.

Estimation of divergence time
Estimating divergence time is useful to reconstruct evolutionary

history. The mean evolutionary rate of mitochondrial DNA has

been estimated to be 1,2% per million years [37]. However, the

application of a molecular clock is problematic in some cases,

because the rate constancy of molecular evolution is a prerequisite

[38,39]. Our preliminary study showed that the rate of molecular

evolution varied among lineages of Bathymodiolus mussels, and thus

we adopted Thorne and Kishino’s approach (see [40] for details of

the application of this approach). We show estimates of

evolutionary time on the ML tree (Fig. 4). For calibration, we

used reference time associated with the split between the Atlantic

and East Pacific subclusters (12 to 10 MYA) in Group 2. Our

results (Table 1) showed that diversification of bathymodioline

mussels initiated in the early Miocene (about 20 MYA).

Subsequently, Groups 1 to 3 started differentiating in the early

to middle Miocene (about 19 to 14 MYA).

Discussion

Phylogenetic relationships of Bathymodiolus mussels and
their relatives

Bathymodioline species from vents and seeps were divided into

four well-supported groups (Fig. 3). Together they comprised the

poorly-supported bathymodioline cluster. Concatenated sequence

data, however, provided better resolution of the phylogeny of

Bathymodiolus mussels and their relatives than those derived from

single COI [19] or ND4 [15] sequence data, although some OTUs

could not be used because of the lack of sequence data on either

gene. Modioline species from sunken wood and whale carcasses

assumed the outgroup position to the bathymodioline mussels,

with the exception of A. crypta from whale carcasses. Mytilid species

from shallow water such as M. nipponicus were positioned more

distantly to the bathymodioline mussels. The results support the

‘‘Evolutionary stepping stone hypothesis,’’ which advocates

adaptive progress of deep-sea organisms from shallow-water to

vent/seep sites via wood/whale carcass sites [17,18].

Three modioline species, Benthomodiolus geikotsucola Okutani &

Miyazaki 2007, A. pacifica (Dall et al. 1938), and A. crypta, were

obtained from whale carcasses in Japanese waters, and the

epidermal cells of their gills harbored thioautotrophic bacterial

symbionts [15], although no mytilid mussels haboring symbionts

have previously been reported from shallow water. As shown

schematically in Fig. 5, Benthomodiolus geikotsucola from naturally

sunken Bryde’s whale carcasses at the Torishima Seamount

(approximately 4,000 m in depth) had extracellular symbionts

trapped by microvilli of the host cells (the data will be published

elsewhere). Adipicola pacifica and A. crypta inhabit artificially settled

sperm whale carcasses off Noma Cape (approximately 250 m in

depth). The former species had extracellular symbionts enclosed

by the protrudent host cell membrane (the data will be published

elsewhere). Enclosure by the cell membrane appears more

effective to maintain extracellular symbionts than microvilli

trapping. The symbionts of the latter species existed inside the

host cells, as in Bathymodiolus mussels. These findings suggest that

nutritional adaptation to the deep sea proceeded from the

extracellular symbiotic state to the intracellular symbiotic state in

whale carcasses. The evolutionary transition of symbiosis also

supports the ‘‘Evolutionary stepping stone hypothesis’’. Benthomo-

diolus geikotsucola is one of mytilid mussels that can live in the

deepest sea and thus is more adaptive to abyssal waters than vent/

seep bathymodioline mussels (their habitats are up to 4,000 m in

depth), but maintains primitive state of symbiosis. However, some

Evolution of Deep-Sea Mussels
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species live in sunken wood in shallower water and trap symbionts

using microvilli [41].

Modioline A. pacifica, A. iwaotakii (Habe 1958), and Idasola

japonica Habe 1976 comprised the most closely related outgroup to

the bathymodioline cluster, while A. crypta was included in it.

Adipicola crypta does not differ from bathymodioline mussels in the

phylogenetic position and symbiotic status. Since our results

indicated that monophylies of the subfamily Bathymodiolinae and

the genus Bathymodiolus were not supported, the classification

should be reevaluated. Moreover, our results showed the existence

Figure 4. Posterior distribution of evolutionary divergence times. Phylogenetic relationships of deep-sea Bathymodiolus mussels based the
concatenated 401-bp COI and 423-bp ND4 sequences. The ML tree was constructed using Modiolus nipponicus as an outgroup species. The red lines
represent 95% credibility intervals of sampled values. See Table 2 for abbreviations of Bathymodiolus mussels.
doi:10.1371/journal.pone.0010363.g004
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of several cryptic species, and thus more extensive morphological

investigation is indispensable.

Our studies suggested that B. brevior was conspecific to B.

septemdierum and might possibly be conspecific to B. marisindicus.

Similar situations are discernible in other species. Bathymodiolus

childressi was clearly distinguished from B. mauritanicus by the

mitochondrial COI gene, but the two species did not form a

separate clade based on the nuclear rDNA spacer ITS2 [24].

Table 1. Estimated evolutionary time (t).

t (MYA)

Onset of diversification of the subfmaily Bathumodiolinae 21.163.6

Split of Groups 2 and 3 19.463.4

Split of Groups 1-1 and 1-2 14.163.0

Split of B. brooksi and the other members in Group2 13.361.7

Split of East Pacific subcluster from the common ancestor of Indo-West Pacfic and Atlantic subclusters in Group 2 (12,10)a

Onset of diversification in Bathymodiolus spp. of Group 1-1 11.262.5

Onset of diversification in Gigantidas spp. of Group 1-2 10.462.5

Split of B. hirtus from the common ancestor of Sissano B. spp. 1 and 2, Kikaijima B. sp., and Chamorro B. sp. in Group 1-1 9.862.3

Split between Indo-West Pacfic and Atlantic subclusters in Group 2 9.761.0

Split of B. aduloides and B. manusensis in Group 3 8.462.6

Split of B. japonicus from the common ancestor of B. securiformis, B. tangaroa, and Sissano B. sp. 3 in Group 1-1 6.661.8

Onset of diversification of Atlantic species in Group 2 6.261.2

Split of B. platifrons from the common ancestor of B. mauritanicus and B. childressi in Group 1-1 3.861.2

Split of B. securiformis from the common ancestor of B. tangaroa and Sissano B. sp. 3 in Group 1-1 3.561.5

Split of B. thermophilus and East Pacific sp. in Group 2 2.660.9

Onset of diversification in Cluster A of Group 2 0.960.4

areference time.
doi:10.1371/journal.pone.0010363.t001

Figure 5. Schematic representation of evolutionary symbiostic transition. Mytilid mussels from shallow water with no symbionts;
Benthomodiolus geikotsucola from whale carcasses haboring extracellular symbionts trapped by microvilli of the host cells; Adipicola pacifica from
whale carcasses haboring extracellular symbionts enclosed by the protrudent host cell membrane; A. crypta from whale carcasses haboring
intracellular symbionts; Bathymodiolus mussels with intracellular symbionts.
doi:10.1371/journal.pone.0010363.g005
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Bathymodiolus boomerang was not genetically discriminated from B.

heckerae by either the COI gene or nuclear rDNA spacer ITS2 [24].

Systematics including possible synonyms should be revised, while

cryptic species must be formally described.

Evolutionary process of Bathymodiolus mussels
After basal trichotomous divergence of the three groups, the

East Pacific subcluster diverged in Group 2. Next the Atlantic and

Indo-West Pacific subclusters split (Fig. 3). However, the

divergence of the three subclusters also appears trichotomous,

because alliance of the latter subclusters was marginally supported.

Divergence of the Atlantic and East Pacific subclusters may have

been caused by the closure of the Isthmus of Panama. The rise of

the Isthmus of Panama began in the middle Miocene (15.5 to 12

MYA), an island chain emerged 13 to 12 MYA, and in the late

Miocene (11.5,8 MYA) terrestrial species were able to move

between North and South America [42]. Although the final

closure was only accomplished by 3 to 3.5 MYA, faunal changes

between the East Pacific Ocean and the Caribbean Sea had begun

long before. The formation of the Isthmus of Panama has exerted

profound effects on shallow-water animals since the late Miocene.

Diversification of reef corals in the Caribbean, followed by an

increase in carbonate-associated benthic foraminiferans, began in

the late Miocene [43]. Snapping shrimps, living at depths of less

than 20 m in mangrove stands and shallow waters, diverged

between the East Pacific and the Caribbean 9 to 3 MYA [44].

Transisthmian divergence of shallow-water gastropods occurred

8.5 to 5.3 MYA [45]. It seems reasonable to consider that the

transisthmian isolation of deep-sea animals preceded that of

shallow-sea animals, although this depends on larval behavior and

physiology. It is not known whether larvae of Bathymodiolus mussels

are transported by bottom currents, but the blocking of larval

transport through the closing transisthmian seaway is more likely

for deep-sea animals than for shallow-water animals. The isotope

composition of hydrogenous ferromanganese crusts from the

western North Atlantic and the central Pacific Oceans suggests

that the compositional shift around 12 MYA might have been

related to the initial shallowing of the Central American Isthmus,

which prevented the access of deep water from the North Atlantic

[46].

It is very difficult to set unequivocal reference times.

Nevertheless, we tentatively set reference times of 12 to 10 MYA

for the split between the Atlantic and East Pacific subclusters. We

provisionally propose here a hypothesis on the evolutionary

process of Bathymodiolus mussels to provide a basis for discussions of

the evolution of deep-sea animals.

According to the evolutionary time estimated by Thorne and

Kishino’s approach (Table 2), the three groups are estimated to

have diverged in the Miocene, when climates changed markedly.

It is generally accepted that transgression and regression

concomitant with global warming and cooling lead to worldwide

dispersal and diversification of sea animals. If this is the case for

deep-sea animals, the ancestor of Bathymodiolus established

worldwide distribution in the sea enlarged by transgression in

the early Miocene. Subsequently, in the early to middle Miocene,

diversification was caused by vicariance due to regression and

plate tectonic events. Our estimate of the onset of bathymodiolin

diversification (ca. 21 MYA) is roughly consistent with the younger

estimate based on 18S rRNA data that showed that the common

ancestor of modern bathymodioline vent and seep species might

have lived as early as 22 MYA [47,48]. If the ancestor of the

Bathymodiolinae originated in the Miocene, it is possible that it

used whale carcasses as evolutionary stepping stones for progres-

sive adaptation from shallow to deep waters, because whale

carcasses have been available since the late Eocene (ca. 39 MYA

[49]).

Species in Group 3 could be relics of cosmopolitans, because

there are only two species, the distribution of which is restricted to

the West Pacific although they have a long history (since ca. 8.4

MYA). Species in Group 1-1 started differentiating ca. 11 MYA,

and the four species in the Okinawa Trough, B. hirtus, B. japonicus,

B. platifrons, and B. securiformis, speciated 3.5 to 9.8 MYA, long

before the formation of the Okinawa Trough (ca. 2 MYA). Thus,

members of Group 1-1 living in the Okinawa Trough speciated

elsewhere and thereafter migrated to the Okinawa Trough [15]. It

is unlikely that species in Group 1-1 are also relics of

cosmopolitans. They are distributed in highly isolated localities,

like Japanese waters and the East and West Atlantic, without any

species in intervening areas. However, our results showed that B.

platifrons from Japanese waters was very closely related to B.

childressi from the West Atlantic and trans-Atlantic B. mauritanicus

(Fig. 3). It is evident that further surveys of novel vent and seep

sites and genetic examination of deep-sea mussels are needed to

discover cryptic members of Groups 3 and 1-1 and to elucidate the

evolutionary history of Bathymodiolus mussels.

Materials and Methods

Materials and sequencing of mitochondrial genes
Specimens used in this study are listed in Table 2 and collection

sites are mapped in Figs. 1 and 2. Sequencing was performed as

described previously [15,18,20]. Since the doubly uniparental

inheritance of mitochondrial DNA is known in some mytilid

mussels, we have included at least five specimens, if available, of

each nominal and cryptic species in our previous analyses to detect

divergent and highly heterogeneous DNA sequences [15,16,19].

However, we used one specimen of each species, because we have

not seen any evidence of doubly uniparental inheritance so far.

Nevertheless, it is not plausible to represent each species by a single

sequence, especially for mytilid mussels from sunken whale

carcasses and wood and shallow water, although many phyloge-

netic studies did so. Heteroplasmy of mitochondrial DNA was

shown even in Bathymodiolus [50].

Phylogenetic analysis
DNA sequences were edited and aligned using DNASIS

(Hitachi Software Engineering Co., Ltd., Tokyo, Japan) and

MEGA 3.1 software [51], and the alignments were corrected by

visual inspection for phylogenetic analysis. We used 401-bp COI

and 423-bp ND4 sequences, excluding ambiguous sites. Dendro-

grams were constructed using the neighbor-joining (NJ) and

maximum parsimony (MP) methods using PAUP*4.0 beta 10

software [52]. Genetic distances were computed using the

Kimura’s two-parameter method [53]. The reliability of trees

was evaluated by producing 1,000 bootstrap replicates. The

majority-rule consensus MP tree was constructed by conducting a

heuristic search based on the 1,000 bootstrap replicates with an

unweighted ts/tv ratio. The Bayesian tree was constructed using

MrBayes version 3.1 software [54] based on the model evaluated

by the Mrmodel test 2.2 [55]. The Monte Carlo Markov chain

(MCMC) length was 56106 generations, and we sampled the

chain after every 100 generations. MCMC convergence was

assessed by calculating the potential scale reduction factor, and the

first 16104 generations were discarded. We used Modiolus nipponicus

(Mytilidae, Modiolinae) as an outgroup species.

Evolutionary divergence times were estimated using the relaxed

molecular clock model implemented in the software Multidivtime

[56,57]. This model depends on the Maximum Likelihood
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Table 2. Sample list.

Species Sample abbreviation Sampling site (locality number in Fig. 1) Depth (m) Habitat type

Bathymodiolinae

Bathymodiolus aduloides AK1 Off Kikaijima Island (1) 1 451 Seep

B. azoricus AZL1 Lucky Strike, Mid-Atlantic Ridge (2) Unknown Vent

B. brevior NF BN Mussele Valley, North Fiji Basin (3) Unknown Vent

B. childressi ChiG1 Gulf of Mexico(4) 1 859 Seep

B. hirtus HK1 Kuroshima Knoll, Off Yaeyama Islands (5) 637 Seep

B. japonicus JH1 Off Hatsushima, Sagami Bay (6) 1 170–1 180 Seep

B. marisindicus MK1 Kairei Field, Southern Central Indian Ridge (7) 2 443–2 454 Vent

B. platifrons PH1 Off Hatsushima, Sagami Bay (6) 1 170–1 180 Seep

B. puteoserpentis PUS1 Snake Pit, Mid-Atlantic Ridge (8) 3 023–3 510 Vent

B. securiformis LK1 Kuroshima Knoll, Off Yaeyama Islands (5) 641 Seep

B. septemdierum SM1 Myojin Knoll, Izu-Ogasawara Island-arc (9) 1 288–1 290 Vent

B. thermophilus ThE1 9N East Pacific Rise (10) 2 524 Vent

Chamorro B. sp. C1 South Chamorro Seamount, Mariana (11) 2 899 Seep

Eifuku B. sp. EF1 Northwest Eifuku Seamount (12) 1 625 Vent

Kikaijima B. sp. Kikaijima Off Kikaijima Island (1) 1 430 Seep

Lau B. sp. 1 Lau1 Hine Hina, Lau Basin (13) 1 818 vent

Lau B. sp. 2 BR1 Hine Hina, Lau Basin (13) 1 818 Vent

B. manusensis BE1 PACKMANUS Field E, Manus Basin (14) 1 627–1 629 Vent

NZ B. sp. Ne1 Off New Zea land (unknown) Unknown Vent

Sissano B. sp. 1 Si2-1 Sissano, Papua New Guinea (15) 1 646 Seep

Sissano B. sp. 2 Si1-1 Sissano, Papua New Guinea (15) 1 881 Seep

Sissano B. sp. 3 Si3-3 Sissano, Papua New Guinea (15) 1 881 Seep

Gigantidas horikoshii Kaikata Kaikata Seamount (16) 486 Vent

Aitape G. sp. Aitape1 Aitape, Papua New Guinea (17) 470 Seep

Ashizuri G. sp. Ashizuri Off Ashizuri Cape (18) 575 Seep

Nikko G. sp. NK1 Nikko Seamount (19) 485 Vent

Sumisu G. sp. Su1 Sumisu Caldera (20) 676–686 Vent

Database

B. brooksi B. brooksiWFE(DB) West Florida Escarpment (21) 3 314 Seep

B. heckerae B. heckeraeWFE(DB) West Florida Escarpment (21) 3 314 Seep

B. mauritanicus B. mauritanicus(DB) West Africa (22) 1 000–1 267 Seep

B. sp. East Pacific B. aff. thermophilus(DB) 32S East Pacific Rise (23) 2 331 Vent

B. sp. NZ3 B. sp. NZ3(DB) Macauley Cone (24) 200 Vent

B. tangaroa B. tangaroa(DB) Off Turnagain Cape, New Zea land (25) 920–1 205 Seep

B. brevior MT B. breviorMT(DB) Mariana Trough (26) 3 589 Vent

Gigantidas gladius Gigantidas gladius(DB) Rumble III (27) 300–460 Vent

Tamu fisheri Tamu fisheri(DB) Garden Banks (28) 546–650 Seep

Modiolinae & Mytilinae

Adipicola crypta ACN1 Off Noma Cape, Kagoshima (29) 225–229 Whale bone

Adipicola iwaotakii AIH1 Off Nakaminato, Ibaraki (30) 490 Wood

Adipicola pacifica APN1 Off Noma Cape, Kagoshima (29) 225–229 Whale bone

Idasola japonica IJN1 Off Noma Cape, Kagoshima (29) 400,425 Wood

Benthomodiolus geikotsucola Tori1-1 Torishima Seamount (31) 4 051 Whale bone

Modiolus nipponicus Modiolus nipponicus Off Oura Harbor, Shizuika - Shallow

Database

Benthomodiolus lignicola Benthomodiolus lignicola(DB) Chatham Rise (32) 826–1 174 Whale bone, Wood

Idas macdonaldi Idas macdonaldi(DB) Garden Banks (28) 650 Seep

Idas washingtonia Idas washingtonia(DB) Monterey Bay (33) 960–1 910 Whale bone, Wood,
Vent

doi:10.1371/journal.pone.0010363.t002

Evolution of Deep-Sea Mussels

PLoS ONE | www.plosone.org 9 April 2010 | Volume 5 | Issue 4 | e10363



topology, which was inferred with PAUP [52] using the

Hasegawa-Kishino-Yano evolutionary model [58] assuming that

rates across sites vary according to a discretized gamma

distribution [59]. Under this relaxed molecular clock model the

proportion of times from internal nodes to the ingroup root node –

the root when we exclude the outgroup and then reroot the tree –

are robust to time scaling [57]. Thus a preliminary run of

Multidivtime without any calibration point was conducted to find

an initial guess for the divergence time of the ingroup root node.

The Multidivtime analysis was conducted assuming a gamma

distribution with mean and standard deviation of 30MYA for the

divergence time of the ingroup root node. Furthermore the

splitting time between the Atlantic and East Pacific subclusters was

calibrated to be between 10 and 12MYA. We then sampled 103

posterior estimates of divergence times and other parameters at

every 104 iterations after discarding the first 105 samples.
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