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Abstract

Understanding the functional implications of changes in gene expression, mutations, etc., is the aim of most genomic
experiments. To achieve this, several functional profiling methods have been proposed. Such methods study the behaviour
of different gene modules (e.g. gene ontology terms) in response to one particular variable (e.g. differential gene
expression). In spite to the wealth of information provided by functional profiling methods, a common limitation to all of
them is their inherent unidimensional nature. In order to overcome this restriction we present a multidimensional logistic
model that allows studying the relationship of gene modules with different genome-scale measurements (e.g. differential
expression, genotyping association, methylation, copy number alterations, heterozygosity, etc.) simultaneously. Moreover,
the relationship of such functional modules with the interactions among the variables can also be studied, which produces
novel results impossible to be derived from the conventional unidimensional functional profiling methods. We report sound
results of gene sets associations that remained undetected by the conventional one-dimensional gene set analysis in several
examples. Our findings demonstrate the potential of the proposed approach for the discovery of new cell functionalities
with complex dependences on more than one variable.
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Introduction

The development of new genomic technologies, such as

microarrays of gene expression, genotyping or array-CGH, along

with the new next-generation sequencing techniques is increasing

the volume of data throughput amazingly. As a direct consequence

of this, the bottleneck in functional genomics has shifted from the

data production phase to the data analysis steps. In particular, the

necessity for providing a functional interpretation at molecular

level that accounts for the genome-scale experimental designs has

promoted the development of different methods for the functional

analysis of this type of data in the last years [1,2].

It is widely accepted that most of the biological functionality of

the cell arises from complex interactions among their molecular

components that define operational interacting entities or modules

[3]. Functions collectively performed by such modules have

conceptually been represented in different ways. Gene ontology

(GO) [4] and KEGG pathways [5] are the most popular and

widely used module definitions although many other are available

in different repositories (e.g., Reactome [6], Biocarta, etc.) For

practical purposes, functional modules are henceforth defined as

sets of genes sharing functional annotations extracted from any of

these repositories. Functional profiling methods exploit different

definitions of modules in an attempt of understanding the

functional basis of high-throughput experimental results [7].

Initially, functional enrichment methods, in different implemen-

tations [7,8], have been used for this purpose. More sensitive

approaches, generically known as gene-set analysis (GSA)

methods, pioneered by the Gene Set Enrichment Analysis (GSEA)

[9], were later proposed [1,10]. In the original formulation, GSA

methods aimed to directly detect sets of functionally related genes

(modules) with a coordinate and significant over- or under-

expression across the complete list of genes ranked according to

their differential expression [9,11,12,13,14,15]. GSA methods can

detect such modules even if their gene components are not

significantly differentially expressed when tested individually. GSA

has been successfully applied to the analysis of microarray

experiments and has contributed to the adoption of a systems-

biology perspective in distinct fields such as cancer [16]. Recent

findings, brought about by the application of GSA methods on

microarray experiments [17] are consistent with the idea that

pathways, rather than individual genes, appear to govern the

course of tumorigenesis [18]. The use of GSA has been extended

to other areas beyond transcriptomics, such as evolution [19],

QTL analysis [20] or genotyping [21].

Nevertheless, the different versions of GSA published to date

[1,2,10] are inherently one-dimensional. Its application to the analysis

of genomic datasets is at present limited to the study of a unique

variable measured for the genes. The experimental conditions

studied, even if corrected by other variables (e.g. age, gender,

treatments, etc.), are typically summarized into a unique value for

each gene (e.g., differential expression in a case-control, risk in the

case of survival analysis, etc.) which is used to rank them accordingly.

Nowadays, the extensive use of different high-throughput

methodologies allows the obtention of different measurements

for the genes such as methylation status, splicing variants, linkage
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to diseases, etc., in a straightforward manner. As an illustration of

this, a pilot study by The Cancer Genome Atlas (http://

cancergenome.nih.gov/) consortium on glioblastomas has recently

been published [22]. In it, different types of transcriptomic and

genomic profiling were obtained and analyzed in an example of

application of different genomic methodologies that would become

routine soon. In addition, different measurements of the same type

in different experimental contexts can easily be done. For instance,

gene expression measurements in case-controls of different, but

mechanistically related experimental conditions, phenotypes,

diseases, treatments, etc. can be easily obtained. In such scenario,

more than one measurement could be obtained to rank the genes

involved in the study. Under the conventional GSA paradigm the

different ranked lists of genes could be analyzed one at a time and

still a good deal of information might be obtained. Nevertheless,

by taking this approach any list of ranked genes is considered

independent from each other and, consequently, behaviour of

functional modules which are dependent on the combination of

the studied ranking variables will, most likely, remain undetected.

Here we focus on a conceptually different strategy for GSA by

extending the gene set based functional analysis to a multidimen-

sional scenario in which more than one variable or genomic

measurement is available for all genes in the study. Logistic

regression allows for fitting models that include more than one

variable. We show here, by means of several examples, how the

application of the multidimensional GSA (MD-GSA) uncovers

biological processes activated by different combinations of

parameters (measured for all the genes and derived from

microarray of other experiments) that would have remained

undetected if the parameters would have been analysed one at a

time, independently.

Results

Gene-set activation dependent on the transcription rates
and mRNA activities in yeast

Gene expression is a process that involves two steps of synthesis

which end when the appropriate level of protein required for

performing a given function is reached. Some processes in the cell

require of a quick activation and/or deactivation, while others

remain in activity for longer periods and their activation processes

do not involve any urgency. Thus, it is expectable different cell

functionalities will use different strategies of gene and protein

expression and degradation. Measurements of these parameters

can be found in a recent genome-wide analysis on common gene

expression strategies in yeast [23]. Using these data, we have

studied two relevant and opposite biological processes that account

for the steady-state mRNA level in the cell: transcription and

stability [24]. The authors used a functional enrichment strategy

[25] to test the GO terms associated to the parameters measured

and to their correlations. Essentially, they used quintiles as cut-off

values and tested for enrichments in the genes showing a high or

low correlation in rates (transcription and translation) or

abundances (mRNA and protein copy number), finding a total

of 22 GO terms significantly over-represented at different

combinations of rates and abundances. Nevertheless, other

interesting situations in which the measurements are not

correlated (e.g. transcription rate and mRNA stability) could not

be analysed with this approach that, in addition, has the

disadvantage of requiring an arbitrary threshold.

Here we analysed the dependences of GO terms on two

measurements, transcription rate (TR) and mRNA stability (RS),

as well as on the interaction between them. When the logistic

Table 1. Significant GO terms when transcription rate and mRNA stability are taken into account in the model.

Log odds ratio (model
coefficients) Adjusted p-value

GO id TR RS inter TR RS inter pattern new GO name

GO:0019953 211.87 20.82 3.29 0.04 0.01 0.02 q3i yes sexual reproduction

GO:0051704 211.98 20.69 3.23 0.04 0.02 0.02 q3i yes multi-organism process

GO:0000819 230.49 20.87 7.1 0.02 0.03 0.02 q3i yes sister chromatid segregation

GO:0006260 220.35 20.97 4.99 0 0 0.01 q3i no DNA replication

GO:0006261 225.15 21.31 6.28 0 0 0.01 q3i no DNA-dependent DNA replication

GO:0022613 24.69 21.78 1.61 0.08 0 0.03 q3i no ribonucleoprotein complex biogenesis and assembly

GO:0042254 25.05 21.91 1.75 0.09 0 0.03 q3i no ribosome biogenesis

GO:0000746 211.48 20.73 3.17 0.06 0.02 0.03 q3i yes conjugation

GO:0000747 211.39 20.74 3.16 0.06 0.02 0.03 q3i yes conjugation with cellular fusion

GO:0042221 26.65 20.12 2.05 0.02 0.6 0.01 q3i yes response to chemical stimulus

GO:0000070 230.23 20.78 7.01 0.03 0.07 0.03 q3i yes mitotic sister chromatid segregation

GO:0019725 29.13 20.38 2.71 0.02 0.15 0.01 q3i yes cellular homeostasis

GO:0042592 28.75 20.3 2.59 0.02 0.27 0.01 q3i yes homeostatic process

GO:0006325 8.01 20.47 23.09 0 0.03 0.01 q4i no establishment and/or maintenance of chromatin architecture

GO:0065004 12.12 20.49 24.6 0 0.21 0.02 q4i no protein-DNA complex assembly

GO:0006323 12.63 20.48 24.96 0 0.15 0.01 q4i no DNA packaging

GO:0006333 12.44 20.4 24.84 0 0.23 0.01 q4i no chromatin assembly or disassembly

GO:0031497 12.51 20.44 24.84 0 0.2 0.01 q4i no chromatin assembly

A total of 18 GO terms were found as significant at FDR-adjusted p,0.05, nine of them were also found by the multivariate analysis. Column new indicates if the term as
been found only because of the interaction factor (yes) or if it was found also in the univariate analysis in one or both dimensions independently.
doi:10.1371/journal.pone.0010348.t001
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model was applied to the mRNA stability and to the transcription

rate independently, we obtained 170 and 80 GO terms

significantly associated to extreme values of these variables (see

Table S1). This increase in the number of GO terms found was

due to the well known fact that GSA strategies are much more

sensitive than threshold-based functional enrichment strategies

[1,10]. Actually, similar results were obtained when other

equivalent GSA strategies were used (data not shown) [11,19].

Nevertheless, the most interesting aspect of this study is the

analysis of the interaction between both variables. Table 1 shows

18 GO terms which were significantly associated to the interaction

between transcription rate and mRNA stability. Figure S1 depicts

the GO terms within the GO hierarchy. Nine of these GO terms

could only be detected when the model takes into account

simultaneously both parameters. In most of the cases, the GO was

associated to both low transcription rate and mRNA stability

(pattern q3i, see methods for an explanation of the patterns) such

as sister chromatid segregation (Figure 1 top) in a subtle way that can

only be detected when both parameters are included in the model.

On the other hand, other processes, such as DNA packaging,

Chromatin assembly (Figure 1 bottom), Chromatin assembly or disassembly

and Establishment and/or maintenance of chromatin architecture (which are

related terms, see File S1), or protein-DNA complex assembly are

associated to high transcription rates but low mRNA stability

(pattern q4i, seemethods ). This last strategy, opposite to the first

one, suggest a transient necessity of these processes, whose genes

are produced at a fast rate but quickly discarded after their

functions have been carried out.

Different strategies of production and degradation, correspond-

ing to different biological requirements of the cell, can be thus

detected by the combined analysis of these parameters.

Gene-set dependences on differential expression and

splicing index. Recent studies have shown that more that

70% of the multi-exon genes, corresponding to about 50% of all

human genes, are predicted to be alternatively spliced [26]. It is

well known that alternative splicing participates in many pathways

and processes. Also alterations in splicing function has been

implicated in many diseases, including neuropathological

conditions such as Alzheimer disease, cystic fibrosis, defects in

growth and development, and many human cancers [27].

The magnitude of the alterations in the splicing process can be

studied through the splicing index. This index accounts for

changes at the exon level that are relative to the expression of the

gene. In particular, the intensity value of an exon’s probeset is

divided by an estimate of the expression level of the transcript

cluster to which the exon belongs to. In this way, a gene-level-

normalized intensity that can be compared across samples or

conditions is created. Changes in this value between case and

control samples provide a quantitative measure of alternative

splicing between the two conditions [28]. Thus each gene in the

data set can be studied both in terms of its differential expression

and its alternative splicing. Our multidimensional logistic model

can be used to explore this two dimensional gene space.

Here we reanalyze data obtained using Affymetrix exon arrays

[29] in which human breast cancer cell lines are compared to non

tumorigenic human breast epithelial cell lines. The parameters

studied by means of the multidimensional logistic model are:

differential gene expression estimates obtained upon the applica-

tion of a t-test for the above mentioned comparison and a splicing

index, that accounts for changes at the exon level that are relative

to the expression of the gene [30].

A total of 141 GO terms were found to be significantly associated

to high values of the differential gene expression dimension (pattern

yh, yl; see methods section). These terms are equivalent to those that

would be found by conventional one-dimensional GSA methods

and, as expected, GO definitions related to cell proliferation, cell

signalling, apoptosis, cellular adhesion, etc., were found among

them. One significant GO term, regulation of viral reproduction, was

significant in the splicing index dimension alone. The trend of the

enrichment was towards the positive values of the splicing index

(pattern xh; see methods section) meaning that genes in the GO term

are ‘‘subordinately’’ more spliced in the tumour than in the normal

tissue (see File S2A).

Another 12 terms were found by the MD-GSA (see Table 2),

whose relationships within the GO hierarchy is depicted in Figure

Figure 1. Combined analysis of transcription rates and mRNA
stability in yeast with the logistic model. RS (mRNA stability) is
represented in vertical axis and TR (transcription rate) is represented in
the horizontal axis for GO terms sister chromatid segregation (top) and
chromatin assembly (bottom). Blue lines intersect in the mean of the
distribution of all the values and red lines intersect in the mean of the
distribution of values of the genes corresponding to the GO term
analysed. Blue ellipse delimits the confidence interval for all the values
and red ellipse delimits the confidence interval for the GO term
analysed. The red ellipse marks the trend of the relationship between
both variables. MD-GSA assigns patterns q3i and q4i respectively to
these functional modules.
doi:10.1371/journal.pone.0010348.g001
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S2. The processes discovered here were related (but yet

undetected) to other processes already detected by the conven-

tional analysis of differential expression (see File S2A). For

example, positive regulation of cell adhesion and its parent regulation of

cell adhesion are descendants of cell adhesion, and two sister processes

(cell-matrix adhesion and cell-substrate adhesion) were found by the

model when the two variables were taken into account, and would

have remained undetected if a conventional, unidimensional GSA

approach would have been used. The patterns for these terms are

bimodal in the two dimensional space (pattern b24, see methods

section) indicating that the genes annotated to them behave as if

they were in two sub-modules. For example, positive regulation of cell

adhesion and its parent processes regulation of cell adhesion, which are

known to be related to cancer, show a bimodal pattern towards the

quadrants 2 and 4 (pattern b24). This means that part of the

annotated genes are more spliced but underexpressed in the

tumour samples while the other part is more spliced but

underexpressed in the control samples (see Figure 2).

An equivalent analysis for KEGG can be found in File S2B.

Gene-sets differentially activated in related diseases: a

case study with psoriasis and dermatitis. The study of gene

expression at genomic level in both psoriasis [31] and dermatitis

[32] and further functional analysis reveals a considerable number

of deregulated pathways when both diseases are compared to their

corresponding healthy samples. Thus, when the multivariate

logistic model was applied to gene lists arranged by differential

expression 172 GO terms were found to be significant only for

dermatitis (patterns xh, xl; see methods section) and 202 only for

psoriasis (patterns yh, yl). Another 77 GO terms were found to be

significant in both, dermatitis and psoriasis but did not show an

interaction effect (patterns q1f, q2f, q3f, q4f) Most of this terms will

also be found by the independent unidimensional analysis of the

dermatitis dataset and the psoriasis dataset. In the case of

dermatitis, terms related to signalling, cell proliferation, immune

system and development of epidermis were found, among others

(see Files S3A and S3B). Similar terms can be found in psoriasis

with some variations (see Files S3A and S3B). A detailed

comparative functional analysis of these diseases is beyond the

scope of this manuscript and we will only focus on the results

obtained when both diseases are simultaneously analysed.

Table 3 shows the GO terms that are significant when both

diseases are taken into account in the logistic model (column

labelled with ‘‘inter’’). Figure S3 shows the GO terms within the

GO hierarchy. The GO terms M phase of mitotic cell cycle (and their

parent terms M phase and cell cycle phase) and cell division where

associated to both diseases in their main effects and also in their

interaction effect (pattern q1i, seemethods ) reinforcing their

relevance in the biological mechanisms underlying both skin

syndromes. Some other GO terms are only significant in the

interaction effect. Their genes show a bimodal behaviour as if the

functional module was composed of two sub-units (pattern b13,

b24; see methods). For instance, GO terms phosphoinositide-mediated

signaling and response to reactive oxygen species have a positive

interaction coefficient, which means that some of the genes of

the module are being coordinately over-expressed in both diseases

while the remaining genes in the GO term are under-expressed

also in both diseases. In a symmetric way, negative regulation of

lymphocyte proliferation (and the parent process negative regulation of

mononuclear cell proliferation) shows a negative interaction. Part of the

genes in these modules increase their expression in dermatitis but

decrease it in psoriasis while the rest of them present the opposite

behaviour. The reduced cutaneous IFNalpha2 transcription which

has been described as a differential characteristic of dermatitis with

respect to psoriasis [32] could be causing this effect detectable in

the analysis when the two variables are included in the model. All

this bimodal terms highlight antagonistic effect, detectable only

trough the combined analysis of both diseases.

Combined analysis of several genomic measurements: a
case study with genotyping, gene expression and copy
number alterations in breast cancer

It is known that mutations or alteration in copy number are related

to cancer and tumour development [33,34]. Current microarray

technologies allow for the measurement of SNP variation and copy

number estimation at the same time [35,36] and have been used to

gain insights into breast cancer [37,38,39], among other diseases.

Table 2. Significant GO terms when differential expression and splicing index are taken into account in the model.

Log odds ratio (model
coefficients) Adjusted p-value

GO id splicing diff.exp inter splicing diff.exp inter pattern GO name

GO:0006767 0.15 20.15 0.14 1 0.61 0.04 b13 water-soluble vitamin metabolic process

GO:0045216 0.29 20.04 0.17 1 0.95 0.02 b13 cell-cell junction assembly and maintenance

GO:0007043 0.38 20.03 0.18 1 0.97 0.02 b13 cell-cell junction assembly

GO:0048706 0.2 0.08 0.17 1 0.89 0.03 b13 embryonic skeletal development

GO:0007034 0.32 20.18 0.17 1 0.65 0.02 b13 vacuolar transport

GO:0007041 0.32 20.1 0.18 1 0.86 0.01 b13 lysosomal transport

GO:0048704 0.23 0.12 0.19 1 0.84 0.02 b13 embryonic skeletal morphogenesis

GO:0048705 0.17 0.1 0.17 1 0.85 0.02 b13 skeletal morphogenesis

GO:0016197 0.08 0.1 0.15 1 0.79 0.02 b13 endosome transport

GO:0030155 0.01 20.16 20.15 1 0.43 0.01 b24 regulation of cell adhesion

GO:0045785 20.04 0.06 20.18 1 0.94 0.02 b24 positive regulation of cell adhesion

GO:0030032 20.16 20.17 20.18 1 0.72 0.03 b24 lamellipodium biogenesis

A total of 12 GO terms were found as significant in the interaction at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t002
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Using the multidimensional logistic model proposed we have re-

analyzed here data from several separated studies previously

collected by us in an integrative analysis of breast cancer disease

[38]. In particular we provide a combined description of GO and

KEGG relationship to different parameters such as SNP associa-

tion, copy number alteration and differential gene expression in

connection to disease outcome (all the data were taken from the

additional information of the above mentioned study, see methods).

When analyzing SNP association data and copy number in

luminal B tumours by the proposed MD-GSA, basal cell carcinoma

KEGG pathway raised up (File S4B) showing a bimodal pattern

towards quadrants 1 and 3 (b13, see methods). This indicates that

the genes in the pathway highly associated to disease are also

increased in their copy number, and that genes not associated to

disease do not have an increased copy number (they may even

have a reduced copy number what would fit with the no

association or even protection of the SNPs to disease). Most

probably, the SNPs are markers associated either to regions

undergoing copy number alterations or to other mutations that

affect the basal cell carcinoma pathway, which obviously underlies

breast cancer disease. The same analysis using the GO reported

some negative bimodal terms (Table 4 and File S4B) like L-amino

acid transport which is known to be involved proliferation processes

[40]. A similar analysis with GO terms can be found in File S4A.

Figure S4 displays the GO terms in Table 4 within the GO

hierarchy.

We also applied the MD-GSA to the variables prognosis and

differential expression in tumours. In the representation (File S5A),

high values in the differential expression dimension indicate

under-expression in tumour while low values indicate over-

expression. Conversely, high values in the prognosis dimension

indicate bad prognosis (if the gene is expressed) while low values in

the prognosis dimension indicate good prognosis (if the gene is

expressed).

Table 5 (more details in File S5A) show results obtained from

the application of the MD-GSA using modules defined with GO

terms. The relationships among them within the GO hierarchy are

depicted in Figure S5. Most of the GO terms related to cell division

and cell cycle show a q2i pattern (see methods) indicating a

significant convergence of their genes in the prognosis and

differential expression dimensions. From the relatively high

prognosis value associated to the genes annotated to this GO

terms we know that, if over expressed they indicate bad prognosis.

From the low values in the t-statistic we know these GO terms are

enriched in the tumours samples. Hence the multivariate logistic

model is pointing out those modules which are dangerous to the

patient if they are activated, and, that are certainly know to be

activated in luminal B tumours. This extended functional analysis

provides the researcher not only with a quick an easy

interpretation of the combined data but also with the additional

information of the interaction term in the model. It is worth

pointing out here that better and more detailed results are

obtained by combining both datasets under the proposed

methodology than by applying independently the univariant

methodology to any of the datasets and summing up the results

obtained. The equivalent MD-GSA for KEGG pathways can be

found in File S5B.

Advantages and limitations of the logistic regression
methodology

The major advantage of the logistic regression methodology is it

flexibility. It can be used in any genomic context in which certain

biological characteristic of a gene is measured using a numerical

scale. This numerical scale may be a continuous ‘‘ranking statistic’’

as described previously [41] or in this paper, but it may also be a

categorical variable [42].

Moreover, many modifications of the logistic model with

potential applications in biology are already statistically developed

and can be used straight forward. Here, for instance we showed

how to extend the methodology to study not one but two gene

characteristics at a time. It is also straightforward to include the

interaction in the model as we showed here. A unidimensional

binary logistic model can be used instead the conventional 262

contingency table alternative because the logistic model easily

Figure 2. Combined analysis of differential gene expression
and splicing index with the logistic model. Differential expression
is represented in vertical axis and splicing index is represented in the
horizontal axis for GO terms positive regulation of cell adhesion
(bottom) and its parent processes regulation of cell adhesion (top). Blue
lines intersect in the mean of the distribution of all the values and red
lines intersect in the mean of the distribution of values of the genes
corresponding to the GO term. Blue ellipse delimits the confidence
interval for all the values and red ellipse delimits the confidence interval
for the GO term analysed. The red ellipse marks the trend of the
relationship between both variables. MD-GSA assigns a bimodal pattern
b24 to these functional modules.
doi:10.1371/journal.pone.0010348.g002

Multidimensional GSA

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e10348



allows for weighting genes [42]. This simplicity of extension is not

at all intrinsic to most other GSA approaches, what makes the

logistic model worth to be explored.

Another advantage of the method is that it does not start from

the original observed data set (gene expression matrix for instance)

but from a ranking statistic that already summarizes the relevant

characteristic under study. This makes the methodology useful in

many genomic contexts beyond the microarray paradigm. One

example of ranking statistic we have discussed is the classical t-test

which, perhaps with some modification, is underneath most GSA

methodologies. For each gene, this statistic measures the biological

characteristic of ‘‘how much’’ the gene is differentially expressed in

a particular biological experiment. But we also exemplified how

the ranking statistic can be a hazard ratio form a Cox model or

other gene-wise variable[19]. In the case of the hazard ratio, the

biological characteristic measured for each gene by the statistic is

the association of expression and risk disease. The GSA for this

second example can be directly carried out using the logistic

methodology and software. On the contrary, most GSA

approaches will require major modifications of their methods

and software to be applied in a case other than differential gene

expression in a class comparison experiment.

Virtually any gene-wise variable can be explored from a GSA

perspective using the logistic regression model. In this paper we

presented examples for the analysis of transcription rates, mRNA

stabilities, splicing, SNP association to disease and copy number

estimation. The analysis of other measurements is possible,

including the evolutionary selective pressure in the human genome

or a study of gene connectivity in the interactome [19]. Other

publications also discuss on the advantage of a methodology that

starts form a single ranking statistic and not from the whole

expression data matrix [42,43].

Having said that, some remarks and warnings should be given

related mainly with the null hypothesis that underpin the method

and p-value computation.

In Sator’s logistic regression approach [41] and in the extension

we are proposing here, the distribution of the ranking statistic

within each module is compared to that of its complement. Thus,

Table 3. Significant GO terms when differential expression of dermatitis and psoriasis are taken into account in the model.

Log odds ratio (model
coefficients) Adjusted p-value

GO id dermatitis psoriasis inter dermatitis psoriasis inter pattern GO name

GO:0022403 20.13 0.36 0.11 0.11 0 0.01 q1i cell cycle phase

GO:0000279 20.06 0.37 0.12 0.55 0 0.03 q1i M phase

GO:0051301 20.1 0.25 0.15 0.36 0 0 q1i cell division

GO:0000087 20.11 0.4 0.12 0.32 0 0.05 q1i M phase of mitotic cell cycle

GO:0048015 0.08 0.07 0.16 0.72 0.68 0.05 b13 phosphoinositide-mediated signaling

GO:0000302 0.24 20.06 0.29 0.59 0.85 0 b13 response to reactive oxygen species

GO:0032945 0.43 0.33 20.79 0.26 0.39 0 b24 negative regulation of mononuclear cell proliferation

GO:0050672 0.43 0.33 20.79 0.26 0.39 0 b24 negative regulation of lymphocyte proliferation

GO:0048589 20.19 20.06 20.59 0.53 0.91 0.04 b24 developmental growth

GO:0007028 0.21 20.11 20.75 0.47 0.83 0 b24 cytoplasm organization and biogenesis

GO:0007043 0.07 20.5 20.91 0.86 0.22 0 b24 cell-cell junction assembly

GO:0045216 0.12 20.26 20.86 0.75 0.59 0 b24 cell-cell junction assembly and maintenance

A total of 12 GO terms were found as significant in the interaction at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t003

Table 4. Significant GO terms when copy number and gene association to the disease (see text) are taken into account in the
model.

Log odds ratio (model coefficients) Adjusted p-value

GO id association
copy
number inter association

copy
number inter pattern GO name

GO:0015807 20.09 20.85 20.59 0.98 0.46 0.04 b24 L-amino acid transport

GO:0032228 20.63 21.21 20.68 0.65 0.24 0.01 b24 regulation of synaptic transmission, GABAergic

GO:0050805 20.94 21.24 20.63 0.22 0.24 0.04 b24 negative regulation of synaptic transmission

GO:0051932 20.82 21.35 20.67 0.49 0.17 0.02 b24 synaptic transmission, GABAergic

GO:0042398 20.77 20.02 0.12 0.04 0.99 1 xl amino acid derivative biosynthetic process

GO:0042401 20.93 0.12 0.2 0.01 0.98 1 xl biogenic amine biosynthetic process

GO:0030216 0.2 0.41 20.03 0.8 0.03 1 yh keratinocyte differentiation

GO:0031424 0.29 0.59 20.01 0.81 0 1 yh keratinization

A total of 8 GO terms were found as significant at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t004
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following Goeman’s nomenclature they are ‘‘competitive’’ tests

[10]. Also, the way p-values are computed in the logistic model

make of this approach a ‘‘gene sampling model’’ methodology

[10].

It has been shown that, in general contexts of gene expression,

where gene measurements are correlated within modules, GSA

approaches that test ‘‘competitive’’ hypothesis based on ‘‘gene

sampling models’’ are anticonservative [10]. This undesirable

property also applies to the main effects of the bivariate logistic

model as we could confirm in simulation studies (only in the case

of internal correlation in the gene sets, which is the case of gene

expression but not of the rest of the measurements used in this

study). Interestingly, the consequence of gene correlation over the

interaction effect, which is the main contribution of the proposed

methodology, was the opposite and makes the method more

conservative (see File S6). One way to avoid the bias of the

particular context of gene expression would be to compute p-

values based on a subject sampling permutation.

Care should be taken also when interpreting p-values from the

method proposed here due to its ‘‘competitive’’ nature and the fact

that it starts from a ranking statistic instead of the original data.

Consequently, p-values test whether the distribution of the ranking

statistic within each module is different to that of the whole

genome. Therefore p-values do not extrapolate directly to the

individual level class comparison which was done in order to

compute the ranking statistic.

Discussion

Functional annotations, such as GO or KEGG pathways, have

been used for the definition of modules of genes, carrying out

common functional roles, in functional profiling methods [1,2]. All

these methods, including the most recent versions, such as the

GSA, can only deal with data that have been preselected or

arranged by a unique variable (e.g. differential gene expression

between cases and controls, etc.) The approach we are presenting

here constitutes a novel and conceptually different proposal for the

functional analysis of genomic experiments. It allows the

simultaneous analysis of several variables, which can account for

different properties of the genes. This approach can detect

interactions between these variables that account for functional

roles dependent on several genomic properties or measurements.

Table 5. Significant GO terms when differential expression and prognosis are taken into account in the model.

Log odds ratio (model coefficients) Adjusted p-value

GO id diff.exp prognosis inter diff.exp prognosis inter pattern GO name

GO:0000087 20.45 20.08 20.42 0.01 0.81 0 q2i M phase of mitotic cell cycle

GO:0000279 20.53 20.07 20.38 0.04 0.85 0 q2i M phase

GO:0000910 20.27 20.09 20.57 0.01 0.95 0 q2i cytokinesis

GO:0007067 20.47 20.07 20.4 0.04 0.9 0 q2i mitosis

GO:0022618 20.22 20.33 20.42 0.03 0.21 0 q2i ribonucleoprotein complex assembly

GO:0051301 20.38 0 20.38 0.01 0.99 0 q2i cell division

GO:0051726 20.01 0.05 20.22 0.03 0.91 0.01 q2i regulation of cell cycle

GO:0045638 0.09 20.35 20.6 0.01 0.65 0.04 q4i negative regulation of myeloid cell differentiation

GO:0000226 20.08 0.16 20.31 0.11 0.47 0.02 b24 microtubule cytoskeleton organization and biogenesis

GO:0000278 20.34 0.04 20.28 0.11 0.94 0 b24 mitotic cell cycle

GO:0007346 20.3 20.08 20.39 0.07 0.9 0 b24 regulation of mitotic cell cycle

GO:0022403 20.42 0 20.31 0.09 0.99 0 b24 cell cycle phase

GO:0042254 20.4 20.45 20.42 0.19 0.1 0.01 b24 ribosome biogenesis

GO:0006412 0.06 20.28 20.2 0.02 0.01 0.07 q4f translation

GO:0006414 0.45 21.12 20.43 0 0 0.28 q4f translational elongation

GO:0042312 0.45 0.08 20.51 0.03 0.97 0.22 xh regulation of vasodilation

GO:0000209 20.25 0.55 0.13 0.94 0.01 1 yh protein polyubiquitination

GO:0006066 0.08 0.2 20.02 0.97 0.02 1 yh alcohol metabolic process

GO:0010033 0.05 0.29 0 0.99 0.02 1 yh response to organic substance

GO:0032944 20.17 20.7 0.06 0.97 0.02 1 yl regulation of mononuclear cell proliferation

GO:0042098 20.18 20.61 0.08 0.95 0.04 1 yl T cell proliferation

GO:0042110 0.03 20.38 0.14 0.75 0.03 0.86 yl T cell activation

GO:0042129 20.33 20.74 20.02 0.99 0.05 1 yl regulation of T cell proliferation

GO:0045321 20.04 20.28 0.06 0.92 0.03 1 yl leukocyte activation

GO:0046649 20.06 20.33 0.07 0.89 0.02 1 yl lymphocyte activation

GO:0046651 20.19 20.49 20.05 0.99 0.05 1 yl lymphocyte proliferation

GO:0050670 20.17 20.7 0.06 0.97 0.02 1 yl regulation of lymphocyte proliferation

GO:0051249 20.06 20.44 0.24 0.52 0.04 0.71 yl regulation of lymphocyte activation

Terms were significant at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t005
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We have used for this purpose a logistic model. It has recently

been shown that the application of the logistic model to one single

variable (differential gene expression in this case) produces results

conceptually similar to the outcome of any conventional GSA

method [41]. The aim here is not to improve the one dimensional

detection of gene modules related to the measurement, but to look

for gene modules that have complex dependences on several

genomic variables or measurements. Thus, in the first example we

show how some functional GO categories depend on particular

combinations of their transcription rates and mRNA stabilities.

Different strategies can be used by the cellular machinery to

ensure, for example, a rapid activation or a long lasting of a

particular team of genes that cannot be explained with only one

variable. Thus, combinations of several variables (e.g. a rapid

transcription rate and a low mRNA stability can be useful for a

rapid release and a rapid deactivation of a transient function) are

on the root of many biological processes. The variables used can

be properties of the genes or can be also measurements of

behaviours such as their expression in a given condition. In the

second case example we have analyzed a combination of gene

property (splicing index) and gene behaviour (differential gene

expression). The MD-GSA was able of detecting biological

processes that depend on combinations of both variables and

would remain undetected if the variables were independently

analyzed. Finally, we applied the same concept to the same type of

measurement (differential gene expression) in two different but

related scenarios: a case control of dermatitis and another case-

control of psoriasis. In this example we were able of finding

common and distinctive altered functionalities of both related

diseases that remained otherwise undetected with the conventional

one-dimensional GSA. The combination of measurements that

can be studied under this framework and their biological relevance

is unimaginable. Thus the relation of biological roles to

combinations of different parameters of different types, such as

gene intrinsic properties (e.g. mRNA stability), gene behaviours

(e.g. level of expression) or gene states (e.g. methylation, SNPs,

copy number), etc., can be easily be studied using this approach.

Summarizing, MD-GSA constitutes a novel approach to the

functional profiling of genome scale experiments that paves the

way for a higher level understanding of the behaviour of functional

modules in the cell.

Materials and Methods

Datasets and data preprocessing
Transcription rates and mRNA stabilities in yeast.

Genome-wide values for the transcription rates (TR) and mRNA

stabilities (RS) of the genes of yeast used in the first sub-section of

results can be found in the supplementary material of the

manuscript by Garcia-Martinez et al. [23].

Gene expression and splicing index. Okoniewski & Miller

[44] used exon arrays to compare breast cancer cell line MCF7

(fetal calf serum) to non tumorgenic breast epithelial cell line

MCF10A (horse serum). They estimated differential gene

expression using standard t-statistics and alternative splicing

using the splicing index described in [30]. Since the splicing

index is defined for each exon, we have used here median values to

provide splicing measurements at a gene level. Thus, we have two

numerical variables recorded for each gene in the study. The first

one assesses the variation in the general expression level. The

second one quantifies the change in splicing pattern of the gene,

independently of its expression levels.

Differential expression in psoriasis and dermatitis.

Expression data from two separated case control experiments

where combined in this analysis. The first experiment consisted of

the comparison of lessional and non lessional skin samples in

atopic dermatitis patients [32] (data were obtained from the GEO

database, accession: GSE5667). The second experiment compared

affected and unaffected skin in psoriatic patients [31] (GEO

database, accession: GSE6710). Separated gene expression

analyses of these two datasets were performed using standard

methods: RMA algorithm [45] was used to normalize data within

each of the experiments. The limma package [46] from

Bioconductor [47] was used to estimate, separately for each of

the studies, differential gene expression between diseased and non-

diseased skin. Hence, two experimental measurements (limma t-

statistics) where generated for each gene and used in the analysis: a

first measurement of differential gene expression in dermatitis and

a second measurement of differential gene expression in psoriasis.

Combined analysis of several breast cancer genomic

measurements. Data used in the combined analysis of

genomic measurements, in the results section, were taken from

the supplementary material of [38]. SNP association to disease was

measured using Odds Ratio (OR) of their corresponding minor

allele frequencies. Then, the magnitude of the association of each

gene to the disease was obtained as the value of association of the

Figure 3. Surfaces described by the logistic model. The surface
described by the logistic model is a plane when the interaction term (c)
is 0 (top) and a hyperbolic paraboloid when the interaction term (c) is
not zero (bottom).
doi:10.1371/journal.pone.0010348.g003
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SNP more associated to the disease among all the SNPs mapping

in the gene (or near the gene and being in linkage disequilibrium)

[21,38]. Differences in gene expression between tumour and

normal breast tissues where estimated using t-statistics. Cox

regression models where used to correlate survival time and gene

expression, yielding a ‘‘prognosis’’ value for each gene (genes with

‘‘high’’ hazard ratios in the Cox model are associated to poor

prognosis; genes with ‘‘low’’ hazard ratios associated to good

prognosis). Another genomic measurements used was the average

copy number for each gene in luminal B tumours, obtained from

the hybridization intensity of the probesets corresponding to each

gene (taken from the additional material of our study [38]).

Annotation Data. Functional modules are defined according

the annotations of the GO [4] and the KEGG Pathway [48]

repositories. Functional modules of more than 500 genes where

considered to be too general to be informative so they where filtered

out. Functional modules having less than 10 genes annotated to them

where considered to be too small to be properly fitted by the

multivariate logistic model and where also discarded.

Multi dimensional GSA (MD-GSA) using a logistic model
that considers more than one variable

Logistic regression is a well established statistical methodology

used to model the probability of occurrence of a binary event as a

function of some other independent variables [49]. In the context

of genomic studies, univariate logistic models have been shown to

be suitable to perform gene set enrichment analysis [41].

Modelling functional class membership in terms of some

measurement, X, of differential gene expression between two

conditions as follows:

ln
P g[Fð Þ
P g6[Fð Þ

� �
~KzaX ð1Þ

we can call the gene set F enriched in one of the conditions a

significant estimate of the a coefficient is obtained [41].

In this paper we extend the use logistic models to perform a

multidimensional gene set enrichment analysis. Our model

describes the probability of a gene belonging to a functional class

as a function of not one, but several experimental measurements.

For two of those measurements the model will be as follows:

ln
P g[Fð Þ
P g6[Fð Þ

� �
~KzaXzbYzcXY ð2Þ

where a and b are the main effects and c is the interaction

effect.

In a case-control study measuring, for instance, gene expression

and genotype, we could model the probability of genes being

annotated to a GO term as a function of both, differential gene

expression (X) and allelic association to disease (Y).

Modelling not only the additive effects but also the interaction

term, we accurately describe how the genes in a gene set are

related to both measurements X and Y together, allowing for the

detection of enrichment patterns which will remain unnoticed in

two independent univariate analyses.

The model in equation (2) describes the log odds ratio of a gene

being annotated to functional module F as a function of two

variables, X and Y. The shape of this surface when embedded in a

3D space is that of a plane if the interaction coefficient c is zero

(Figure 3, top), or a hyperbolic paraboloid, also called saddle surface,

when the estimate of c is different from zero (Figure 3, bottom).

Hence, from the sign and significance of the fitted coefficients, we

can find the direction in the two dimensional space XY in which the

genes annotated to the function F are more likely to be found.

When c is zero the sign of the coefficients a and b describe the

slopes of the plane and therefore, the direction towards which the

probability of genes being annotated is greater. Figure 4 describes

the areas where genes belonging to a functional module are more

likely to be found, depending on the estimated a and b coefficients

of the logistic model (2) and provided that the estimate of c is not

significantly different from zero.

Figure 4. Location of the areas where genes are more likely to be annotated to the function F depending on the coefficients of the
fitted model. When c= 0 the fitted surface is a plane which slope grows towards the area.
doi:10.1371/journal.pone.0010348.g004
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When c is different from zero the interaction dominates the

growth of the log odds ratio while the saddle point in the surface

has the coordinates (2b/c, 2a/c). If for instance, for a particular

functional module F, all estimated coefficients are positive, then,

the saddle point of the hyperbolic paraboloid will be in the third

quadrant and the surface will grow to the infinite in the first

quadrant. As the surface represents how likely we are to find genes

annotated to module F in the plane XY, we will conclude that the

module F is located towards the firs quadrant. Moreover, as the

interaction effect is positive we know that the evidence of this

localization is greater than the one we will get from separated

analysis of each one of the dimensions X and Y on their own

(following equation 1). Then, biological interpretation can be done

recalling the meaning of the X and Y quantities. Figure 5 (top)

describes the areas where genes belonging to a functional module

are more likely to be found, depending on the estimates of a, b and

c and when c is estimated to be different from zero.

If it was the case that just the interaction coefficient c would be

different from zero, then the saddle point will be the (0, 0) and the

genes annotated to functional module F will be allocated to

opposite quadrants of the XY space; the first and the third

quadrant if c.0; the second and the fourth quadrants if c,0. In

this latest case we will call the functional module F bimodal and

the biological interpretation will be that, genes in F are effectively

spited up in two groups of opposite patterns. Figure 5 (bottom)

describes the areas where genes belonging to a functional module

are more likely to be found, if the estimates of a and b are zero.

Table 6 shows how to interpret all possible combinations of a, b
and c estimates.

Wald statistics to test the main effect coefficients and the

interaction effects [41]. Other approaches like likelihood ratio tests

could also have been used.

As one logistic regression model needs to be fit for each

functional module in the analysis, multiple testing occurs and p-

value correction must be performed. In this paper we use

Benjamini and Hochberg [50] approach to correct all p-values

of the same parameter of the model a, b or c.

Implementation
The proposed algorithm has been implemented as an R library

available at http://bioinfo.cipf.es/supplementary/multidimensional_

GSA, released under the GPL license.

Supporting Information

Figure S1 GO terms significantly associated to the interaction

between transcription rate and mRNA stability in yeast. Octagons

represent terms with p-values,0.05, after adjustment for multiple

testing using the popular FDR [48]. White squares represent non-

significant terms connecting the significant terms found. The

picture has been obtained using the GOGraphViewer option of

the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s001 (1.79 MB JPG)

Figure S2 GO terms significantly associated to the interaction

between gene expression and splicing index. Octagons represent

terms with p-values,0.05, after adjustment for multiple testing

using the popular FDR [48]. White squares represent non-

significant terms connecting the significant terms found. The

picture has been obtained using the GOGraphViewer option of

the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s002 (1.07 MB JPG)

Figure S3 GO terms significantly associated to the interaction

between differential gene expression in psoriasis and dermatitis.

Octagons represent terms with p-values,0.05, after adjustment

for multiple testing using the popular FDR [48]. White squares

represent non-significant terms connecting the significant terms

found. The picture has been obtained using the GOGraphViewer

option of the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s003 (1.66 MB JPG)

Figure S4 GO terms significantly associated to the interaction

between copy number and gene association to breast cancer (see

text). Octagons represent terms with p-values,0.05, after

adjustment for multiple testing using the popular FDR [48].

White squares represent non-significant terms connecting the

significant terms found. The picture has been obtained using the

GOGraphViewer option of the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s004 (1.12 MB JPG)

Figure S5 GO terms significantly associated to the interaction

between differential expression and prognosis of breast cancer.

Octagons represent terms with p-values,0.05, after adjustment

for multiple testing using the popular FDR [48]. White squares

represent non-significant terms connecting the significant terms

found. The picture has been obtained using the GOGraphViewer

option of the Babelomics package [49].

Figure 5. Location of the areas where genes are more likely to
be annotated to the function F depending on the coefficients
of the fitted model. If c?0 the fitted surface is a hyperbolic
paraboloid, when a?0 and b?0 (top part) the most likely area to find
genes annotated to F is the quadrant opposite to the saddle point of
the surface. When a= 0 and b= 0 (bottom part) the saddle point of the
surface is in the (0,0) and the genes annotated to the function F are
more likely to be found in two opposite quadrants, reflecting the
bimodality of the function F.
doi:10.1371/journal.pone.0010348.g005
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Found at: doi:10.1371/journal.pone.0010348.s005 (0.76 MB JPG)

Table S1 Excel file containing significant GO terms obtained

upon the application of the logistic model to the mRNA stability

(RS) and to the transcription rate (TR) variables independently.

Found at: doi:10.1371/journal.pone.0010348.s006 (0.19 MB

XLS)

File S1 A) GO Biological Process terms and B) KEGG

pathways, significant for Transcription Rate (TR), RNA Stability

(RS) and their interaction, along with the corresponding graphical

representations. In the plots blue lines intersect in the mean of the

distribution of all the values and red lines intersect in the mean of

the distribution of values of the genes corresponding to the GO

term analysed. Blue ellipse delimits the confidence interval for all

the values and red ellipse delimits the confidence interval for the

GO term analysed. The red ellipse marks the trend of the

relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s007 (9.04 MB

PDF)

File S2 A) GO Biological Process terms and B) KEGG

pathways, significant for alternative splicing and differential gene

expression and their interaction, along with the corresponding

graphical representations. In the plots blue lines intersect in the

mean of the distribution of all the values and red lines intersect in

the mean of the distribution of values of the genes corresponding

to the term analysed. Blue ellipse delimits the confidence interval

for all the values and red ellipse delimits the confidence interval for

the term analysed. The red ellipse marks the trend of the

relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s008 (9.22 MB

PDF)

File S3 A) GO Biological Process terms, and B) KEGG

pathways, significant for differential gene expression in dermatitis

and psoriasis case-control studies and their interaction, along with

the corresponding graphical representations. In the plots blue lines

intersect in the mean of the distribution of all the values and red

lines intersect in the mean of the distribution of values of the genes

corresponding to the term analysed. Blue ellipse delimits the

confidence interval for all the values and red ellipse delimits the

confidence interval for the term analysed. The red ellipse marks

the trend of the relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s009 (30.60 MB

ZIP)

File S4 A) GO Biological Process terms, and B) KEGG

pathways, significant for gene association (derived from genotyp-

ing, see text) association data and genomic copy number in breast

cancer and their interaction, along with the corresponding

graphical representations. In the plots blue lines intersect in the

mean of the distribution of all the values and red lines intersect in

the mean of the distribution of values of the genes corresponding

to the term analysed. Blue ellipse delimits the confidence interval

for all the values and red ellipse delimits the confidence interval for

Table 6. Interpretation of all relevant combinations of a, b and c estimates.

a b cc pattern identifier pattern description

+ + + q1i Quadrant 1 with interaction F is allocated towards one of the quadrants
and the evidence is greater than just the
additive evidences from the univariate analysis.

+ 0 +

0 + +

2 2 + q3i Quadrant 3 with interaction

2 0 +

0 2 +

2 + 2 q2i Quadrant 2 with interaction

2 0 2

0 + 2

+ 2 2 q4i Quadrant 4 with interaction

+ 0 2

0 2 2

0 0 + b13 Bimodal + (quadrants 1 and 3) F is split in two opposite quadrants.

0 0 + b24 Bimodal 2 (quadrants 2 and 4)

+ + 0 q1f Quadrant 1 flat F is allocated towards one of the quadrants
and the evidence is similar to the additive
evidences from the univariate analysis.

2 2 0 q3f Quadrant 3 flat

2 + 0 q2f Quadrant 2 flat

+ 2 0 q4f Quadrant 4 flat

+ 0 0 xh X high (+) values F is enriched just in the first condition.

2 0 0 xl X low (2) values

0 + 0 yh Y high (+) values F is enriched just in the second condition.

0 2 0 yl Y low (2) values

doi:10.1371/journal.pone.0010348.t006
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the term analysed. The red ellipse marks the trend of the

relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s010 (0.80 MB

PDF)

File S5 A) GO Biological Process terms, and B) KEGG

pathways, significant for prognosis and differential expression in

a case-control study of breast cancer and their interaction, along

with the corresponding graphical representations. In the plots blue

lines intersect in the mean of the distribution of all the values and

red lines intersect in the mean of the distribution of values of the

genes corresponding to the term analysed. Blue ellipse delimits the

confidence interval for all the values and red ellipse delimits the

confidence interval for the term analysed. The red ellipse marks

the trend of the relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s011 (2.22 MB

PDF)

File S6 Interaction simulation study. A simulation study of the

bias in p-value estimates for the interaction term of the bivariate

logistic model.

Found at: doi:10.1371/journal.pone.0010348.s012 (0.15 MB

DOC)
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