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Abstract

Background: Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding
the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple
sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer
cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene
transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells.

Results and Principal Findings: We propose an integrative framework that infers gene regulatory modules from the cell
cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology,
and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46
transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory
relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each
transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology
mimics the network motif(s) to which the transcription factor was assigned. Inferred network motifs related to eight well-
known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison
with previously published experimental results.

Conclusions: We established a robust method that can accurately infer underlying relationships between a given
transcription factor and its downstream target genes by integrating different layers of biological data. Our method could
also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is
involved. Such predictions can then be used to design a more streamlined experimental approach for biological validation.
Understanding the dynamics of these modules will shed light on the processes that occur in cancer cells resulting from
errors in cell cycle regulation.
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Introduction

Cell division, ageing, and death are intricately regulated

processes that depend on the balance between various growth

promoting and inhibiting signals. The intricacies of these

processes are defined by complex genetic programs that allow

certain genes to be expressed in a tightly regulated manner. Errors

in regulation cause uncontrolled cell proliferation, a universal

property of tumors. This characteristic is driven by genes that

exhibit abnormal activities in tumor cells, many of which have

important roles in transducing growth-regulating signals to the

nucleus and interfacing these signals to modify gene expression.

While this signaling inevitably contributes to the proliferative

capacity of tumor cells, it is often conceived to do so in a hier-

archical manner, by amplifying the activity of afferent signaling,

ultimately converging on those genes that control cell cycle

progression.

Advances in cancer research during recent years have begun to

uncover the intricate genetic programming of cell cycle progres-

sion. Expression levels of thousands of genes fluctuate throughout

the cancer cell cycle [1,2]. Periodic transcriptional activities of

many genes involved in cell growth, DNA synthesis, spindle pole

body duplication, and transit through the cell cycle have each been

observed [3]. The transcriptional regulatory networks (TRNs)

associated with these activities have been extensively investigated

[4,5,6,7,8]. Further characterization of the genome-wide tran-

scriptional programming of the mammalian cell cycle is a critical

step toward understanding the basic cell cycle processes and their

precise roles in cancer.

Cell cycle gene expression data obtained from Hela cells have

been analyzed with several clustering methods and the genes

organized into functional and regulatory groups [1,2]. Based on

these studies, establishing a robust inference regarding the

regulatory relationships between a certain transcription factor
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and its putative target gene(s) could be better accomplished by

combining gene expression data with information on transcription

factor binding sites and the possible types of interaction based on

existing biological knowledge [9]. Transcriptional activation or

repression depends on the recognition of specific promoter

element sequences by the DNA-binding regulatory protein. How

a specific combination of these proteins associates with genes

across a genome is referred to as TRN. Therefore, it is important

to investigate how these periodic patterns are regulated within the

context of TRN of cell cycling in cancer cells.

Reverse engineering of a global TRN remains challenging due

to several limitations including (1) the high dimensionality of living

cells where tens of thousands of genes act at different temporal and

spatial combinations, (2) each gene interacts virtually with multiple

partners either directly or indirectly, thus possible relationships are

dynamic and non-linear, (3) current high-throughput technologies

generate data that involve a substantial amount of noise, and (4)

the sample size is extremely low compared with the number of

genes [10]. Decomposing a TRN into a small set of recurring

regulatory modules (e.g., network motifs) is a promising strategy to

address this challenge.

We describe the development of an innovative computational

framework that infers complex TRNs by integrating biological data

from multiple sources and utilizing the concept of network motif

modular analysis. The novelty of this computational framework

resides in the decomposition of a complex biological network into

dynamically simple but well characterized network motifs, and the

ability to integrate disparate biological data to derive these network

motifs. The inferred modules provide a rational basis for generating

new hypotheses for subsequent experimental validation. We

demonstrate the capability of this computational framework to

infer regulatory modules associated with the cell cycle progression

in Hela cells by combining information from time-course gene

expression experiments [2], protein-protein interactions (PPI)

[11,12,13,14,15,16,17,18,19,20,21,22], protein-DNA interactions

(PDI) [23], and gene ontology (GO) [24].

Compared with our previously reported strategy, which was

applied to TRN inference in the yeast cell cycle [25], this new

scheme includes an integrative use of PPI and PDI data (hereafter

called molecular interaction data) from thirteen publically

available databases coupled with the detection of significant

network motifs for each transcription factor. Implementation of

this new scheme significantly expanded the scope of the networks

that incorporate deeper sets of known and valuable biological

evidence. Moreover, we have introduced a new cluster validity

method that utilizes the GO annotation to calculate the similarity

of any given pair of genes in a cluster. The partition with the

highest similarity score is selected as the optimal cluster. Small

TRN modules (i.e., network motifs) are readily interpretable and

have the potential to provide insights into new hypotheses. If a

gene cluster is involved in the network motif of a transcription

factor, and most genes have evidence that they are regulated by

that particular transcription factor, it is most likely that other genes

in this cluster have similar regulatory relationships with that

particular transcription factor. The inference capability of our

refined computational framework is verified by various analyses

including gene set enrichment analysis (GSEA), binding site

enrichment analysis (BSEA), and additional literature survey.

Results

Overview of the data integration framework
We considered two different layers of networks in each TRN

based on the analysis of Hela cell cycle data. First is the physical

network that includes PPIs and PDIs at the factor-gene binding

level. Second is the functional network that incorporates the

consequences of these physical interactions, such as the activation

or repression of transcription. We used three types of data to

reconstruct the TRN, namely PPIs derived from a collection of

PPI databases, PDIs from the TRANSFAC database, and the time

course gene expression profiles as published by [2]. The first two

data sources provided direct network information to constrain the

TRN model. The gene expression profiles provided an unambig-

uous measurement on the causal effects of the TRN model. GO

annotation describes the similarities between genes within one

network, which facilitates further characterization of the relation-

ships between genes. The goal was to discern dependencies

between the gene expression patterns and the physical inter-

molecular interactions revealed by complementary data sources.

The framework model for TRN inference by multi-layer data

integration is illustrated in Figure 1. Besides data pre-processing,

three successive steps were involved in this framework as outlined

in the following:

Gene clustering. Genes with similar expression profiles were

represented by a cluster to address the scalability problem in TRN

inference [26]. The assumption is that a subset of genes that are

related in terms of expression (co-regulated) can be grouped

together by virtue of a unifying cis-regulatory element(s) associated

with a common transcription factor regulating each and every

member of the cluster (co-expressed) [27]. GO information was

utilized to define the optimal number of clusters with respect to

certain broad functional categories. Since each cluster mainly

represents one broad biological or process category as evaluated

by FuncAssociate [28]), the regulatory network implies that a

given transcription factor is likely to be involved in the control of a

group of functionally related genes [29].

Network motif assignment to transcription factor. To

reduce the complexity of the inference problem, network motifs

were utilized instead of a global TRN inference. The significant

network motifs in the combined molecular interaction network

were first established and assigned to at least one transcription

factor. These associations were further used to reconstruct the

regulatory modules.

Construction of network motifs for transcription

factor. For each transcription factor assigned to a network

motif, a genetic algorithm (GA) generated candidate gene clusters

for attribution to a transcription factor based on the relationships

established by the network motif. A recurrent neural network

(RNN) was trained to model a TRN that mimics the associated

network motif. GA generated the candidate gene clusters, and

particle swarm optimization (PSO) was used to configure the

parameters of the RNN. Parameters were selected to minimize the

root mean square error (RMSE) between the output of the RNN

and the target gene cluster’s expression pattern. The RMSE was

returned to GA to produce the next generation of candidate gene

clusters. Optimization continued until either a pre-specified

maximum number of iterations was completed or a pre-specified

minimum RMSE was reached. The procedure was repeated for all

transcription factors. Biological knowledge from databases was

used to evaluate the predicted results.

Establishment of optimum number of biologically
significant clusters by cluster validity measurement

Genes that belong to similar or related functional categories and

that exhibit similar patterns of transcription are likely to be

regulated by the same mechanism [30]. Coordinately expressed

genes are likely to be unified by common cis-regulatory elements

and their cognate transcription factor(s) [31,32] but this relation-
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ship is often easily discernible only in cases where the cluster is

comprised of highly to moderately expressed genes. Moreover, in

high dimensional data spaces these single correlations are noisy

and the underlying correlation structure of the data can be

complex [10]. Genes assigned to the same or related functional

categories based on gene ontology are also likely to be regulated by

a common transcription factor [33]. Integrated analysis of

transcript profile data and gene ontology annotation is a more

robust approach for network prediction than a uni-dimensional

approach based on a single layer of information such as univariate

correlation measures.

A total of 846 genes associated with the control of cell cycle have

been identified previously in Hela cells [2]. We further partitioned

these genes into more specific functional groups (Figure 2) by fuzzy

c-means clustering (FCM) [34]. In comparison to traditional K-

means clustering, this scheme provides a more robust strategy that

allows genes with similar expression patterns to be placed in the

same cluster with much reduced background noise [26]. FCM

clustering involves two empirical parameters: fuzziness parameter

m and number of clusters c. The optimal value of m for the dataset

used in this study was 1.1548, which was determined based on the

method proposed by Dembele and Kastner [35].

The optimal cluster number was determined by the semantic

similarity between any gene pair in a single cluster. This is a

knowledge-driven method that aims to estimate the optimal cluster

partition from a collection of candidate partitions and enhances

the predictive reliability and biological relevance of the output.

Semantic similarity between gene pairs was calculated by

combining the similarity scores between the GO terms assigned

to each gene. Relevance similarity measures were used to compute

similarity with respect to the assigned GO terminologies [36]. The

similarity score of all pairs of genes in each cluster of one partition

were averaged and denoted as the overall similarity score for that

particular cluster partition.

The cluster validity assessment method considered all three

ontology branches (cellular component, molecular function, and

biological process) to calculate the similarity scores. The partition

with the highest similarity score was selected as the optimal

partition (Figure 3). We compared the performance of FCM

clustering with the K-mean clustering with respect to two different

m values. One is a default value of 2 and the other is based on the

optimal value of 1.1548 (Figure 2). From this analysis, we observed

that FCM clustering with the optimal m value gives the best

similarity score. The highest similarity score was obtained with 39

Figure 1. Schematic overview of the computational framework used for the network motif regulatory module inference. Gene
expression patterns were first clustered into biologically meaningful groups by FCM; GO category information of genes was used to determine the
optimal cluster number. To evaluate the gene clusters, GSEA was performed on the optimal clusters. Additionally, significant network motifs detected
in the combined network of PPI and PDI were then assigned to each transcription factor. After the gene clusters are formed and transcription factors
were assigned to network motif categories, the connections between transcription factors and gene clusters were inferred by training RNNs that
mimic the topology of the network motifs that transcription factors are assigned to. Finally, the inferred network motifs were validated by BSEA and
literature results.
doi:10.1371/journal.pone.0010268.g001
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clusters, indicating an optimal condition to reduce the search

space for TRN inference.

To evaluate the optimal clusters selected based on GO, GSEA

was applied using the optimal value (Table S1). Each cluster was

enriched in specific biological categories. To further evaluate the

biological significance of the established clusters, GO information

was used to determine whether the clusters have significant

enrichment of one or more terms by using the FuncAssociate

program [28]. This strategy made use of a subset of genes as input

to produce a ranked list (by P-values) of the GO attributes that are

enriched among the input gene subset [24]. The output gave the

GO terms that were significantly enriched in each cluster among

all genes (equal to the total 26,512 human genes in the

FuncAssociate program).

Following this scheme, the total set of genes involved in cell

cycle regulation was further subdivided into 39 clusters (Table S1).

Of these clusters, 31 were clearly associated with GO categories

that imply a more specific function that unifies the members of one

but not other clusters, thereby establishing more direct relation-

ships among certain smaller sub-groups of genes. For example,

clusters 29 and 8 can both be associated with pre-mitotic, mitotic

and post-mitotic events (M-phase). However, members of cluster 8

can be distinguished from the members of cluster 29 by virtue of

their specific roles in chromosome doubling (DNA replication) and

cytokinesis. Conversely, members of cluster 29 can be distin-

guished from the members of cluster 8 by virtue of their specific

roles in spindle fiber assembly and disassembly.

Biological significance of these highly specific functional

relationships, established by our clustering scheme, can further

be extended in terms of relationships within the regulatory context.

For instance, members of both clusters 29 and 8 have been

identified previously as direct downstream targets of E2F factors

(Ren et al., 2002). Similar relationships can be established with

other clusters such as cluster 32, which is comprised of genes with

biochemical roles of a DNA ligase. Thus, the genes in Cluster 32

are involved in processes associated with gap repair or Okazaki

fragment processing during DNA replication and chromosome

doubling. Previous studies have established that genes associated

with this function are under the regulatory control of E2F1 and

PCNA (Shibutani et al, 2008; see further details in Table S2).

Based on all these relationships, one specific strength of our

current method is its ability to distinguish genes that are related by

function in a broad sense and sub-categorizing them into highly

specific (narrow) functional categories, resulting in the prediction

of regulatory relationships that are consistent with biologically

valid relationships.

Assigning transcription factors to network motifs
TRNs are composed of repeated occurrences of network motifs,

which are simple, repeated patterns of conserved biological units

ranging from molecular domains to small reaction networks [37].

Each network motif performs a defined information processing

function within the network. We focused on three-node network

motifs because the majority of the larger size network motifs are

composed maximally of three-nodes [38]. The goal was to assign

each possible cell cycle control associated transcription factor to at

least one network motif according to the combined molecular

interaction network. The goal was achieved by building an RNN

model for all the possible regulatory genes involved in transcrip-

tion based on their specific network motif. The RNN output is a

model that links each bona fide or putative transcriptional regulator

with their downstream target genes.

Figure 2. The FCM clustering scheme. The scheme illustrates the process of grouping genes into biologically meaningful clusters. The gene
expression data were first utilized to find the optimal m value for FCM clustering. With the optimal m value, FCM clustering was performed on gene
expression data for cluster numbers ranging from 2 to 50. The similarity scores of all pairs of genes in each cluster of one partition are averaged and
denoted as overall similarity score for one cluster partition. The partition with the highest similarity score was selected as the optimal one. GSEA was
performed using FuncAssociate to evaluate the gene clusters formed using the optimal cluster number.
doi:10.1371/journal.pone.0010268.g002
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All genes with either direct or indirect roles in the regulation of

transcription were first identified from the total set of 846 cell cycle

associated genes according to GO categories that denote possible

roles in transcription (Ashburner et al., 2000). Candidate genes that

remained after filtering other gene function categories are those

that were assigned to the following putative functions: transcription

factor activity (GO: 0003700), regulation of transcription (GO:

0061019), and transcription factor complex (GO: 0005667). Since

GO information alone may not be sufficient to identify the genes

with bona fide roles as transcription factors, we further filtered our

list of candidate transcription factors by adding another layer of

confirmatory information based on the results of PubMed searches.

This additional annotation allowed us to validate the GO

classification of our candidate genes. The detailed descriptions of

GO terms and specific roles in transcription of candidate TFs used

in this study in Table S3. Among the 846 cell cycle related genes, 46

were annotated with functions related to transcriptional regulation

based on both GO and PubMed databases. These genes were

considered as putative transcription factors.

In the microarray data, genes are often represented by multiple

oligonucleotide probes. Genes represented by probe sets with

larger variance were further considered in this study (Zhang et al.,

2007). We decomposed the TRN into several network motifs, with

each network motif potentially associated with a given transcrip-

tion factor(s). A total of four network motifs were found to be

significant in the combined molecular interaction network

(Figure 4), thus each transcription factor was assigned to at least

one of these network motifs.

Inferring network motif regulatory modules between
transcription factors and gene clusters

The relationships between transcription factors and gene clusters

were determined based on RNN models. For each of the four

network motifs (Figure 4), a suitable RNN was built as we

previously described [25]. The RNN models were trained using the

hybrid genetic algorithm – particle swarm optimization (GA-PSO)

to find the downstream gene clusters for all 46 putative trans-

cription factors. Associations between each transcription factor and

39 gene clusters was determined by training the RNN model that

mimics the specific network motif for a given transcription factor.

Due to a reduction in the computational complexity (mapping

between 46 transcription factors and 39 gene clusters instead of

846 genes), the numbers of GA and PSO generations needed to

reach the pre-specified minimum RMSE was significantly reduced.

The PSO generation for RNN was set to 1000 [39]. The minimum

value of RMSE decreased as the number of generations increased

(Table 1). The minimum RMSE for GA generations 600 and 800

were 0.077 and 0.075, respectively. Based on 600 GA generations,

our inference method successfully assigned all 46 putative trans-

cription factors to their target gene clusters and inferred the

most likely transcriptional regulatory network motifs (TRNMs; see

Figure 4 for representative TRNMs).

The validity and accuracy of the network depicted by the

TRNMs can be assessed by comparison with a network model

constructed based on actual biological data. In the absence of such

information, we performed an initial validation of the network by

searching for known gene connections in databases. Based on the

network motif module prediction results, we collected literature

evidence from the NCBI and TRANSFAC [40] databases. We

reviewed each predicted network motif and examined the

relationships between the transcription factor and its target gene

cluster(s). Subsequent analysis was performed under the basic

assumption that the inferred network motif is more likely to be

biologically meaningful if the transcription factors therein are

correlated with the enriched biological functions in the down-

stream clusters.

Figure 3. Clustering results obtained using K-mean and FCM algorithms. Three clustering results were plotted: k-means clustering and FCM
clustering with two m values (m is the fuzziness parameter): default value (m = 2) and optimal value (m = 1.1548).
doi:10.1371/journal.pone.0010268.g003
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Figure 4. Predicted network motif from known cell cycle dependent genes. The left panel presents the four network motif regulatory
modules considered in this study. The right panel depicts inferred transcription factor-target gene relationships for eight cell cycle dependent
transcription factors.
doi:10.1371/journal.pone.0010268.g004
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Significant network motifs resulting from the survey of available

literature cell cycle dependent genes such as E2F1, E2F2, SP1,

BRCA1, STAT1, PCNA, RBPSUH, and HMGB2 are listed in

Figure 4. Based on the combined information, the biological

implication of the network can be explained. For instance, E2F

is a transcription factor that plays a crucial role in cell-cycle

progression in mammalian cells [41]. E2F1, which contains two

overlapping E2F-binding sites in its promoter region, is activated

at the G1/S transition in an E2F-dependent manner. E2F2

interacts with certain elements in the E2F1 promoter and both

genes are involved in DNA replication and repair [42], cytokinesis,

and tumor development [43]. According to the GSEA results,

Cluster 8 is enriched with genes involved in mitosis and

cytokinesis, and Cluster 34 is enriched with genes involved in

several functional categories associated with tumor development.

As shown in Figure 4, both Cluster 8 and 34 are predicted to be

regulated by E2F1 and E2F2, and these results are in agreement

with previous reports based on biological data [41,43].

Our analysis predicts that E2F1 and PCNA are components

of the same network. Both of these genes are involved in the

regulation of clusters 32 and 34. The best understood molecular

function of the PCNA protein is its role in the regulation of

eukaryotic DNA polymerase delta processivity, which ensures the

fidelity of DNA synthesis and repair [44]. However, recent studies

have provided evidence that the PCNA protein also functions as a

direct repressor of the transcriptional coactivator p300 [45].

Another study shows that PCNA represses the transcriptional

activity of retinoic acid receptors (RARs) [46]. Thus, the

involvement of these genes in the same network, as predicted by

our network inference algorithm, is strongly supported by

knowledge of regulatory relationships already established in

experimental data. The results of our prediction are in agreement

with these reports since both Clusters 8 and 32 are enriched with

genes involved in DNA synthesis and regulatory processes.

We took three approaches to investigate further whether the

genes predicted to be regulated by E2F genes in Clusters 8, 32 and

34 are validated in classical non-genome wide methods. First, we

investigated how many ‘‘known’’ E2F1 and E2F2 targets are

predicted by our proposed method. According to Bracken et al.

[47], 130 genes were reviewed as E2F targets, 44 of which were

originally identified by classical, non-genome-wide approaches.

Since we restricted our analysis to the 846 cell cycle related genes,

45 genes matched the E2F target genes listed in ref. [47], 21 of

which were known from studies using classical molecular biology

analyses. The gene targets predicted by our method match 15 of

45 genes, all 15 of which are among those found originally using

standard molecular biology experiments. One possible reason

is that genome-wide approaches are usually highly noisy and

inconsistent across different studies. The detailed information

about these genes is listed in Table S4.

Second, we wanted to see whether our predicted gene target

clusters are enriched in the corresponding binding sites for the

transcription factors in their upstream region. For both E2F1 and

E2F2, 7 out of 17 genes in Cluster 8 contain binding sites in their

upstream regions as confirmed by data in the SABiosciences database

(http://www.sabiosciences.com/chipqpcrsearch.php?app = TFBS).

Finally, we determined how many genes in the gene clusters

have E2F binding sites. We applied the motif discovery tool,

WebMOTIFS [48] to find shared motifs in the gene clusters

predicted to the E2F targets using binding site enrichment analysis

(BSEA). The results revealed that a motif called E2F_TDP,

GCGSSAAA, is identified as the most significant motif among

gene clusters 2, 8, 29, 31, 32 and 34. Unfortunately, for Clusters

30 and 36 the number of genes in these clusters is too small for

WebMOTIFS analysis. All these gene clusters are predicted to the

downstream targets of E2F. For instance, 43 out of 52 genes in

Cluster 2 have putative E2F binding sites in their upstream

regions. The detailed information of BSEA results is shown in

Figure 5. For those TRNMs for which two transcription factors

are involved, we also find these downstream gene clusters are

enriched in both the binding site sequence motifs. For instance,

Cluster 32 is enriched in both E2F_TDP and MH1 motifs,

corresponding to the two transcription factors in the TRNM:

E2F1 and SP1. These BSEA results strongly support our inference

results.

We also performed an additional analysis of the results

presented in Figure 4 using the Ingenuity Pathway Analysis

(IPA) software (IngenuityH Systems, www.ingenuity.com). This

tool uses a knowledge base of over one million known functional

relationships among proteins. Results of the analysis of the BRCA1,

STAT1, E2F1, and E2F2-related networks are shown in Figures 6,

7, 8 and 9. These networks were reconstructed based of the

putative transcription factors and genes in the predicted network

motifs. All the networks confirmed the inferred relationships

between TFs and some of the genes in their downstream target

clusters. For example, as shown in Figure 6, BRCA1 regulates two

clusters that interact with each other and with the network

reconstructed by IPA. Some genes in the clusters show indirect

regulations through intermediate genes, such as BRCA1 acting

through MLLT4 and RAD18. Figure 7 depicts a predicted network

motif in which BRCA1 and STAT1 regulate all three genes in

Cluster 36. Figure 8 shows a predicted network motif with E2F1

and E2F2 interacting with each other and regulating the genes in

Cluster 34. Figure 9 presents a motif where E2F2 and PCNA bind

together to activate expression of downstream genes in Cluster 34.

For all the other predicted network motifs, the networks

reconstructed by the IPA software are presented in the Figures

S1, Figure S2, Figure S3, Figure S4, Figure S5, Figure S6, Figure

S7 and Figure S8. The notable consistency between IPA and the

results from our method indicates that our approach can generate

realistic hypotheses for further biological experimental validation.

Discussion

Reconstruction of TRNs is one of the major challenges in the

post-genomics era of biology. In this study, we focused on two

broad issues in TRN inference: (1) development of an analysis

method that utilizes multiple types of data and (2) network analysis

at the network motif level. Based on the information presented, we

propose a data integration approach that effectively infers the gene

networks underlying certain patterns of gene co-regulation in Hela

cell cycling. The predictive strength of this strategy is based on the

Table 1. The experimental results of GA-PSO with RNN.

GA generations Average RMSE Minimum RMSE

100 1.27 0.78

200 0.84 0.40

400 0.62 0.12

600 0.35 0.077

800 0.31 0.075

The average and least RMSEs obtained between the output of RNN and the
measured expression pattern for the gene clusters are shown as the number of
GA generation is varied from 100 to 800.
doi:10.1371/journal.pone.0010268.t001
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combined constraints arising from multiple biological data sources,

including time course gene expression data, combined molecular

interaction network data, and GO category information.

This computational framework allows us to fully exploit the

partial constraints that can be inferred from each data source.

First, to reduce the inference dimensionalities, the genes were

grouped into clusters by FCM, where the optimal fuzziness

value was determined by statistical properties of gene expression

data. The optimal cluster number was identified by integrating

GO category information. Second, the network motif informa-

tion established from the combined molecular interaction net-

work was used to assign network motif(s) to a given transcription

factor. Once the network motif(s) for a transcription factor was

identified, a hybrid GA-PSO algorithm was applied to search

for target gene clusters that may be regulated by that particular

transcription factor. This search was guided by the successful

training of a RNN model that mimics the regulatory network

motif(s) assigned to the transcription factor. The effectiveness

of this method was illustrated via eight well-studied cell cycle

dependent transcription factors (Figure 4). The upstream BSEA

Figure 5. Binding site enrichment analysis for gene clusters. Sequence logos represent the motif significantly overrepresented in individual
gene cluster associated with their predicted upstream transcription factors, according to the WebMOTIFS discovery algorithm [48]. Individual base
letter height indicates level of conservation within each binding site position. Conserved binding motifs are the conserved binding sequences used in
the WebMOTIFS discovery algorithm.
doi:10.1371/journal.pone.0010268.g005
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indicated that the proposed method has the potential to identify

the underlying regulatory relationships between transcrip-

tion factors and their downstream genes at the network motif

level. This demonstrates that our approach can serve as a

method for analyzing multi-source data at the network motif

level.

Compared to the approach developed in [49], our proposed

method has several advantages. First, our method performs the

inference of TRNs from genome-wide expression data together

with other biological knowledge. It has been shown that mRNA

expression data alone cannot reflect all the activities in one TRN.

Additional information will help constrain the search space of

Figure 6. Ingenuity analysis for BRCA1-related network motif: A predicted network motif, where BRCA1 regulates two clusters
which interact with each other (top right corner), and a network reconstructed by the IPA software. Shaded genes are genes identified
in the network motif and others are those associated with the identified genes based on pathway analysis.
doi:10.1371/journal.pone.0010268.g006
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causal relationships between transcription factors and their

downstream genes. Second, we decompose the TRN into well

characterized functional units - network motifs. Each transcription

factor is assigned to specific network motif(s), which is further used

to infer the downstream target genes. We not only reduce the

search space in the inference process, but also provide experi-

mental biologists the regulatory modules for straightforward

validation, instead of one whole TRN containing thousands of

genes and connections as is often generated by IPA. Third, we

group the genes into functional groups that are potentially

regulated by one common transcription factor. The proposed

approach reduces the noise in mRNA expression data by

incorporating gene functional annotations (e.g., GO).

In summary, we demonstrate that our method can accurately

infer the underlying relationships between transcription factor and

the downstream target genes by integrating multi-sources of

biological data. As the first attempt to integrate many different

types of data, we believe that the proposed framework will improve

data analysis, particularly as more data sets become available. Our

method could also be beneficial to biologists by predicting the

components of the TRN in which their candidate gene is involved,

followed by designing a more streamlined experiment for

biological validation.

Materials and Methods

Data sources
The Hela cell cycle data used in the study [2] consists of

five time courses (114 total arrays). RNA samples were collected

for points (typically every 1–2 h) for 30 h (Thy-Thy1), 44 h

(Thy-Thy2), 46 h (Thy-Thy3), 36 h (Thy-Noc), or 14 h (shake)

after the synchronous arrest. The cell-cycle related gene set

contains 1,134 clones corresponding to 874 UNIGENE clusters

(UNIGENE build 143). Of these, 1,072 have corresponding

Entrez gene IDs, among which 226 have more than one

mapping to clones. In total, 846 genes were used for TRN

Figure 7. Ingenuity analysis for BRCA1 and STAT1-related network motif: A predicted network motif, in which BRCA1 and STAT1
regulate all three genes in Cluster 36 (top right corner), and a network reconstructed by the IPA software. Shaded genes are genes
identified in the network motif and others are those associated with the identified genes based on pathway analysis.
doi:10.1371/journal.pone.0010268.g007
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inference. Also, we choose the Thy-Thy3 time course gene

expression pattern for 846 genes, since it has the largest number

of time points (47).

Protein-protein interations in human cells are extracted from

twelve publicly available large-scale protein interaction maps,

seven of which are based on information from scientific literature

Figure 8. Ingenuity analysis for E2F1 and E2F2-related network motif: A predicted network motif with E2F1 and E2F2 interacting
with each other and regulating the genes in Cluster 34 (top left corner), and a network reconstructed by the IPA software. Shaded
genes are genes identified in the network motif and others are those associated with the identified genes based on pathway analysis.
doi:10.1371/journal.pone.0010268.g008
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literature-based, three on orthology information, and two on

results of previous yeast two-hybrid (Y2H) analyses. The analysis is

restricted to binary interactions in order to make consistent Y2H-

based interactions and the remaining maps. Detailed information

about the twelve maps is shown in Table 2. To merge twelve

interaction maps into one combination map, all proteins are

mapped to their corresponding Entrez gene IDs. The human PDI

data is extracted from the TRANSFAC database (http://www.

gene-regulation.com/pub/databases.html; [23]). The data set

consists of 20,473 protein pairs connected by PPIs and 2,546

protein pairs connected as PDIs. The human interaction network

related to the 846 genes is extracted based on the interactions

among these genes and constructed a network with 1,328 PPIs and

569 PDIs. The analysis is based on network representation of PPIs

and PDIs. A node represents both the gene and its protein

product. A PPI is represented by a bi-directed edge connecting the

interacting proteins. A PDI is an interaction between a

transcription factor and its target gene and is represented by a

directed edge pointing from the transcription factor to its target

gene.

The GO term definitions are taken from the monthly release

from August 2008.

Data preprocessing
From the time course gene expression data, 846 genes were

previously identified as cell cycle regulated based on analysis

combining a Fourier algorithm and a correlation algorithm [50].

These genes are functionally annotated based on GO information.

Missing values in the data are imputed using K-nearest neighbour

(KNN) imputation [32]. The expression pattern of each gene is

standardized between 21 and 1. Known network motifs are

extracted from the combined molecular interaction network.

Figure 9. Ingenuity analysis for E2F and PCNA-related network motif: A predicted network motif where E2F2 and PCNA bind
together and regulate downstream genes in Cluster 34 (top left corner), and a network reconstructed by the IPA software. Shaded
genes are genes identified in the network motif and others are those associated with the identified genes based on pathway analysis.
doi:10.1371/journal.pone.0010268.g009

Gene Regulatory Modules

PLoS ONE | www.plosone.org 12 April 2010 | Volume 5 | Issue 4 | e10268



Soft clustering method
A soft clustering approach using FCM [35] was used to cluster

genes into biologically meaningful groups. The FCM Matlab

toolbox [35] was used. Parameters for FCM were set as default

except the following two: the fuzziness parameter m, and the

cluster number c.

An empirical method [35] was used to determine m; the method

determines an adequate value for m based on the distribution of

distances between genes.

The optimal cluster number c was evaluated by the shared GO

annotation within one cluster. Semantic similarity between gene

products was calculated by combining the similarity scores

between the GO terms annotated to each gene product. To

estimate GO-based similarity scores of gene products, Schliker’s

measure was applied to compute GO term similarity. These

measures take relevance information into account by combining

Lin’s and Resnik’s similarity measures [51,52]. The mgeneSim

function of the SemSim Package of Bioconductor [53] was used to

perform this function. This algorithm calculates pairwise similarity

scores for a list of genes with GO annotation available. The larger

the similarity score, the more shared functions these genes share.

Identification of network motifs
All connected subnetworks containing three nodes in the

interaction network were collated into isomorphic patterns, and

the number of times each pattern occurred was counted. If the

number of occurrences is at least five and significantly higher than

in randomized networks, the pattern is considered as a network

motif. The statistical significance test was performed by generating

1000 randomized networks and computing the fraction of

randomized networks in which the pattern appeared at least as

often as in the interaction network, as described in detail in [38]. A

pattern with p#0.05 was considered statistically significant. This

network motif discovery procedure is performed using the

FANMOD software [54].

Network motif construction for each transcription factor
A RNN was used to construct a model of the network motif for

each transcription factor. Due to its capability to capture the

nonlinear properties and dynamic relationships, RNNs have been

applied for TRN inference [39,55,56]. For each of the four

significant network motifs in Figure 4, a suitable RNN is built. A

detailed description about RNN training can be found in [25].

Supporting Information

Table S1 39 clusters and their corresponding enriched GO

categories.

Found at: doi:10.1371/journal.pone.0010268.s001 (0.03 MB

PDF)

Table S2 Details of gene clusters considered in this study.

Found at: doi:10.1371/journal.pone.0010268.s002 (0.09 MB

PDF)

Table S3 A list of 46 transcription factors in human cell cycle

selected as candidates to regulate downstream target genes.

Found at: doi:10.1371/journal.pone.0010268.s003 (0.03 MB

PDF)

Table S4 Identified E2F target genes.

Found at: doi:10.1371/journal.pone.0010268.s004 (0.04 MB

PDF)

Figure S1 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s005 (0.24 MB TIF)

Figure S2 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s006 (0.22 MB TIF)

Figure S3 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s007 (0.23 MB TIF)

Figure S4 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s008 (0.25 MB TIF)

Figure S5 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s009 (0.19 MB TIF)

Figure S6 Ingenuity analysis result for a predicted network

motif.

Table 2. Networks included in this study.

Networks Proteins Interactions Methodsa References Versionb

MDC-Y2H 1703 3186 Y2H-ASSAY Stelzl et al 2005 Cell (Stelzl et al. 2005) 23.09.2005

CCSB-Y2H 1549 2754 Y2H-ASSAY Rual et al 2005 Nature (Rual et al. 2005) 31.10.2005

HPRD 8788 32776 LITERATURE Peri et al 2003 Genome Research (Peri et al. 2003) 22.08.2008

DIP 1085 1397 LITERATURE Salwinski L et al. NAR Database issue 2006 (Salwinski et al. 2004) 01.03.2007

BIND 5286 7394 LITERATURE Bader et al 2001 NAR (Bader et al. 2001) 01.03.2007

BioGrid 7953 24624 LITERATURE Stark et al 2006 NAR (Stark et al. 2006) 22.08.2008

IntAct 7273 19404 LITERATURE Hermjakob et al 2004 NAR (Hermjakob et al. 2004) 22.08.2008

COCIT 3737 6580 TEXT-MINING Ramani et al. 2004 Genome Biology (Ramani et al. 2005) 18.11.2005

REACTOME 1554 37332 LITERATURE Joshi-Tope,G et al. 2005 NAR (Joshi-Tope et al. 2005) 01.03.2007

ORTHO 6225 71466 ORTHOLOGY Lehner et al 2003 Genome Biology (Lehner and Fraser 2004) 17.11.2005

HOMOMINT 4127 10174 ORTHOLOGY Persico et al 2005 BMC Bioinformatics (Persico et al. 2005) 01.06.2006

OPHID 4785 24991 ORTHOLOGY Brown et al 2005 Bioinformatics (Brown and Jurisica 2005) 14.12.2005

The table displays the number of proteins and the number of interactions derived from each map.
aMethods refers to the approach taken from the construction of the corresponding map.
bVersion describes the date of data downloaded for each dataset.
doi:10.1371/journal.pone.0010268.t002
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Found at: doi:10.1371/journal.pone.0010268.s010 (0.22 MB TIF)

Figure S7 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s011 (0.19 MB TIF)

Figure S8 Ingenuity analysis result for a predicted network

motif.

Found at: doi:10.1371/journal.pone.0010268.s012 (0.22 MB TIF)
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