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Abstract

Pandemic 2009 influenza A virus (A/H1N1/2009) has emerged globally. In this study, we performed a comprehensive
detection of potential pathogens by de novo sequencing using a next-generation DNA sequencer on total RNAs extracted
from an autopsy lung of a patient who died of viral pneumonia with A/H1N1/2009. Among a total of 9.46106 40-mer short
reads, more than 98% appeared to be human, while 0.85% were identified as A/H1N1/2009 (A/Nagano/RC1-L/2009(H1N1)).
Suspected bacterial reads such as Streptococcus pneumoniae and other oral bacteria flora were very low at 0.005%, and a
significant bacterial infection was not histologically observed. De novo assembly and read mapping analysis of A/Nagano/
RC1-L/2009(H1N1) showed more than6200 coverage on average, and revealed nucleotide heterogeneity on hemagglutinin
as quasispecies, specifically at two amino acids (Gly172Glu and Gly239Asn of HA) located on the Sa and Ca2 antigenic sites,
respectively. Gly239 and Asn239 on antigenic site Ca2 appeared to be minor amino acids compared with the highly
distributed Asp239 in H1N1 HAs. This study demonstrated that de novo sequencing can comprehensively detect pathogens,
and such in-depth investigation facilitates the identification of influenza A viral heterogeneity. To better characterize the A/
H1N1/2009 virus, unbiased comprehensive techniques will be indispensable for the primary investigations of emerging
infectious diseases.
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Introduction

In April 2009, an H1N1 triple-reassortant swine influenza virus

(A/H1N1/2009) was detected in humans with febrile respiratory

illness in North America [1], and the virus has rapidly spread

worldwide by human-to-human transmission. According to the

disease outbreak news from the World Health Organization, at

least 14,711 people died from A/H1N1/2009 between April 2009

and January 2010 (http://www.who.int/csr/don/en/). Fatal cases

from A/H1N1/2009 viral infection were summarized in a report

by Gill et al. [2].

The genome of influenza A virus (family Orthomyxoviridae)

consists of 8 single-stranded negative sense RNA molecules

spanning approximately 13.5 kb. The segments range in length

from 890 to 2341 nucleotides (nt) and encode a total of 11 proteins

[3]. Genetic diversity in influenza virus results from a high

mutation rate associated with replication using a low-fidelity RNA

polymerase and the reshuffling (reassortment) of segments among

coinfecting strains. Multiple-reassortant influenza viruses from

avian, human, and swine origins emerged as major pandemic

influenza viruses (i.e., 1918 H1N1, 1957 H2N2, and 1968 H3N2)

causing significant mortality in humans in the 20th century [4].

Such an ‘‘antigenic shift’’ by multiple reassortant drives the

emergence of pandemic influenza viruses, with their severity and

clinical outcome always unpredictable [5].

Influenza A virus can evade antibodies specific to its attachment

protein, hemagglutinin (HA), by the accumulation of amino acid

substitutions in HA epitopes [6]. This ‘‘antigenic drift’’ in HA

epitopes [7] affects recognition by antibodies that neutralize viral

infectivity by blocking the interaction of HA with sialic acid

residues on host-cell membranes. The H1 subtype HA has four

antigenic sites recognized by monoclonal antibodies with high

neutralizing activity, designated Sa, Sb, Ca, and Cb [8]. In

addition, 8 continuous B cell/antibody epitopes for human H1N1

HA proteins have been experimentally defined by the Immune

Epitope Database and Analysis Resource (IEDB: http://www.

immuneepitope.org/) [9]. Immune epitope analysis of HA

epitopes in A/H1N1/2009 is also summarized in the Influenza

Research Database (http://www.fludb.org/brc/homeExtraPage.

do?decorator=influenza&extraPage=separate) [10].
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To better predict a future pandemic of influenza A virus, the

characterization of possible antigenic drift will be indispensable.

Igarashi et al. and Shen et al. reported that a structural comparison

of HAs could predict probable future antigenic changes during the

evolution of A/H1N1/2009 in the human population [11,12].

In addition to this prediction, extensive investigations on viral

quasispecies will be required to reveal the actual appearance of

those antigenic changes. Nakamura et al. demonstrated the direct

detection of potential pathogens, including influenza virus, using

de novo pyrosequencing [13], but the detection appeared to have

insufficient redundant sequencing reads to reveal the genetic

variation of the viruses. Ramakrishnan et al. demonstrated the

discrimination of quasispecies in mixed HA subtype infections of

influenza A virus using the same pyrosequencing approach [14].

However, it was shown that the influenza viral RNA sample

should be enriched through sequence-specific oligonucleotide

capturing prior to pyrosequencing, indicating that such enrich-

ment might represent a biased result.

Here, we performed de novo sequencing using total RNAs

extracted from an autopsy lung of a patient infected with A/

H1N1/2009, and detected potential pathogens such as bacteria in

addition to A/H1N1/2009. Extensive DNA sequencing using the

Illumina Genome Analyzer II (GA II) revealed that quasispecies

for the HA sequence were generated in single patient. Such

heterogeneity demonstrated the antigenic drift of HA, implying

the existence of a mechanism to escape pre-existing human

immunity to the virus.

Results

Summary of sequencing reads and detection of potential
pathogens

To determine the influenza A virus sequence and other

potential pathogens, we performed de novo sequencing of double-

stranded cDNA from total RNA extracted from the autopsy lung

of a patient infected with the A/H1N1/2009 virus (A/Nagano/

RC1/2009(H1N1)) in August 2009 in Japan. The patient was

found to be positive for A/H1N1/2009 by real-time reverse

transcriptase-polymerase chain reaction (RT-PCR); histopatho-

logical findings were also reported [15]. GA II produced 9.46106

40-mer reads from the cDNA library (Fig. 1B). To exclude the

human-derived read sequences, we performed an analysis pipeline

as follows (Fig. 1A). Initially, all 9,475,890 reads were aligned to a

reference sequence of human genomic DNA, followed by quality

trimming to remove low-quality reads and excluding reads with

similarities to ambiguous human sequences, resulting in 9,309,538

reads (98.24%) with a possible human source (Fig. 1B). The

remaining 166,352 reads (1.75%) were further analyzed using a

BLAST search against non-redundant databases, revealing 80,827

(0.85%), 469 (0.005%), and 85,056 (0.90%) reads as influenza A

virus, bacteria, and no hits, respectively (Fig. 1B).

Regarding the bacterial hits, species classification was deter-

mined based on the results of a BLASTN search against the nt

database (Fig. 1C). The most abundant bacterium was Propioni-

bacterium acnes, but our other sequencing trials for clinical

specimens suggest that this species is always detected (data not

shown). Therefore, the presence of P. acnes could be the result of

contamination at some point from the autopsy to the preparation

of the cDNA library. In addition to P. acnes, Escherichia coli and

Acinetobacter baumannii were frequently detected as possible

contaminants. Suspected bacterial pathogens were identified as

Streptococcus pneumoniae and Porphyromonas gingivalis. Specific PCR

using 16S-rDNA and the lytA gene was performed for further

verification of the presence of S. pneumoniae (data not shown).

Although S. pneumoniae was not sufficiently abundant to conclude a

coinfection with A/H1N1/2009, the severity of the A/H1N1/

2009 infection could be correlated with S. pneumoniae, as reported

by Palacios et al [16]. The other detected bacteria, such as

Streptococcus sp., generally constitute the normal human oral flora.

de novo assembly of the A/H1N1/2009 virus
Whole 40-mer short reads, including human-derived reads,

were assembled using Euler-SR or the Velvet de novo assembler.

The resultant contigs generated using Euler-SR had longer

extended sequences than those generated using Velvet (data not

shown); thus, all further analyses were performed using the contigs

generated using Euler-SR (Texts S1 and S2). All contigs showed

high similarity to the sequences of A/H1N1/2009 (Table 1).

Among the 8 segments, almost the whole lengths of segments 2

(2321 nt), 3 (2231 nt), 4 (1765 nt), 5 (1562 nt), 7 (1026 nt), and 8

(892 nt) were correctly assembled as single contigs of 2204, 2198,

1761, 1514, 1019, and 834 nt, respectively (Table 1 and Fig. 2).

Segments 1 and 6 were divided into several contigs, but were

correctly aligned to the known sequences (Table 1 and Fig. 2).

Read mapping analysis of the A/H1N1/2009 virus
To obtain whole sequences and identify single nucleotide

polymorphisms (SNPs) for the 8 segments, the 40-mer short reads

were aligned to the sequence of A/Tronto/T0106/2009(H1N1),

which was found to be the most similar to the A/H1N1/2009

virus using a BLASTN search. Figure 2 shows dot plot images of

the coverage at every nucleotide of the segments. Read coverage

was observed at ,6200 on average for all segments, indicating a

sufficient redundancy to identify the viral sequences and SNPs.

The obtained viral sequences, designated as A/Nagano/RC1-L/

2009(H1N1), were consistent with those from A/Nagano/RC1/

2009(H1N1) passaged in the Madin-Darby canine kidney

(MDCK) cell line, except for 3 possible heterogeneous nucleotides

in HA.

The coverage plot curves were not flat throughout the segments.

Intriguingly, both ends of segment 1 (encoding PB2), the 39–end of

segment 3 (encoding PA), and approximately 700 nt of segment 8

(encoding NS) showed significant abundant coverage greater than

61000.

Genetic population analysis of the A/H1N1/2009 virus
To identify heterogeneous populations, alignment results were

screened using MapView software (Fig. 3B). Three potential

heterogeneous genetic populations were found in segment 4

(encoding HA) at the 515, 715, and 716 nt positions (Fig. 3A), but

not in other segments. The read alignments shown in Fig. 3B

indicate that either the GGT or AAT sequence appeared at the

715–717 nt position, but not the GAT or AGT sequence. In

addition, the read coverage implied that the major (GG; HA-

Major) or minor (AA; HA-Minor) nucleotides were detected at the

frequencies of 75% and 25%, respectively. To validate these

variations, HA-Major- or HA-Minor-specific quantitative RT-

PCR (qRT-PCR) was performed for the preparation of specific

PCR products between the 434 and 738 nt in the HA coding

sequence (Fig. 3C). qRT-PCR demonstrated that the expression of

HA was ,40,000-fold greater than that of human b-actin, and the

expression ratio of HA-Major/HA-Minor was 4.05, suggesting

that it corresponds to the read mapping shown in Fig. 3A.

Furthermore, HA-Major and HA-Minor sequences were verified

by Sanger DNA sequencing of the specific PCR products (Fig. 3D).

Taken together, these results suggest the following amino acid

substitutions of HA: one nucleotide alteration causes Gly172Glu

and the other two alterations cause Gly239Asn (Fig. 3D).

Quasispecies of A/H1N1/2009
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Epitope analysis of heterogeneous HA
To elucidate whether the Gly172Glu and Gly239Asn amino acid

substitutions in the HA sequence could be associated with

antigenic drift, they were compared to known potential epitopes

[8,9]. Representative HA amino acid sequences of the H1N1

influenza A virus were aligned with the heterogeneous HA-Major

and HA-Minor sequences. The Gly172Glu substitution (corre-

sponding to Gly158 in the mature HA lacking a signal peptide)

was located on the Sa antigenic site (Fig. 4A).

The HA Gly172Glu substitution is likely to be rare thus far

because a BLASTP search against the non-redundant nr database

revealed only two identical hits, A/Bayern/62/2009(H1N1) in

Germany and A/Catalonia/S1207/2009(H1N1) in Spain (data

not shown). One intriguing hit was to A/Pennsylvania/14/

2009(H1N1) isolated in the US, whose HA sequence has an Xaa

amino acid at position 172 due to the presence of the

heterogeneous nucleotide R (A or G) (Fig. 5A). This deposited

sequence completely coincides with our observation, suggesting

that two variants of HAs are likely to coexist in the human lung,

further implying that such heterogeneous populations might

frequently be generated during infection.

Furthermore, HA Gly239Asn was located on the Ca2 antigenic

site that contributes to binding with the host’s sialic acid receptor

[17]. Asp239 (corresponding to Asp225 in the mature HA lacking

a signal peptide) was frequently distributed in H1N1 HAs (Fig. 4B),

but Gly239 and Asn239 were found to be minor amino acids

among HAs; a BLASTN search found 18 and 5 hit entries on the

nt database, respectively. As was observed for Gly172, Xaa239

Figure 1. Detection of potential pathogens by comprehensive de novo sequencing. (A) Schematic representation of the analysis pipeline
for the detection of pathogens from comprehensive sequencing of human clinical specimens. After excluding human-derived DNA sequences using
Maq software and a BLAST homology search against human genomic DNA and human ambiguous sequences extracted from the nt database, the
remaining short reads were subjected to a BLAST search to detect potential pathogens. (B) Pie chart of the homology search results for the 40-mer
short reads. Read numbers and their percentage to the total reads are shown in parenthesis. (C) Pie chart of identified bacterial hits. Number of hit
reads is shown in parenthesis. Bacteria with less than 5 hit reads were excluded.
doi:10.1371/journal.pone.0010256.g001

Quasispecies of A/H1N1/2009
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was found in the nt database (Fig. 5B), suggesting that HA

heterogeneity of both minor amino acids may affect its binding

affinity to the sialic acid receptor.

Discussion

In this study, we demonstrated the detection of potential

pathogens using a next-generation DNA sequencer. We speculated

that, in addition to influenza A virus, additional potential

pathogens such as S. pneumoniae could contribute to the severity

and fatality of infection with the A/H1N1/2009 virus [2,16]. In

this case, the amount of bacteria detected was small (Fig. 1B and

1C), and they were considered to be the result of contamination

during the course of the experiment, from autopsy to short read

sequencing. The clinical outcome of the patient and histopatho-

logical examination suggest that this was a case of influenza viral

pneumonia rather than bacterial infection [15], although S.

pneumoniae coinfection has been reported to play a crucial role in

the severity of influenza virus infection in some cases [16,18].

In the present autopsy lung sample, very significant viral copies

(,40,000-fold greater than b-actin) were determined using qRT-

PCR, but this was not always observed in autopsy samples from

other patients (less than b-actin) (data not shown). Such abundant

read sequencing enabled us to obtain almost full-coverage contig

sequences for the viral segments using de novo assembly, suggesting

the importance of this result in terms of being able to evaluate

uncharacterized emerging infectious agents using an unbiased

sequencing technique at the outbreak of a pandemic. Indeed, this

study demonstrated that whole contigs can be identified as A/

H1N1/2009, but not seasonal H1N1 or other subtypes (Table 1).

The read coverage profile generated by mapping was very

indicative for segment 1 encoding PB2 (Fig. 2). Both ends were

highly redundant with up to 63000 coverage. The coverage is

reflected by the amounts of vRNA, cRNA, and mRNA of

influenza A virus, implying that the coverage bias may detect a

more stable region as it is dependent on the expression level or

manner of replication.

Contrary to the viral sequences obtained for A/Nagano/RC1/

2009(H1N1) isolated from passaging in MDCK cells, de novo

sequencing revealed the presence of A/Nagano/RC1-L/

2009(H1N1) HA quasispecies in the autopsy sample (Fig. 3).

Despite the fact that immunity to A/H1N1/2009 viruses is

supposed to be limited among the general human population [19],

we detected the amino acid substitution Gly172Glu in the HA Sa

antigenic site in A/Nagano/RC1-L/2009(H1N1), and this

appears to be a very rare event among A/H1N1/2009 viruses

to date.

We also observed another substitution of Gly239Asn in the HA

Ca2 antigenic site of A/Nagano/RC1-L/2009(H1N1). This

antigenic site plays a crucial role in conferring specificity to

galactose of the human a2-6 sialylated glycan receptor [20].

Interestingly, Asp239 (corresponding to Asp225 in the mature HA

that lacks a signal peptide) is highly prevalent in known H1N1

HAs, indicating that both Gly239 and Asn239 appear to be very

minor amino acids among all HA sequences.

Thus far, amino acid substitutions in the HAs of A/H1N1/2009

have been identified compared with seasonal H1N1 HAs.

Homology-based structural investigations [17,21] suggest that A/

H1N1/2009 HA has the necessary residues to provide optimal

contacts for high affinity binding to a2-6 sialylated glycans present

Table 1. BLASTN search results of de novo assembly contigs against database of Influenza virus sequences.

Euler-SR_contigs

Contig
length
(bp)

Virus
segment

Top hit of accession number using BLASTN search
against databse of Influenza virus sequences

Length of
subject (bp) Identities

Contig location
for A/Toronto/
T0106/2009(H1N1)

.826 183 2835 183 1 gb|GQ328865|INFLUENZA A virus (A/Finland/553/
2009(H1N1)) segment 1 polymerase PB2 (PB2)

2345 167/168 (99%) 5–168

.324 1558 136 1558 1 gb|GQ365425|INFLUENZA A virus (A/Fukushima/1/
2009(H1N1)) segment 1 polymerase PB2 (PB2)

2280 1556/1558 (99%) 201–1758

.1194 239 112 239 1 gb|GQ894926|INFLUENZA A virus (A/Delaware/03/
2009(H1N1)) segment 1 polymerase PB2 (PB2)

2280 214/214 (100%) 1894–2107

.887 174 3294 174 1 gb|GQ894833|INFLUENZA A virus (A/Rhode Island/08/
2009(H1N1)) segment 1 polymerase PB2 (PB2)

2280 156/156 (100%) 2145–2300

.890 2204 4651 2204 2 gb|GQ894924|INFLUENZA A virus (A/New Mexico/04/
2009(H1N1)) segment 2 polymerase PB1 (PB1)

2274 2200/2204 (99%) 41–2244

.696 2198 3968 2198 3 gb|GQ866924|INFLUENZA A virus (A/Thailand/CU-H106/
2009(H1N1)) segment 3 polymerase PA (PA)

2238 2152/2155 (99%) 54–2208

.868 1761 3831 1761 4 gb|CY045503|INFLUENZA A virus (A/Bayern/66/
2009(H1N1)) segment 4 sequence

1754 1750/1754 (99%) 1–1741

.897 1514 1710 1514 5 gb|GQ502907|INFLUENZA A virus (A/Toronto/R8557/
2009(H1N1)) segment 5 nucleocapsid protein

1558 1511/1514 (99%) 36–1549

.224 101 9 101 6 gb|GQ502908|INFLUENZA A virus (A/Toronto/R8557/
2009(H1N1)) segment 6 neuraminidase (NA)

1458 101/101 (100%) 3–103

.1206 1302 2468 1302 6 gb|GQ906584|INFLUENZA A virus (A/Stockholm/49/
2009(H1N1)) segment 6 neuraminidase (NA)

1447 1299/1300 (99%) 124–1423

.750 1019 1128 1019 7 gb|CY045957|INFLUENZA A virus (A/Toronto/T0106/
2009(H1N1)) segment 7 sequence

1026 1017/1017 (100%) 9–1025

.809 834 4399 834 8 gb|GQ485660|INFLUENZA A virus (A/Ekaterinburg/01/
2009(H1N1)) segment 8 nuclear export

877 828/830 (99%) 52–881

Schematic representation of contigs is shown in Fig. 2.
doi:10.1371/journal.pone.0010256.t001

Quasispecies of A/H1N1/2009
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in the human upper airway [22], while it apparently shows

minimal contact with a2-3 sialylated glycans present in the human

lower respiratory tract [23]. Indeed, the recombinant A/H1N1/

2009 HA has been characterized to exhibit lower binding to the

alveolar tissue of the lower respiratory tract [17]. However, we

previously detected abundant viral nucleoprotein of A/Nagano/

Figure 2. Dot plot of short read coverage (Cov.) at every nucleotide for the 8 segments of A/Nagano/RC1-L/2009(H1N1). To obtain
the consensus sequences for the respective 8 segments, 40-mer short reads were aligned to the complete segment sequences of A/Tronto/T0106/
2009(H1N1) (gb|CY045951.1 – .8). Short read sequencing was performed using total RNA including human RNA, and also vRNA, cRNA, and mRNA
from influenza A virus; thus, coverage bias was detected throughout the segments, but the average coverage (AC) is likely to be similar at
approximately 6200 or more. The horizontal red arrows show the location of the contigs obtained by de novo assembly, as shown in Table 1.
doi:10.1371/journal.pone.0010256.g002

Figure 3. Genetic variations of the HA nucleotide sequence. (A) Schematic representation of 3 nucleotide variations (positions 515, 715, and
716 nt) in the HA coding nucleotide sequence. Three variations were classified as Major (75% appearance) or Minor (25% appearance) by read
coverage (6), and the coding amino acids are also shown. (B) Arrows indicate positions 715 and 716 nt of the HA sequence, and the alignment image
of the 40-mer reads. Nucleotides shown in red are the mismatches to the reference sequence of A/Tronto/T0106/2009(H1N1). Every read suggested
that either the GGT or AAT sequence was present, but not the GAT or AGT sequence. (C) An amplification plot for HA-specific qRT-PCR. (D) Validation
of genetic variation by Sanger capillary sequencing. HA-Major or HA-Minor PCR products were obtained by qRT-PCR using HA-Major- or HA-Minor-
specific PCR primers. HA-Major PCR product shows G nucleotides at positions 515, 715, and 716 nt, while HA-Minor shows A nucleotides.
doi:10.1371/journal.pone.0010256.g003
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RC1-L/2009(H1N1) in pneumocytes expressing a2-3 sialylated

glycans in autopsy lung tissue sections [15], suggesting that the

above substitutions could affect the binding affinity to both types of

sialylated glycans.

Very suggestive reports predicted the possible future antigenic

drift of A/H1N1/2009 viruses from viral sequence and structural

comparative analyses [11,12]. Prior to the initiation of the current

study (September 2009), Igarashi et al. predicted possible

substitutions and these included the two amino acid substitutions

presented here (Gly172Glu and Asp239Gly) [11]. Furthermore,

Shen et al. suggested that host-driven antigenic drift based on

evolutionary trends appeared to favor Asp239 (corresponding to

Asp225 in the mature HA) in swine HAs and the 1918 pandemic,

while Asp204 (corresponding to Asp190 in the mature HA) was

favored in seasonal H1N1 HAs [12]. These predictions are very

attractive and our experiments demonstrated one of them a

posteriori. Furthermore, recent study has shown that receptor-

binding avidity can influence antigenic drift [24]. HA antigenic

sites Sa is the membrane proximal region, therefore, the identified

variations on both Sa and Ca2 might contribute to the alteration

of antigenicity and receptor-binding avidity by synergistic effect.

The newly identified Asn239 substitution could be a probable

candidate for further investigation of the manner of viral binding

to sialic acid on the host receptors.

In conclusion, this study demonstrated that de novo sequencing

can comprehensively detect pathogens, and such in-depth

Figure 4. Alignment of HA amino acid sequences in influenza A virus around the identified mutations in A/Nagano/RC1-L/
2009(H1N1). (A) Genetic variation at position 515 nt causes the amino acid substitution Gly172Glu; HA-Major: Gly172, HA-Minor: Glu172. (B) Genetic
variation at position 715 and 716 nt causes the amino acid substitution Gly239Asn; HA-Major: Gly239, HA-Minor: Asn239.
doi:10.1371/journal.pone.0010256.g004

Quasispecies of A/H1N1/2009
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investigation facilitates the identification of influenza A viral

heterogeneity during infection. The possibility of mixed infections

with variants remains to be elucidated in this case, but worldwide

sequencing efforts suggest that quasispecies of the A/H1N1/2009

virus evidently appear and are observed. To better characterize

the currently emerging A/H1N1/2009 virus and prevent worse

pandemics in the near future, unbiased de novo sequencing

techniques will be indispensable for the primary investigations of

emerging infectious diseases.

Materials and Methods

Ethics Statement
The study protocol was approved by the institutional medical

ethical committee, National Institute of Infectious Diseases, Japan

(Approval No.236), and the study was conducted according to the

Declaration of Helsinki Principles. In the autopsy case, a written

consent for autopsy was obtained from relatives.

Total RNA and cDNA preparation from autopsy human
lung

Information for the patient was previously reported [15].

Briefly, in August 2009, a 33-year-old male patient with chronic

heart failure due to dilated cardiomyopathy, mild diabetes

mellitus, atopic dermatitis, asthma, and obesity (BMI: 38) died

from respiratory failure and multiple organ dysfunction syndrome.

A diagnosis of pandemic influenza A virus (A/H1N1/2009)

infection was determined using RT-PCR testing in a clinical

laboratory. Total RNA was prepared from a 5-mm cube of the

autopsy lung tissue using ISOGEN (NipponGene, Japan), followed

by Ambion TurboDNase treatment (Ambion, Austin, TX USA).

Double-stranded cDNA was prepared from 5 mg of total RNA

using the random priming method with SuperScript Choice

System for cDNA synthesis (Invitrogen, Carlsbad, CA, USA).

cDNA was purified using a QIAquick PCR Purification kit

(QIAGEN, Hilden, Germany).

Short-read DNA sequencing using the Illumina Genome
Analyzer II

An approximately 300-bp length cDNA library was prepared

using a genomic DNA sample prep kit (Illumina, San Diego, CA,

USA), and DNA clusters were generated on a slide using a Cluster

Generation kit (ver. 2) on an Illumina cluster station (Illumina),

according to the manufacturer’s instructions. To obtain ,1.06107

clusters for one lane, the general procedure as described in the

standard recipe (Illumina) was performed as follows: template

hybridization, isothermal amplification, linearization, blocking,

denaturation, and hybridization of the sequencing primer

(Illumina). All sequencing runs for 40 mers were performed with

GA II using the Illumina Sequencing kit (ver. 3). Fluorescent

images were analyzed using the Illumina base-calling pipeline

1.4.0 to obtain FASTQ formatted sequence data.

Homology search analysis
The obtained DNA sequences were investigated using a BLAST

search as shown in Fig. 1A. The results of the BLASTN search

were analyzed and visualized using MEGAN v3.7.4 [25] with the

following parameters: minimum support, 5; minimum score, 35.0.

de novo assembly of short reads
Prior to de novo assembly, all obtained 40-mer reads were

trimmed based on the phred quality value obtained using the Euler-

SR qualitytrimmer command [26]. Such trimmed read sequences

were assembled using Velvet v0.7.55 [27] or Euler-SR v1.0 [26]

with the default parameters (Velvet: hash length, 25; Euler-SR:

vertex size, 25).

Read mapping
To obtain consensus sequences for the respective 8 segments of

influenza A virus, 40-mer short reads were aligned to A/Tronto/

T0106/2009(H1N1) sequences (gb|CY045951.1 – .8) as reference

sequences with Maq software (ver. 0.7.1) [28] using the easyrun

Perl-command. The consensus sequences were extracted as a

‘‘cns.fq’’ file for each segment, and deposited in the DNA Data

Bank of Japan (DDBJ; accession numbers: AB538386 to

AB538393 for the 8 segments of A/Nagano/RC1-L/

2009(H1N1), and AB538394 for segment 4 encoding the HA-

Minor sequence). Read coverage at every nucleotide was obtained

using Maq software (ver. 0.7.1) with the pileup command. Read

alignment for the validation of SNPs was performed using the

MapView graphical alignment viewer [29].

qRT-PCR analysis
qRT-PCR was performed using 100 ng of total RNA, HA

variant-specific primers (forward common primer: pdmFlu09-HA-

F, 59–CGAACAAAGGTGTAACGGCAGCAT–39; HA-Major-

specific reverse primer: pdmFlu-HA-R_Major, 59–ATAGTT-

CATTCTCCCTTCTTGACC–39; HA-Minor-specific reverse

primer: 59–ATAGTTCATTCTCCCTTCTTGATT–39), and

Figure 5. BLAST homology search of the HA sequences against
the nr or nt databases. (A) Glu172 of HA-Minor. (B) Gly239 of HA-
Major. R: A or G.
doi:10.1371/journal.pone.0010256.g005
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the SuperScript III Platinum SYBR Green One-Step qRT-PCR

kit with ROX (Invitrogen), and analyzed using the ABI PRISM

7900HT Real-time PCR System (Applied Biosystems, Foster City,

CA, USA). The following qRT-PCR program was used: RT

reaction, 50uC for 3 min; initial denaturation, 95uC for 5 min; 2

steps of amplification (640 cycles), 95uC for 15 sec and 60uC for

30 sec. The human b-actin gene was used as the internal control.

PCR products were resolved by 5% polyacrylamide gel electro-

phoresis, followed by Sanger sequencing using the BigDye

Terminator v3.1 Cycle Sequencing kit (Applied Biosystems).

Virus isolation
The A/H1N1/2009 virus was isolated from MDCK cells

passaged once with trypsin.

Supporting Information

Text S1 Fastq file of the 40-mer short reads with similarity to

influenza A virus extracted from whole obtained short reads.

Found at: doi:10.1371/journal.pone.0010256.s001 (11.19 MB

PDF)

Text S2 De novo assembly of the influenza A virus using Euler-

SR v1.0 [26] with the default parameters (vertex size, 25).

Found at: doi:10.1371/journal.pone.0010256.s002 (0.04 MB

RTF)

Acknowledgments

We thank Tadahito Kanda for valuable suggestions.

Author Contributions

Conceived and designed the experiments: MK TS. Performed the

experiments: MK HK TS YS. Analyzed the data: MK HK TS HH.

Contributed reagents/materials/analysis tools: HK NN MT AA MT YA

SH MW TS. Wrote the paper: MK.

References

1. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, et al. (2009) Emergence

of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:
2605–2615.

2. Gill JR, Sheng ZM, Ely SF, Guinee DG, Beasley MB, et al. (2010) Pulmonary

pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections.
Arch Pathol Lab Med 134: 235–243.

3. Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, et al. (2005)
Large-scale sequencing of human influenza reveals the dynamic nature of viral

genome evolution. Nature 437: 1162–1166.

4. Kilbourne ED (2006) Influenza pandemics of the 20th century. Emerg Infect Dis
12: 9–14.

5. Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, et al. (2008)
Multiple reassortment events in the evolutionary history of H1N1 influenza A

virus since 1918. PLoS Pathog 4: e1000012.
6. Knossow M, Skehel JJ (2006) Variation and infectivity neutralization in

influenza. Immunology 119: 1–7.

7. Air GM, Laver WG, Webster RG (1987) Antigenic variation in influenza
viruses. Contrib Microbiol Immunol 8: 20–59.

8. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982) The antigenic
structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell

31: 417–427.

9. Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell
epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad

Sci U S A 104: 246–251.
10. Squires B, Macken C, Garcia-Sastre A, Godbole S, Noronha J, et al. (2008)

BioHealthBase: informatics support in the elucidation of influenza virus host
pathogen interactions and virulence. Nucleic Acids Res 36: D497–503.

11. Igarashi M, Ito K, Yoshida R, Tomabechi D, Kida H, et al. (2010) Predicting

the antigenic structure of the pandemic (H1N1) 2009 influenza virus
hemagglutinin. PLoS One 5: e8553.

12. Shen J, Ma J, Wang Q (2009) Evolutionary trends of A(H1N1) influenza virus
hemagglutinin since 1918. PLoS One 4: e7789.

13. Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, et al. (2009) Direct

metagenomic detection of viral pathogens in nasal and fecal specimens using an
unbiased high-throughput sequencing approach. PLoS One 4: e4219.

14. Ramakrishnan MA, Tu ZJ, Singh S, Chockalingam AK, Gramer MR, et al.
(2009) The feasibility of using high resolution genome sequencing of influenza a

viruses to detect mixed infections and quasispecies. PLoS One 4: e7105.
15. Nakajima N, Hata S, Sato Y, Tobiume M, Katano H, et al. (2010) The first

autopsy case of pandemic influenza (A/H1N1pdm) virus infection in Japan:

Detection of high copy number of the virus in type II alveolar epithelial cells by

pathological and virological examination. Jpn J Infect Dis 63: 67–71.

16. Palacios G, Hornig M, Cisterna D, Savji N, Bussetti AV, et al. (2009) Streptococcus

pneumoniae coinfection is correlated with the severity of H1N1 pandemic

influenza. PLoS One 4: e8540.

17. Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, et al. (2009)

Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses

in ferrets and mice. Science 325: 484–487.

18. Louie J, Jean C, Chen T-H, Park S, Ueki R, et al. (2009) Bacterial coinfections in

lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) -

United States, May-August 2009. MMWR Morb Mortal Wkly Rep 58:

1071–1074.

19. Greenbaum JA, Kotturi MF, Kim Y, Oseroff C, Vaughan K, et al. (2009) Pre-

existing immunity against swine-origin H1N1 influenza viruses in the general

human population. Proc Natl Acad Sci U S A 106: 20365–20370.

20. Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, et al. (2004) The

structure and receptor binding properties of the 1918 influenza hemagglutinin.

Science 303: 1838–1842.

21. Soundararajan V, Tharakaraman K, Raman R, Raguram S, Shriver Z, et al.

(2009) Extrapolating from sequence–the 2009 H1N1 ‘swine’ influenza virus. Nat

Biotechnol 27: 510–513.

22. Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, et al.

(2008) Glycan topology determines human adaptation of avian H5N1 virus

hemagglutinin. Nat Biotechnol 26: 107–113.

23. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, et al. (2006) Avian flu:

influenza virus receptors in the human airway. Nature 440: 435–436.

24. Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, et al. (2009)

Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift.

Science 326: 734–736.

25. Mitra S, Klar B, Huson DH (2009) Visual and statistical comparison of

metagenomes. Bioinformatics 25: 1849–1855.

26. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial

genomes. Genome Res 18: 324–330.

27. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 18: 821–829.

28. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Res 18: 1851–1858.

29. Bao H, Guo H, Wang J, Zhou R, Lu X, et al. (2009) MapView: visualization of

short reads alignment on a desktop computer. Bioinformatics 25: 1554–1555.

Quasispecies of A/H1N1/2009

PLoS ONE | www.plosone.org 9 April 2010 | Volume 5 | Issue 4 | e10256


