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Abstract

Human enteric virus infections range from gastroenteritis to life threatening diseases such as myocarditis and aseptic
meningitis. Rotavirus is one of the most common enteric agents and mortality associated with infection can be very
significant in developing countries. Most enteric viruses produce diseases that are not distinct from other pathogens, and
current diagnostics is limited in breadth and sensitivity required to advance virus detection schemes for disease intervention
strategies. A spectroscopic assay based on surface enhanced Raman scattering (SERS) has been developed for rapid and
sensitive detection of rotavirus. The SERS method relies on the fabrication of silver nanorod array substrates that are
extremely SERS-active allowing for direct structural characterization of viruses. SERS spectra for eight rotavirus strains were
analyzed to qualitatively identify rotaviruses and to classify each according to G and P genotype and strain with .96%
accuracy, and a quantitative model based on partial least squares regression analysis was evaluated. This novel SERS-based
virus detection method shows that SERS can be used to identify spectral fingerprints of human rotaviruses, and suggests
that this detection method can be used for pathogen detection central to human health care.
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Introduction

Group A rotaviruses are the leading cause of acute severe

gastroenteritis in infants and young children worldwide with

approximately 130 million children infected each year. This

accounts for approximately 1/3 of all hospital admissions each

year for diarrheal disease and is estimated to be responsible for

over 500,000 deaths, 2 million hospitalizations, and 25 million

clinic visits each year [1]. Rotaviruses are extremely infectious and

pose a significant burden on health care worldwide, thus

surveillance methods are necessary to track outbreaks of current

and emerging strains, as well as aid in the development of vaccine

and disease intervention strategies.

Rotaviruses are non-enveloped icosahedral particles contain-

ing 11 segments of dsRNA [2], which are further categorized

based on three layers, i.e. an inner core, an inner capsid and an

outer capsid [3]. The inner capsid protein, VP6, is conserved

among all group A rotaviruses [4]. The outer capsid consists of

two proteins, VP7 and VP4, that are the major neutralizing

antigens with each independently segregating. Rotavirus has a

dual typing system based on the 2 outer capsid proteins,

classification based on VP7 are termed G genotypes and VP4 are

termed P genotypes. At present, 11 of 15 G types, i.e. VP7

variants, and 12 of 26 P types, i.e. VP4 variants, are known to

infect humans [5]. On a global basis, most severe infections are

caused by five G types (G1–G4 and G9) and three P types

(P1A[8], P1B[4], and P2A[6]), although considerable epidemi-

ological differences exist in some areas especially in tropical

countries [5,6].

Commercial immunochromatographic assays and enzyme

immunoassays are available for routine laboratory diagnosis of

rotavirus in a clinical setting. These assays capitalizes on the

conserved nature of VP6 among all group A rotaviruses; however,

these tests provide no information on the genotypes, i.e., G and P

types, which is essential for monitoring epidemics, identifying

novel strains, and in controlling disease. Typing of rotavirus strains

is achieved using genotype specific monoclonal antibodies (mAbs)

in an ELISA assay, and by hemi-nested multiplex RT-PCR [5,7].

These methods are labor intensive, reliant on species-specific

reagents (e.g. mAbs and genotyping primers) and particularly for

PCR, amplification of the analyte for detection. There is an unmet

need for a rapid, sensitive, and specific means of detecting and

differentiating rotavirus strains.

Surface enhanced Raman spectroscopy (SERS) provides the

ability to rapidly detect analytes with chemical specificity intrinsic

to vibrational spectroscopy and is emerging as an important

tool in bioanalytical applications including identification and

classification of pathogenic organisms [8,9,10,11]. Historically,

Fourier transform infrared spectroscopy (FTIR) and Raman

scattering have been explored as vibrational spectroscopic

techniques for the detection and differentiation of infectious

agents [12,13,14,15,16,17,18,19,20,21]. These methods provide

detailed information regarding the chemical composition of

pathogens which serve as fingerprints for detection and identifi-
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cation. While each has achieved success in whole-organism

fingerprinting, it has been found that each suffers from inherent

limitations. For example, FTIR is limited by interference from

water; while conversely, Raman spectroscopy, while providing

spatial resolution and resistance to water, is severely limited by low

scattering cross sections which translate to weak signals for

detection. The Raman signal of a sample, e.g., pathogen, can be

significantly enhanced via adsorption to a metallic nanostructured

surface in a technique referred to as surface-enhanced Raman

spectroscopy (SERS). The signal amplification results from an

increased electromagnetic field experienced by the molecules in

close proximity to the metal surface. Briefly, the appropriate choice

of laser excitation frequency excites the conduction electrons in a

metal surface with requisite nanometric size to collectively oscillate

generating a localized and intensified electromagnetic field [22].

The enhancement effect is system dependent, e.g., substrate and

analyte, with typical enhancements of 104 to 1014 with respect to

normal Raman intensities. Importantly, SERS retains all of the

benefits of normal Raman spectroscopy while providing a markedly

improved sensitivity, and as a result, SERS has advanced as the

spectroscopic tool of choice for whole-organism fingerprinting

[8,9,10,11,23,24,25,26,27,28,29,30].

The majority of SERS-based detection assays have been

developed for bacteria [9,24,25,26,27,28,29,30,31], although SERS

detection of viral pathogens is emerging [8,10,11,23,32,33]. Despite

the improved detection features offered by SERS, several bacterial

detection studies have reported different spectra for the same

organism. For example, SERS spectra have been published for both

Bacillus subtilis and Escherichia coli; however in each report an

incongruent spectral fingerprint was indicated [25,26,29,30]. The

apparent discrepancies can be attributed to a critical component in

the SERS assay, i.e., the substrate. The SERS spectrum is

dependent on the Raman signal enhancing substrate, thus a reliable

method for fabricating reproducible substrates is critical for SERS-

based assays. This aspect has prevented the widespread use of

SERS-based detection assays. We have recently addressed this

challenge with the development of a silver nanorod array substrate

prepared via oblique angle vapor deposition (OAD). The OAD

process produces high aspect ratio silver nanorods yielding a SERS

enhancement factor of .108 with less than 15% variation in SERS

intensity from batch-to-batch [34].

The method of data analysis is also a critical aspect of any

diagnostic assay, particularly for vibrational spectroscopy. It is

important to analyze the entire spectrum, or use specialized

feature selection algorithms, since discrete patterns of multiple

bands, rather than a single peak, are important for identification.

Principal component analysis (PCA) is the most frequently

employed multivariate technique used to reduce the dimension-

ality of the spectral dataset, reduce noise, and maximize total

spectral variance among spectral fingerprints for each infectious

agent [35,36]. PCA is used to evaluate the reproducibility and

specificity of the spectroscopic technique, but ultimately functions

to cluster similar spectra into groups for classification. PCA has

been successfully applied to spectroscopic assays of bacteria and

viruses. A slightly more sophisticated category of multivariate

analysis is supervised methods, whereby a calibration dataset of

known identity is required to build a classification model. These

methods include discriminant function analysis (DFA) and linear

discriminant analysis (LDA) which use principal component scores

in combination with a priori knowledge of the calibration sample

identities to aid in the discrimination of classes, i.e., pathogens

[35,36]. DFA and LDA have also proven successful, although

primarily with normal Raman analysis of bacteria [15,19]. More

recently a supervised method, partial least squares discriminant

analysis (PLS-DA), has been described in which latent variables

(LVs) rather than principal components are used for input to build

classification models [37,38]. The advantage of PLS-DA is that

LVs are chosen to maximize the variance among different classes,

i.e., pathogens, while minimizing the variance within each given

class. This approach to spectral analysis gives special emphasis to

the vibrational bands that differ among sample types and

minimizes the importance of bands that either do not vary among

sample types or are inconsistent within the same sample type. A

few novel data analysis techniques have also been explored. For

example, a spectral barcoding method for bacterial identification

based on SERS spectra has been investigated [9], and the use of a

quantitative method based on partial least squares (PLS) regression

analysis for the identification of several viruses has been used [23].

Previously we have demonstrated SERS-based detection and

differentiation of influenza, adenovirus, and respiratory syncytial

viruses (RSV) using these OAD substrates [10]. Further studies

found that SERS spectra were specific to the strain level, able to

detect viruses with gene deletions, and that PLS-DA provided a

robust and statistically significant means of rapidly and objectively

differentiating each RSV strain [11]. In these previous studies

SERS assays were performed with purified viruses in water and

buffer. In this report, the specificity and sensitivity of the SERS

platform is evaluated for rotaviruses in a biological matrix. Eight

tissue culture adapted strains of rotavirus spanning the clinically

significant genotypes were analyzed in cell lysates demonstrating

the capacity of SERS to detect rotavirus strains in a complex

matrix, the capacity to distinguish among strains and genotypes,

and the ability to provide a quantitative measurement of the

viruses. These studies indicate that the SERS detection method

can be used for rotavirus detection, a component central to human

health care.

Materials and Methods

Rotavirus propagation
Eight laboratory strains representative of the most commonly

identified G and P genotypes were propagated in MA104 cells

purchased from ATCC (CRL-2378) in the presence of trypsin for

SERS-based evaluation, these are detailed in Table 1. Briefly

viruses were prepared in MA104 cells grown in DMEM with fetal

bovine serum. Virus stocks were activated with 10 mg/ml of

porcine trypsin for 30 min at 37uC, and then propagated in

MA104 cells in the presence of 1 mg/ml of trypsin. Cells were

incubated at 37uC until a cytopathic effect was evident, then

lysates were frozen and thawed twice. Hemi-nested RT-PCR

assays were employed to confirm the G and P genotype of each

rotavirus isolate using type specific primers [39]. The viral tires of

all virus stocks were determined by fluorescent focus neutralization

assays [40].

SERS Substrate preparation
The oblique angle deposition (OAD) of aligned silver

nanorod arrays as SERS substrates has been previously

described [10]. In brief, 161 cm glass microscope slides were

cleaned with hot piranha solution (80% sulfuric acid, 20%

hydrogen peroxide), and rinsed with deionized water. The

substrates were then dried with a stream of N2(g) before loading

into a custom-designed, high vacuum electron beam evapora-

tion (E-beam) system. Thin films of Ti (20 nm) and Ag (500 nm)

were evaporated onto the substrates at a rate of 0.2 nm/s and

0.3 nm/s, respectively, with the incident vapor normal to the

substrate surface. The Ti served as an adhesion layer. The

substrates were then rotated by 86u with respect to the incident

Rotavirus Detection Using SERS
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vapor. Ag nanorods were grown at this oblique angle at a rate

of 0.3 nm/s until a quartz crystal microbalance (QCM)

registered 2000 nm. The QCM was used to monitor the

thickness of the film growth in-situ, and was positioned such

that it directly faced the incident vapor. As reported elsewhere

[10], these deposition conditions result in optimal SERS

substrates with overall nanorod lengths of ,900 nm, diameters

of ,100 nm, densities of ,13 nanorods/mm2, and tilt angle of

71u with respect to the substrate normal.

SERS measurements
SERS spectra were acquired using a Renishaw inVia confocal

Raman microscope system (Hoffman Estates, IL) equipped with a

785 nm near-infrared diode laser as the excitation source. Light

from the high power (300 mW) laser was attenuated to ,7 mW at

the sample surface using a series of neutral density filters and

focused into a ,115 mm611 mm spot using a 56objective. SERS

spectra were acquired from 400–1800 cm21 in the ExtendedScan

mode using three coadded 10 s accumulations. A 1.0-mL aliquot of

intact virus was applied to the Ag nanorod array substrate and

allowed to evaporate at room temperature prior to spectrum

acquisition.

Data analysis
Preliminary studies were designed to assess the utility of the Ag

nanorod substrates to generate SERS spectra of rotaviruses and to

evaluate the reproducibility of the method. For these studies,

spectra of rotavirus samples were either baseline corrected using a

concave rubber band algorithm (OPUS, Bruker Optics, Inc.,

Billerica, MA) computed with 10 iterations and 64 points or

derivatized (1st derivative, 15 point, Savitzky-Golay). These

spectral processing steps facilitate visual comparison of the Raman

peak positions for spectra collected at different locations on a

SERS substrate and for different substrates.

Classification of the rotavirus strains was achieved using partial

least squares discriminant analysis that was performed using PLS

Toolbox version 4.0 (Eigen Vector Research Inc., Wenatchee,

WA), operating in a MATLAB environment (v7.2, The Math-

works Inc., Natick, MA). Multiple PLS-DA models were built to

classify the samples according to (1) rotavirus-positive or -negative,

(2) strain, (3) G-genotype, or (4) P-genotype. SERS spectra used to

generate the PLS-DA classification models were first processed by

taking the first derivative of each spectrum (15-point, Savitzky-

Golay) and then normalizing to unit vector length [36]. The

normalized first derivate spectra were then mean-centered prior to

PLS-DA [37,38]. The same spectral preprocessing protocol was

used to generate a quantitative predictive model using partial least

squares (PLS) regression analysis.

Results and Discussion

SERS detection and reproducibility of Rotavirus samples
At the outset, rotavirus was propagated in MA104 cells and

harvested as cell lysates. Virus was diluted to a titer of 106 ffu/mL

for SERS evaluation. Initially, a single strain, RV3, was applied to

the OAD-fabricated SERS substrate to assess the SERS signal.

While SERS bands were detected, the signal was weak, and a thick

sample film was observed on the biosensing substrate. SERS is a

surface sensitive technique in which only the signal for the viruses

in close proximity to the nanorod substrate is enhanced. It is likely

that the thick sample layer caused scattering of the laser light prior

to reaching the surface thereby significantly reducing signal

enhancement. Better signals were be obtained by diluting the

rotavirus samples with water, thereby eliminating the sample film

and exciting the virus adsorbed directly on the substrate. A 1:10

dilution of the cell lysate was found to provide an optimum

balance of minimizing detrimental multilayer effects and maxi-

mizing the sample concentration for increased sensitivity.

A more extensive study was performed to assess the reproduc-

ibility of the SERS measurement for RV3. An RV3 sample was

applied to three independently prepared OAD-fabricated SERS

substrates and five spectra were collected from different locations

on each substrate for a total of 15 spectra. The spectra were

baseline corrected using an automated algorithm in the OPUS

software and are presented in Figure 1A to highlight spot-to-spot

spectral variation collected from a single substrate and to

demonstrate substrate-to-substrate variation. Review of the spectra

reveals several bands between 400 and 1800 cm21. Many of these

bands are characteristic of protein and nucleic acid vibrations. For

example, the bands at 1572 and 1447 cm21 can be assigned to

protein amide vibrations [30,33], bands at 1122 and 1045 cm21

can be assigned to carbohydrates [41], and the band at 1073 cm21

can be assigned to a carbon-nitrogen stretch [33]. As evident in

Figure 1A, the RV3 spectra are similar with respect to the number

and location of each Raman band as well as relative intensities.

While some variation is a result of sampling and substrate

heterogeneities, a significant portion of the variation is a result of

baseline artifacts introduced by the baseline subtraction algorithm.

The uniformity among spectra is revealed in Figure 1B in which

first derivative spectra are displayed. Derivatization is a common

means of objectively performing baseline-correction and improves

spectral resolution of overlapping bands. The first derivative

spectra presented in Figure 1B demonstrate the within and

between substrate spectral reproducibility to establish the rationale

for the SERS-based detection platform.

Differentiation of Rotavirus-positive and Rotavirus-
negative samples

The SERS spectra for each of the eight rotavirus strains

(Table 1) were compared to the spectrum for the uninfected

MA104 cell lysate negative control to assess the ability of SERS to

differentiate positive from negative samples. Each sample was

diluted (1:10) with water, applied to several OAD-fabricated

substrates, and allowed to dry. Average spectra for each rotavirus

strain and the negative control collected from three different

substrates are shown in Figure 2A. The spectra have been

baseline-corrected, normalized to the most intense negative

control band (633 cm21), and offset to highlight differences in

the relative intensities of each band. The spectra are similar for

each strain; however, the relative intensities of each band are

Table 1. Rotavirus strains and corresponding G and P
genotypes.

Strain G-type P-type

F45 9 8

RV3 3 6

RV4 1 8

RV5 2 4

S2 2 4

ST-3 4 6

Wa 1 8

YO 3 8

doi:10.1371/journal.pone.0010222.t001
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different and are a function specific to the strain. It is important to

note that the cell lysate produces a SERS spectrum, and given that

the rotavirus samples are harvested in a cell lysate, all specimens

have this background signal in common. While several matrix

bands are common to the rotavirus-positive samples, the overall

spectral shape is markedly different between rotavirus-positive and

rotavirus-negative samples.

To extract the spectral contribution due to the virus, the

MA104 spectrum was subtracted from each rotavirus spectrum.

The band at 633 cm21 is the most intense negative control band

Figure 1. SERS spectral reproducibility. (A) Baseline-corrected SERS spectra for the RV3 strain of rotavirus. Five spectra were collected from
different locations for each SERS substrate. Spectra collected from three different substrates are offset for visual comparison. (B) First derivative
spectra for those displayed in (A).
doi:10.1371/journal.pone.0010222.g001

Figure 2. Rotavirus SERS spectra. (A) Average SERS spectra for eight strains of rotavirus and the negative control (MA104 cell lysate). Spectra
were baseline corrected, normalized to the band at 633 cm21, and offset for visualization. (B) Difference SERS spectra for eight strains after
subtraction of MA104 spectrum.
doi:10.1371/journal.pone.0010222.g002

Rotavirus Detection Using SERS
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and is reasonably constant for all samples, thus it is anticipated

that this band is due only to a vibrational mode of a matrix

component and that changes in band intensity relative to the

633 cm21 band are due to viral vibrations. Therefore, each

spectrum was normalized to the band at 633 cm21 prior to

spectral subtraction. The difference spectra are plotted in

Figure 2B and highlight the bands resulting from rotavirus

infection. The results show that each rotavirus sample produces

similar SERS spectra with the most notable bands located at 1003,

1030, 1045, and 1592 cm21. The fact that several bands are

common to all strains of rotavirus suggests that analysis based on

SERS spectral fingerprints can classify samples as rotavirus-

positive or rotavirus-negative. We attribute these bands to

vibrations of the virus, although it is conceivable that the bands

may reflect virus-induced host factors rather than spectra of the

virus itself. However, the subsequent sections which accurately

categorize the samples according to strain and genotype suggests

that the SERS spectra are a direct measurement of the virus

particles rather than virus-induced host factors which would not

likely classify according to strain and/or genotype. Moreover, we

have measured a single virus type propagated in two unique

matrices and found consistent peaks among the infected samples

(unpublished data), thus providing further evidence that the SERS

spectra are a direct measurement of the virus rather than host-

response factors.

PLS-DA was used to establish statistically significant differ-

ences between SERS spectra for rotavirus-positive and rotavirus-

negative samples. PLS-DA is a multivariate, full-spectrum

calibration method that determines the best-fit mathematical

relationship between a descriptor matix, i.e., sample spectra, and

a class matrix, i.e., sample identities [37,38]. PLS-DA is a

supervised classification method in which a prior knowledge is

required for a training dataset in order to build a classification

model to test unknown samples. The advantage of this method is

in its ability to minimize the contribution of spectral features

which vary within a particular sample type and maximize the

contribution of spectral features which vary among sample types.

Fifteen SERS spectra were collected from three substrates for

each of the eight rotavirus-positive samples and the mock-

infected MA104 cell lysate negative control to serve as

multivariate biological fingerprints. The spectra were vector

normalized (see Materials and Methods) to ensure minimal error

that is potentially introduced via normalization to an arbitrarily

chosen band, e.g., 633 cm21. Each spectrum was assigned to one

of two defined classes, rotavirus-positive or rotavirus-negative. A

PLS-DA model was built using cross validation (Venetian blinds,

10 splits). Effectively this procedure builds a classification model

with 90% of the spectra and then tests the remaining 10% to

assess classification accuracy. The process is performed itera-

tively, for a total of 10 iterations, until each sample is withheld

from the model and tested as an unknown. The cross-validated

predictions for each collected spectrum are plotted in Figure 3.

In Figure 3, each data point is representative of a single SERS

spectrum. The PLS Toolbox software generates an optimum

threshold for sample classification that is plotted as the dashed

line. Spectra which result in Y prediction values greater than the

threshold value are classified as rotavirus-positive while those

that result in predicted values below the threshold are classified

as rotavirus-negative. The optimum rank was selected to

minimize classification error of the cross-validated samples and

was determined to be 3 latent variables. The true identities of the

samples are given in the figure legend and the results indicate

that the PLS-DA model correctly classifies each spectrum with

100% accuracy.

Differentiation of Rotavirus genotypes and Rotavirus
strains

As described above, notable differences in the relative intensity

of the SERS bands are observed for each rotavirus sample. Given

the extreme surface sensitivity inherent to SERS, differences in the

relative intensities of each of these bands likely reflect the structural

differences in capsid proteins presented to the SERS substrate and

reflect antigenic variation, i.e., genotypes. SERS bands from the

two major outer capsid proteins, VP7 (G-type) and VP4 (P-type),

are expected to dominate the SERS spectra. Based on this

premise, it is expected that spectral features resulting from VP7

proteins will be consistent among those viruses belonging to the

same G-type. Likewise, it is anticipated that spectral features

resulting from VP4 proteins will be consistent among those viruses

belonging to the same P-type.

The same spectra evaluated above for the detection of

rotavirus were analyzed to assess the ability of SERS to classify

the samples according to virus subtypes, i.e., genotypes. First, a

PLS-DA model was generated with a classification matrix

assigning each spectrum to its specific P-genotype. For example,

spectra collected for strains F45, RV4, WA, and YO were

assigned to the same class, i.e., P[8], strains RV5 and S2 were

assigned to P[4], strains RV3 and ST-3 were assigned to P[6],

and one class was reserved for the negative control samples. The

PLS-DA model was optimized (8 latent variables) using cross

validation (Venetian blinds, 10 splits). P-type class prediction plots

for the cross-validated samples are provided as Supporting

Information (Figure S1, Supporting Information). The perfor-

mance of the classification model was evaluated in terms of

sensitivity and specificity, where sensitivity is defined as the

number of samples assigned to the class divided by the actual

number of samples belong to the class, and specificity is defined

as the number of samples not assigned to the class defined by the

actual number of samples not belonging to the class. Effectively,

sensitivity is a measure of false negative results whereas specificity

is a measure of false positive results. A summary of the sensitivity

and specificity results for the P-type classification model are

presented in Table 2. Remarkably, the model resulted in .98%

Figure 3. Detection of rotavirus via PLS-DA of SERS spectra.
Cross-validation predictions for classification of rotavirus positive and
negative samples. Samples which lie above the dashed threshold line
are identified as rotavirus positive while those samples which fall below
the threshold are identified as negative for rotavirus. True sample
identities are given in the legend.
doi:10.1371/journal.pone.0010222.g003
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sensitivity and 100% specificity. Only a single spectrum collected

for strain Wa (P[8]) was misclassified. Interestingly, this spectrum

was not assigned to any of the defined P-types nor was it

identified as a negative sample. Although it is desirable for the

model to correctly classify the spectrum, it is important to note

that the model determined this spectrum to be ‘‘unknown’’ (i.e.

not defined by the given classes), and this is preferred rather than

mistakenly assigning it to the wrong class, e.g. the negative

control.

An additional independent PLS-DA model was built to classify

the SERS spectra according to the rotavirus G-type. The

rotavirus strains analyzed represented genotypes G1-G4 and

G9; thus, these five types, in addition to a negative control group,

were defined as classes in the PLS-DA model. A cross-validated

model was generated with nine latent variables (Figure S2,

Supporting Information) and the model performance is summa-

rized in Table 2. The model resulted in .96% sensitivity and

99% specificity. The slight decrease in performance compared to

the P-type model is likely due to fewer representative samples

belonging to each G-type. As a result, fewer samples are available

for the PLS-DA algorithm to define spectral variation among

classes. It is hypothesized that inclusion of more isolates for

each of the G-types would result in a more robust classification

model.

The definitive achievement in viral identification is specificity at

the strain level. A final PLS-DA model was built to differentiate

each rotavirus strain based on unique intrinsic SERS spectra

(Figure S3, Supporting Information). Each rotavirus strain given in

Table 1 and a negative control were defined as unique classes in a

PLS-DA model. A rank of 12 resulted in the lowest classification

error for cross validated samples, and the performance of the

classification model is summarized in Table 2. The strain

classification model was 100% sensitive and .99% specific. The

results demonstrate the discriminatory power of SERS-based

molecular fingerprinting for sample identification. However, it is

important to note that only a single virus specimen, i.e., isolated

from one subject, for each strain was available for testing. Ideally,

several samples of each strain isolated from different subjects

would be tested to validate that classification is based on

differences in the rotavirus strain. Prospective studies evaluating

a greater number of rotavirus-infected subjects are planned, but

absence of these more extensive studies does not distract from the

important findings shown here.

Quantitative Analysis of Rotavirus
Partial least squares (PLS) regression analysis was used to

explore the quantitative capability of SERS-based molecular

fingerprinting. Two concentration ranges were investigated, one

dataset covered a higher virus concentration range of 105–106 ffu/

mL, and another dataset spanned three orders of magnitude from

103–106 ffu/mL. Dilutions of the rotavirus sample were prepared

using the negative control MA104 cell lysate as the diluent to

match the background matrix of the virus sample. Water and

buffer were not used for dilution since either of these diluents

would have altered the lysate matrix concentration, to falsely

influence the PLS regression model.

Rotavirus strain ST-3 was selected to assess the high

concentration range. Ten calibration samples were prepared

between 105 and 106 ffu/mL and SERS spectra were acquired for

each concentration. The root mean square error for cross-

validation (RMSECV) was analyzed to determine the optimum

number of latent variable to include in the PLS model. The

RMSECV decreases with the inclusion of each additional initial

factor, reaching a minimum value with seven latent variables.

Inclusion of additional factors increases the RMSECV due to

overfitting of the data. A plot of the predicted rotavirus

concentration for cross-validated samples versus the true concen-

tration is presented in Figure 4. Each data point represents the

average predicted value and the error bars represent the standard

deviation. The plot demonstrates the quantitative accuracy of

SERS fingerprinting in combination with chemometric analysis

for a small range of relatively high viral titers.

After conducting the high concentration range, rotavirus strain

YO was selected to assess a more extensive concentration range.

Seven test samples were prepared spanning the concentration

range of 103–106 ffu/mL. SERS spectra were collected for each

concentration and a PLS model was built. The RMSECV was

minimized and the quantitative model was optimized with six

latent variables. The predicted rotavirus concentration for cross-

validated samples versus the true concentration is presented as a

logarithmic plot in Figure 5. As is evident, the PLS predicted

concentrations based on intrinsic SERS spectra are accurate for

Table 2. Summary of the PLS-DA cross-validation results for classification according to three different models based on the strain,
G genotype and P genotype.

P genotype Classification

P8 P4 P6 Neg ctrl

sensitivity 0.983 1.000 1.000 1.000

specificity 1.000 1.000 1.000 1.000

G genotype Classification

G9 G3 G1 G2 G4 neg ctrl

sensitivity 1.000 1.000 0.967 1.000 1.000 1.000

specificity 0.992 1.000 0.990 1.000 1.000 1.000

Strain Classification

F45 RV3 RV4 RV5 S2 ST-3 Wa YO neg ctrl

sensitivity 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

specificity 0.992 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000

doi:10.1371/journal.pone.0010222.t002
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concentrations $104 ffu/mL. The plot positively deviates at

concentrations lower than 104 ffu/mL and the predicted concen-

trations are elevated with respect to the actual sample concentra-

tion. The predicted rotavirus concentration for the negative lysate

control is 1.46104 ffu/mL. Complications from the complex

background matrix caused the poor predictive value at these lower

titers, and spectral features due to the cell lysate dominate the

SERS signature.

Conclusions
There is an unmet need for the development of a rapid, sensitive

test for the identification of viruses and classification of viral

strains. The development of a SERS-based biosensor and its

application to the rapid detection and differentiation of rotavirus

genotypes and rotavirus strains is presented. The OAD fabrication

method is capable of producing robust, reproducible biosensing

SERS substrates which provide extremely high enhancement

factors. Virus samples supplied in a biological matrix were directly

applied to the OAD prepared substrates without pretreatment and

a SERS viral fingerprint was collected in 30 s. Chemometric

methods of data analysis, such as PLS-DA, facilitated the

classification of the virus samples based on spectral differences.

Four classification models based on different criteria are presented

in which .96% of the samples were correctly classified in each

model. Moreover, a quantitative model based on PLS resulted in a

detection limit of ,104 ffu/mL for cell lysate preparations of

rotavirus. To date only two previous studies have addressed

quantitative detection of viruses via intrinsic SERS fingerprinting.

The first of these studies was conducted in our laboratory for the

detection of respiratory syncytial virus (RSV) [10]. That work

relied on univariate, i.e., single wavenumber, analysis of an RSV

band resulting in a detection limit of 102 pfu/mL. An important

difference between our previous and current work is the sample

type that was analyzed. The RSV samples were purified in water

whereas the rotavirus samples were suspended in a complex

cellular matrix. In a recent report, a commercial off-the-shelf

SERS substrate was employed to detect and quantify bovine

papular stomatitis virus, pseudocowpox virus, and Yaba monkey

tumor virus [23]. Each of these viruses was purified and suspended

in deionized water. Consistent with our results for purified virus,

the detection limits for these purified viruses were found to be

102 pfu/mL. The apparent decrease in sensitivity for the rotavirus

samples in this study is attributed to interference in the SERS

signal due to the background matrix medium. While the detection

limit for rotavirus in a biological matrix is less sensitive than those

reported limits for purified virus samples, this report is a first

assessment of biological samples and aids in identifying challenges

associated with the current protocol to direct future research to

unlock the potential of SERS-based detection. It is important to

note that in addition to affecting the detection limit, the sample

matrix significantly impacts the classification model. For example,

a classification model built with training samples from cell lysate

can only be used accurately to classify unknown cell lysate samples.

With the current methodology, not only is a calibration model

necessary for each virus, but a model is also needed for each

sample type, i.e., cell lysate, nasal wash, fecal, etc. Moreover,

donor and/or day-to-day variations in these complex clinical

specimens will cause the signal to fluctuate due to the matrix itself.

Nonetheless, this study demonstrates the power of SERS to

differentiate individual strains of viruses in less than one minute

when coupled to chemometric methods for data analysis, and

clearly demonstrates the tremendous advantage of intrinsic SERS-

based detection of viruses compared to more traditional methods

with respect to the detection speed and the ease of genotyping.

The data also define the critical next steps in pursuit of a robust

method of viral fingerprinting, namely, overcoming the challenges

imposed by a complex and dynamic sample matrix. There are

three approaches that can potentially address these challenges by

discriminating against the matrix itself, or its signal, in favor of the

virus or virus signal. First, there is the potential to include a simple

sample filtration step to isolate the virus thereby removing the

background matrix from the analysis. Commercial filters are

currently available from Millipore for isolating adenovirus and

lentivirus, with potential application to other viruses. Second,

strategies to increase sensor selectivity can be explored. More

traditional recognition elements such as an antibody or aptamer

are potential candidates, although they may not be effective for

emerging or mutant isolates. Alternatively, more novel perm-

selective barriers are being explored for species selectivity [42].

With this approach only the virus binds to the SERS substrate to

produce a detectable signal and the background matrix is removed

Figure 5. Quantification of low titer rotavirus. PLS results for
analysis of extended rotavirus concentration range. Cross-validation
predictions of concentration for rotavirus strain YO. Horizontal long
dashed line represents the measured rotavirus concentration according
to the PLS model for a negative control sample, i.e., cell lysate. Short
dashed line is a plot of x = y to serve as a guide for perfect predictions.
doi:10.1371/journal.pone.0010222.g005

Figure 4. Quantification of high titer rotavirus via SERS. PLS
results for analysis of high rotavirus concentration range. Cross-
validation predictions of concentration for rotavirus strain ST-3. Dashed
line is a plot of x = y to serve as a guide for perfect predictions.
doi:10.1371/journal.pone.0010222.g004
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via washing; in effect, the signal will be independent of the matrix.

Third, advances in chemometric methods can potentially aid in

the enhanced selection of virus signal in the presence of a complex

background. For example, methods can potentially be developed

to select SERS bands that are consistent for a particular virus

across a number of clinical specimens and to identify those SERS

bands which vary due to matrix fluctuation to build a more robust

classification model. It has been suggested that second-order

multivariate calibration methods can accurately detect the analyte

in the presence of unknown, i.e., unmodeled, interferences [23].

Experiments are currently underway to investigate each of these

approaches for improved detection.
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Supporting Information

Figure S1 Cross validation results for PLS-DA P genotype

classification of RV samples and negative control based on SERS

spectra. P8 (green circles, F45, RV4, WA, YO), P6 (blue crosses,

RV3, ST-3), P4 (red triangles, RV5, S2), (black circles, negative

control).

Found at: doi:10.1371/journal.pone.0010222.s001 (0.67 MB TIF)

Figure S2 Cross validation results for PLS-DA G genotype

classification of RV samples and negative control based on SERS

spectra. G9 (blue triangles, F45), G3 (blue squares, RV3, YO), G1

(red triangles, RV4, WA), G2 (green crosses, RV5, S2), G4 (blue

crosses, ST-3), negative control (black circles).

Found at: doi:10.1371/journal.pone.0010222.s002 (0.89 MB TIF)

Figure S3 Cross validation results for PLS-DA strain classifica-

tion of RV samples and negative control based on SERS spectra.

Found at: doi:10.1371/journal.pone.0010222.s003 (1.30 MB TIF)
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