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Abstract

Background: Drug discovery and development are predicated on elucidation of the potential mechanisms of action and
cellular targets of candidate chemical compounds. Recent advances in high-content imaging techniques allow simultaneous
analysis of a range of cellular events. In this study, we propose a novel strategy to identify drug targets by combining
genetic screening and high-content imaging in yeast.

Methodology: In this approach, we infer the cellular functions affected by candidate drugs by comparing morphologic
changes induced by the compounds with the phenotypes of yeast mutants.

Conclusions: Using this method and four well-characterized reagents, we successfully identified previously known target
genes of the compounds as well as other genes involved with functionally related cellular pathways. This is the first
demonstration of a genetic high-content assay that can be used to identify drug targets based on morphologic phenotypes
of a reference mutant panel.
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Introduction

Medications exert their pharmacologic effects by interacting with

a wide range of cellular components. To facilitate drug discovery

and development, methods are needed to identify cellular targets

and elucidate the mechanisms of action of candidate chemical

compounds. Conventional drug screening approaches that focus on

specific biochemical activities allow the identification of compounds

that target the particular activities, but the selected compounds

often have multiple in vivo targets that must be identified. Alternative

approaches involve cell-based screens that account for interactions

within the whole cell; however, in vivo targets must still be identified

because cell-based screens focus on the desired cellular response

rather than the biomolecular activity of the targets.

A recent study in Saccharomyces cerevisiae used a comprehensive

panel of yeast deletion mutants and microarray technology to

facilitate the identification of the intracellular targets of a

compound [1]. For example, mutants that show a specific

sensitivity or resistance to a candidate drug can be selected from

the yeast mutant pool using a fitness-based approach combined

with a yeast DNA barcode array [2,3,4]. Alternatively, a

compendium approach examining multiple cellular response

parameters (e.g., gene expression levels and growth rates) can be

used to infer the drug targets of a novel compound based on

reference bioactivity profiles of well-characterized drugs [5,6].

Fluorescence microscopic imaging is advantageous for high-

content assays that assess in vivo drug effects using multiple cellular

response parameters [7]. To examine a number of intracellular

events in Saccharomyces cerevisiae, we recently developed CalMorph,

a high-throughput, high-resolution, image-processing program

that allows us to analyze and quantitate 501 cell morphology

parameters from fluorescent microscopic images of triple-stained

(cell wall, actin, and nuclear DNA) yeast cells [8]. Using

CalMorph, we phenotyped more than 200 cells for each of 4718

nonessential gene deletions [8]. Our results revealed that deletions

of functionally related genes caused similar morphologic pheno-

types, enabling loci to be functionally assigned to a specific cellular

pathway [8]. Further detailed phenotypic analysis revealed that

calcium treatment induced various morphologic changes in

calcium-sensitive cls mutants, and that functionally related cls

mutants could be grouped based on similarities in the calcium-

induced phenotypes [9]. These results suggest that the cellular

pathways affected by a given reagent can be preliminarily

identified based on phenotypic similarities induced by that

reagent. Based on these observations, we hypothesized that genetic

targets can be inferred using multiparameter comparisons of

drug- and mutation-induced morphologic changes.

Here we present a proof-of-concept study that employed four

well-characterized bioactive compounds. We developed a Java-

based program that uses an inference algorithm to estimate

similarities between induced morphologic changes. Using this

algorithm to examine 4718 nonessential gene deletion mutants,

the previous known target genes of the compounds and the

functionally related genes to these targets were successfully
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identified and potentially affected cellular pathways were revealed,

demonstrating the validity of this approach.

Results

A high-content image-profiling method
We assumed that dose-dependent morphologic changes induced

by a chemical compound would resemble the effects of mutations in

genes encoding targets of the compound. Therefore, to infer the

targets of potential drugs, we established a high-content, image-

profiling procedure. First, to minimize side effects caused by high

concentrations of the chemicals, the maximum treatment concen-

tration of each chemical compound was defined as the concentration

that produced a slight delay in the growth rate of wild-type yeast cells

(approximately 10% of control samples). Three lower concentrations

were then selected and wild-type yeast cells were treated with or

without the chemical compound at the various concentrations. Wild-

type yeast cells grown in the presence of each concentration were

fixed and stained with fluorescein isothiocyanate-conjugated conca-

navalin A (FITC-ConA) to detect the cell wall component

mannoprotein, rhodamine-phalloidin (Rh-ph) to detect the actin

cytoskeleton, and 49,6-diamidino-2-phenylindole (DAPI) to detect

nuclear DNA. Samples from five independent cultures grown in the

presence of each concentration (25 samples for each chemical

compound = five concentrations6five replications) were examined

using the image-processing program CalMorph as described

previously [8]. At least 200 cells from each sample were analyzed

for 501 morphologic parameters (see Materials and Methods).

The targets of the chemical compounds were inferred using the

following three steps: I) characterization and principal component

analysis (PCA) of the 4718 deletion mutants; II) characterization

and PCA of wild-type cells treated with the chemical compound;

and III) correlation analysis of the compound-treated and mutant

cells (Figure 1).

To evaluate the 501 parameters in each mutant, the

distributions of each parameter value from the 4718 mutants

were normalized using a Box-Cox power transformation [10].

Parameters for the transformation were estimated from the wild-

type distribution (n = 123; Figure 1 I-i and -ii) using a previously

published procedure [8]. Each transformed parameter value for a

mutant represented an abnormality relative to the standard

normal distribution (Figure 1 I-iii and -iv). Next, the 501

morphologic parameters were summarized with PCA because

some of the parameters strongly correlated with each other [8].

We extracted 104 independent axes (principal components) from

the 501 wild-type parameter values (n = 123) using PCA at a

cumulative contribution ratio greater than 0.99 (Figure 1 I-v).

Based on the eigenvector calculated from the wild-type data, the

principal component scores for the 104 axes were calculated in

each mutant (Figure 1 I-vi). The scores were then used to represent

an altered morphologic profile that was associated with deletion of

the gene.

To evaluate the dose-dependency of the 501 parameters in

chemically treated wild-type cells, 25 sample values for each

parameter were summarized into a Z score from the Jonckheere-

Terpstra test (Figure 1 II-i and -ii) [11]; this nonparametric

statistical test examines ordered differences among classes (e.g.,

concentrations of the compound). Each Z score represented the

dose-dependency of the parameter under a normal distribution.

Then, the Z scores for the 501 parameters were mapped with the

principal component scores on the 104 axes using the calculated

eigenvector from I-v (Figure 1 II-iii). These scores represented the

altered morphologic profile that resulted from treatment with the

compound.

To evaluate similarities between morphologic changes in drug-

treated wild-type cells and mutant strains, we calculated the

Pearson product-moment correlation coefficient R and the

associated P value for the 104 principal component scores from

the two samples (Figure 1 III). To detect significant similarity, we

estimated two-sided P values by t-test for the correlation

coefficient, and set a level at 0.05 with the Bonferroni correction

dividing a by 4718.

We developed a Java-based program to perform the statistical

estimation, and employed four well-characterized chemical-

compounds (hydroxyurea, concanamycin A, lovastatin, and

echinocandin B) to evaluate our proposed method (Table 1).

Hydroxyurea
We used hydroxyurea as a representative of compounds that affect

DNA metabolism. Hydroxyurea is used as an antitumor agent with

antileukemic activity, which results from inhibition of ribonucleotide

reductase activity and consequent suppression of DNA synthesis

[12]. The ribonucleotide reductases are a2b2 tetramers of which

structure is highly conserved from bacteria to mammal [13]. The a
subunit catalyses reduction of ribonucleotide (Rnr1p and Rnr3p in

yeast), whereas the b subunit (Rnr2p and Rnr4p in yeast) producing

radicals required for reductase activity of a subunit [14]. The effect

of hydroxyurea which quenches the enzyme’s tyrosyl radical is

specific for radical-producing b subunit [15,16]. The essential RNR2

gene was not evaluated in this study because the rnr2 mutant was not

included among the tested 4718 mutants.

Wild-type cells were treated with each concentration of

hydroxyurea (Table 1) and photographed (Figure 2A). Images

were analyzed using CalMorph and 501 morphologic parameter

values were obtained. Using the Jonckheere-Terpstra test, 176,

249, 302, and 366 of the 501 parameters were found to show dose-

dependent changes at false discovery rate (FDR) = 0.01, 0.05,

0.10, and 0.20, respectively [11,17]. The dose-dependent changes

in the 176 parameters (Table S1) indicated that the hydroxyurea-

treated wild-type yeast cells were enlarged, with delocalized actin

patches in buds and numerous mononuclear budding cells, all of

which are typical phenotypes of cells arrested at the S phase of the

cell cycle.

To identify mutant cells with similar morphologic profiles, we

applied the high-content image profiling on the phenotypic

information of the mutants (Figure 1). Among the 4718 mutants,

384 (8.14%) morphologic profiles were significantly similar with that

of the hydroxyurea-treated cells by the high-content image-profiling

at two sided P,0.05 with the Bonferroni correction (Figure 2B).

Among the 100 top-ranked mutants (R.0.629), 12 mutants,

including a rnr4 mutant, were categorized as belonging to a

‘‘DNA replication’’ in the gene ontology (GO) database (GOID:

6260). Enrichment for this GO term was significant by GO term

finder at P,0.05 (Table S2) [18,19], demonstrating that high-

content image profiling efficiently identified genes from pathways

related to the function of Rnr4p. Among the three ribonucleotide

reductase mutants in the mutant panel, the rnr1 (R = 0.592) and rnr4

(R = 0.836) mutants were identified based on similar morphologic

phenotypes in these mutants and hydroxyurea-treated wild-type

yeast (Figure 2B and C, Table 2). Interestingly, among 4718

mutants, disruption of rnr4, which encodes the target of hydroxy-

urea, was associated with the highest R value (Figure 2B).

To investigate whether the utility of high-content image

profiling is related to the strength of the mutant phenotypes, we

examined the number of parameters affected by deletion of genes

encoding various targets of hydroxyurea (rnr1, rnr3, and rnr4). Of

the 254 parameters with distributions that could be transformed

into a normal distribution [8], 1, 53, and 62 parameters from the

High-Content Image-Profiling
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Figure 1. Schematic of the high-content, image-profiling method used in this study. Yellow histograms in I-i and I-ii indicate the original
and transformed distributions of 123 wild-type values for each parameter, respectively. Gray histograms in I -iii and I-iv indicate the original and
transformed distributions of parameter values for the 4718 mutants, respectively. In I-i, I-ii, I-iii, and I-iv, the vertical and the horizontal histogram axes
represent the frequencies and parameter values, respectively. Box plots in II-i and II-ii indicate the distributions of the parameter values from drug-
treated wild-type yeast. In the box plots in II-i and II-ii, the vertical and the horizontal axes represent the parameter values and drug concentrations,
respectively. Red arrows in II-ii indicate the direction of trends within the parameter data. PC in I-v, I-vi and II-iii indicates the principal components
defined by PCA of transformed wild-type data for 501 parameters. The vertical and the horizontal axes in the two-dimensional plots in III indicate the
principal component scores for the mutants and drug-treated wild-type cells, respectively. The histogram in III shows the distribution of morphologic
similarities between the dose-dependent changes induced drug treatment and those induced by the deletion mutations. Morphologic similarities
were defined using the Pearson product-moment correlation coefficient (R); mutants with significantly high positive R values (the gray region in the
histogram) were defined as potential targets at two sided P ,0.05 with the Bonferroni correction, which was calculated based on P values from the
correlation coefficient test.
doi:10.1371/journal.pone.0010177.g001
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rnr3, rnr1, and rnr4 mutants, respectively, were significantly

different (P ,0.0001) on one side of the wild-type distribution

(Figure 2A), indicating that the rnr4 and rnr1 mutants had strong

phenotypes relative to the rnr3 phenotype. The weak phenotype of

the rnr3 mutant, which was not identified as a potential

hydroxyurea target, suggested that Rnr3p plays only a minor role

in these cellular processes, and that our high-content image-

profiling method does not detect weak morphologic phenotypes

associated with minor cellular activities.

Concanamycin A
We used concanamycin A as a representative of compounds

that affect intracellular cation homeostasis. Concanamycin A

inhibits the proliferation of mouse splenic lymphocytes stimulated

by concanavalin A [20], and has been shown to be a specific

inhibitor of vacuolar proton-translocating ATPases (V-ATPases)

[21]. V-ATPase, a heteromultimeric enzyme consisting of at least

15 subunits (Vma1p-Vma11p, Vma13p, Vma16p, Vph1p, and

Stv1p), uses ATP hydrolysis to transport cytosolic protons into

vacuoles, resulting in acidification of these compartments [22].

V-ATPase consists of two multimeric subunits; one is hydrophilic

V1 subunit consisting of 8 components, and the other is

hydrophobic VO subunit consisting of 7 components [22]. The

photo activated concanamycin A analog binds to subunit c in VO

domain from Manduca sexta [23], and also in yeast, the binding is

specific to subunit c (among c, c9 and c0 subtypes) encoded by

VMA3 in yeast [24]. Because the vma9 and vma10 mutants were not

included in the mutant panel, we assessed deletions of genes

encoding the other 13 V-ATPase subunits.

Wild-type cells were treated with various concentrations of

concanamycin A (Table 1), and examined using the same method

described above (Figure 3A). Among the 501 parameters, 0, 54,

111, and 217 parameters showed significantly dose-dependent

effects based on the Jonckheere-Terpstra test at FDR = 0.01, 0.05,

0.10, and 0.20, respectively [11,17]. Overall, changes in the 54

most sensitive parameters (Table S3) indicated that concanamycin

A treatment resulted in rounder cells with bigger nuclei, and fewer

mononuclear budded cells were present, all of which are indicative

of defective vacuolar acidification.

High-content image profiling revealed that among the 4718

mutants, 221 (4.68%) were significantly similar to concanamycin

A-treated cells at two sided P,0.05 with the Bonferroni correction

(Figure 3B). Among the 100 most likely candidates (R.0.497),

nine mutants including vma3 were associated with ‘‘vacuolar

acidification’’ (GOID: 7035), which represented a significant

enrichment of this GO term (P,0.05, Table S4) [18,19]. Thus,

our method efficiently identified genes encoding proteins in

pathways related to V-ATPase. The 8 of 13 V-ATPase mutants

were identified (Figure 3B). The maximum R value for the 13

V-ATPase mutants was 0.685 for the vma6 mutant (Figure 3C).

These results suggested that the morphologic features of the 8

mutants were similar to the dose-dependent morphologic changes

induced by concanamycin A. Moreover, the 8 V-ATPase mutants

among the 221 candidates represented a significant enrichment

from the original sample of 13 V-ATPase mutants in the complete

panel of 4718 mutants (P = 2.45E-7; one-side binomial test).

Because Vma1p, Vma8p, Vma11p, Vph1p and Stv1p do not

directly interact with the drugs [23,24,25], it is not surprising that

they were failed to be identified as the candidates. However, other

V-ATPase mutants were able to be detected even if they do not

directly interect, suggesting that the functional relationships of the

drug target with these components is potentially detected. Then,

we reasoned that the undetected V-ATPase mutants show too

weak phenotypes. To test the effects of the strength of observed

mutant phenotype, we compared the numbers of parameters that

were changed by the various V-ATPase gene deletions. Among the

254 parameters with distributions that could be transformed into a

normal distribution [8], 32, 23, 21, 15, 10, 8, 6, 3, and 2

parameters were identified with a normal distribution (P,0.0001)

on one side from the vma6, vma7, vma5, vma4, vma3, vma2, vma16,

vma1, and vma11 mutants, respectively, whereas no parameters

were detected for the vma8, vma13, vph1, and stv1 mutants.

Therefore, the vma1, vma8, vma11, vph1 and stv1 were not detected

as candidate targets because of the mutants’ weak phenotypes.

Lovastatin
We used lovastatin as a representative of compounds that affect

lipid metabolism. Lovastatin is a cholesterol-lowering agent that

disrupts cholesterol synthesis by specifically inhibiting hydroxy-

methylglutaryl-coenzyme A (HMG-CoA) reductase in the meval-

onate pathway [26]. HMG-CoA reductases encoded by HMG1

and HMG2 in yeast are the rate-limiting enzyme in the sterol

biosynthetic pathway [27].

Wild-type cells were treated with various concentrations of

lovastatin (Table 1) and the cells were characterized using

CalMorph (Figure 4). Jonckheere-Terpstra tests at FDR = 0.20

identified significant dose-dependent effects for 56 of the 501

parameters [11,17]. Overall, the changes indicated that lovastatin

treatment made wild-type yeast cells smaller and rounder, and

decreased the percentage of large bud cells (Table S5).

High-content image profiling detected 100 (2.12%) of the 4718

genes as potential lovastatin targets at two sided P,0.05 with the

Bonferroni correction (Figure 4B). Three of the mutated genes,

including fen2, were associated with ‘‘vitamin transporter activity’’

(GOID: 51183), a GO term that was significantly enriched (P,0.05,

Table S6) among the top 100 candidate targets (R.0.417). Fen2p is

a plasma membrane H+-pantothenate symporter [28] and CoA is

synthesized from pantothenate [29], demonstrating that our high-

content image-profiling method identified genes from pathways

related to the mevalonate pathway. Although the hmg2 mutant was

not detected as a candidate, the mutant of the lovastatin target hmg1

was identified (R = 0.520; Figure 4B and C).

Table 1. Chemical compounds used in this study.

Compound Concentrations Target cellular process Target genes

Hydroxyurea 0, 5.0, 10, 20 and 30 mM Deoxynucleotide triphosphate synthesis RNR1, RNR2, RNR3 and RNR4

Concanamycin A 0, 2.0, 3.9, 7.8 and 15 mM Vacuolar acidification VMA1, VMA2, VMA3, VMA4, VMA5, VMA6, VMA7, VMA8,
VMA9, VMA10, VMA11, VMA13, VMA16, VPH1 and STV1

Lovastatin 0, 6.25, 12.5, 25 and 50 mg/ml Mevalonate synthesis HMG1 and HMG2

Echinocandin B 0, 0.5, 1, 2 and 3 mg/ml 1,3-beta-glucan synthesis FKS1 and FKS2

doi:10.1371/journal.pone.0010177.t001
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Previous results [8] detect no more than two parameters from

the hmg1 and hmg2 mutants with normal distributions on one side

at P,0.0001, suggesting that our high-content image-profiling

method can detect mutants of genes with major cellular roles even

if the mutant show a weak phenotype.

Echinocandin B
We used echinocandin B as representative of agents that

damage the cell wall. Echinocandin B, which is produced by

Aspergillus nidulans and Aspergillus rugulosus [30], has an antifungal

activity owing to an specific inhibition of the synthesis of 1,

Figure 2. Hydroxyurea treatment and the results of target inference. A) Photographs of wild-type cells treated with 30 mM hydroxyurea and
the rnr4 mutant. Cells were triply stained with FITC-ConA, Rh-ph, and DAPI. Quantitative analysis of the hydroxyurea-induced morphologic changes is
summarized in Table S1. B) A histogram of correlation coefficients (R) between the mutant and hydroxyurea-treated wild-type cells. The dashed red
line indicates the position of the R value corresponding to the two sided P value of 0.05 with the Bonferroni correction based on a correlation
coefficient test. C) Two-dimensional plot of wild-type cells treated with hydroxyurea and the rnr4 mutant. The scores for the 104 principal
components are plotted. The red line indicates a linear regression model (R = 0.738).
doi:10.1371/journal.pone.0010177.g002

High-Content Image-Profiling
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3-b-D-glucan, a major component of the yeast cell wall [31].

Because both Fks1p and Fks2p have been identified as the catalytic

subunit of 1,3-b-D-glucan synthase and the synthase activity of a

fks1 mutant was reported to be significantly lower than those of

wild-type cells and a fks2 mutant [32,33], we believe Fks1p is a

representative target of echinocandin B.

Using Jonckheere-Terpstra tests at FDR = 0.01, 226 of 501

parameters showed significant dose-dependency in response to

echinocandin B treatment (Table S7 and Table 1). The

echinocandin B-treated wild-type yeast cells were larger and

rounder with bigger nuclei and necks. The cells contained

delocalized actin and fewer large buds were observed.

Among the 4718 mutants, 197 (4.18%), were detected as

candidates using high-content image profiling at two sided P,0.05

with the Bonferroni correction. In the top 100 candidates, three

mutants that were categorized as having ‘‘a-1,6-mannosyltranser-

ase activity’’ (GOID: 9) were identified, which was a significant

enrichment of this GO term (P,0.05, Table S8) [18,19]. The

results demonstrate that our high-content image-profiling method

efficiently identified genes from pathways related to cell wall

biosynthesis, although neither fks1 nor fks2 mutant were included

in the candidates.

Based on previous results [8], 10 of the 254 parameters for the

fks1 mutant showed normal distributions on one side (P,0.0001),

whereas no parameters were detected for the fks2 mutant Since,

it has been suggested that Fks1p has other functions than 1,

3-b-glucan synthesis, a combination of the redundancy and the

multifunctionality might make it difficult to detect the targets, even

if the phenotype is not so weak [34,35].

Discussion

We developed a high-content image-profiling system to identify

drug targets systematically. The multiparameter profiling method

uses 501 morphologic parameters and a dataset of 4718

nonessential deletion mutants (Figure 1). We used four well-

characterized compounds that affect various cellular functions as

test cases (Table 1). The drug target candidates were successfully

screened into 2% to 8% from 4718 mutants on the panel, and the

previously reported targets of the compounds and gene products

associated with pathways that were functionally related to the

target were enriched among the candidates. These results indicate

that our high-content image-profiling method can detect targets of

drug candidate and uncover their potential mechanisms of action.

The proposed method allows systematic, high-content screening

independent of previous information about the drug candidate.

The systematic approach with defined statistical criteria means

that this method can theoretically be used not only to identify

candidates of the drug targets but also to assess the effects of any

condition that induces morphologic changes (e.g., genetic muta-

tions, nutritional starvation, and temperature shifts, among

others). Further, because the analysis is statistics-based, the

methodology can be expanded to higher eukaryotes if a

morphologic phenotype database is available. The statistical

power and utility of the method are enhanced by the multiple

parameters that are extracted from high-resolution images.

Examination of multiple intracellular activities and detailed

phenotypic information for each mutant allow assessments of the

effects of a drug on a wide variety of cellular functions. Our high-

content image-profiling method also allows direct and systematic

identification of drug targets from 4718 nonessential genes without

any prior knowledge of about the mechanism of action of the

candidate drug. This contrasts with conventional high-content

imaging approaches, which focus on specific bioactivities (e.g.,

translocation of fluorescently labeled cellular targets between

intracellular compartments) to assign the drug candidate into well-

characterized groups [36,37]. In addition, the off-target effects

may be estimated by comparing results from low concentration of

the drug treatment (reflecting target-specific effect) with that from

high concentration (reflecting non-specific effects).

Compendium approaches that have been used with microarray

technology to identify genetic targets comprehensively and

systematically [1,38] are similar approach to ours. In the

compendium approaches, multiparametric profiles similar to that

under the query conditions are surveyed from a collection of

profiles under various conditions (drug, deletion mutants and etc).

The profiles based on the relative gene expression abundance

(,300 profiles of ,6000 genes) [5], the synthetic lethality (,1700

profiles of ,3900 genes) [39] and the fitness (,80 profiles of

,3400 genes) [6] are used as compendium data set. These

compendium approaches used hydroxyurea as a test case to assess

feasibility of target inference, and their results were consistent with

that of this study ([5,6,39] and data not shown). These approaches

and our high-content method may be complementary for target

identification because of different screening criteria (i.e., fitness

versus morphology). Moreover, our approach may be particularly

useful to identify targets of drugs that have no apparent effect on

cellular fitness.

A key point for our high-content image-profiling is to detect the

morphological changes. Therefore, if there are no or very little

morphologic changes, it becomes difficult to identify drug targets.

As expected, candidates with minor morphologic changes could

not be detected. For example, when the drug target is the gene

product possessing functionally redundant proteins (e.g., VPH1

and STV1 [40]) and/or is associated with relatively lower

enzymatic activity (e.g., Rnr3p [41], Hmg2p [27], and Fks2p

[32]). In addition, in the case of a multifunctional protein (e.g.,

Fks1p [34,35]), detection of the target was difficult even with

marked morphologic changes [8]. Nevertheless, as Hmg1p, which

showed almost no morphologic change [8] was identified as the

target candidate of lovastatin, even with very weak phenotype it

may be possible to identify the candidate, suggesting that strong

Table 2. Summary of the inference results.

Number of detected
candidates (FDR = 0.01)

Representative
target

R value of the representative
target mutant

Rank of the
target mutant

Hydroxyurea 384 (8.14%) rnr4 0.836 (P,2.20E-16) 1st

Concanamycin A 221 (4.68%) vma6 0.685 (P = 1.11E-15) 4th

Lovastatin 100 (2.12%) hmg1 0.520 (P = 1.55E-8) 20th

Echinocandin B 197 (4.18%) fks1 0.284 (P = 3.51E-3) 527th

doi:10.1371/journal.pone.0010177.t002

High-Content Image-Profiling
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statistical power is needed to detect target-related mutants which

show weak phenotypes (e.g., vma1, vma8 and vma11). In order to

better the statistical power, improvement in the reference data set

of deletion mutants (e.g., preparation of the replicated data sets)

would be required.

The current version of our high-content image-profiling system

is limited to nonessential genes because morphologic phenotypes

of mutants carrying deletions in essential genes are not available.

Some genetic techniques may allow us to overcome this limitation.

For example, heterozygous deletion mutants in diploid yeast may

Figure 3. Concanamycin A treatment and the results of target inference. A) Photographs of wild-type cells treated with 7.8 mM
concanamycin A and the vma6 mutant. Cells were triply stained with FITC-ConA, Rh-ph, and DAPI. Quantitative analysis of concanamycin A-induced
morphologic changes is summarized in Table S2. B) A histogram of correlation coefficients (R) between mutant and concanamycin A-treated wild-
type cells. The dashed red line indicates the position of the R value corresponding to the two sided P value of 0.05 with the Bonferroni correction
based on a correlation coefficient test. C) Two-dimensional plot of concanamycin A-treated wild-type cells and the vma6 mutant. Scores for the 104
principal components are plotted. The red line represents a linear regression model (R = 0.685).
doi:10.1371/journal.pone.0010177.g003
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cause a haploinsufficient phenotype and enable essential genes to

be screened [2]. Alternatively, a comprehensive set of tempera-

ture-sensitive mutants for essential genes [42], including multiple

mutant alleles of the same gene, may provide intragenic insights

into the inhibitory mechanisms of compounds even if the target

genes are multifunctional (e.g., FKS1 [34,35]). Finally, morpho-

logic information from overexpression mutants may facilitate the

identification of functionally promoted genetic targets [43,44].

To further improve our method, we can examine more image

parameters from of other organelles. The new version of

Figure 4. Lovastatin treatment and the results of target inference. A) Photographs of wild-type cells treated with 50 mg/ml lovastatin and the
hmg1 mutant. Cells were triply stained with FITC-ConA, Rh-ph, and DAPI. Quantitative analysis of lovastatin-induced morphologic changes is
summarized in Table S3. B) A histogram of correlation coefficients (R) between the mutant and lovastatin-treated wild-type cells. The dashed red line
indicates the position of the R value corresponding to the two sided P value of 0.05 with the Bonferroni correction based on a correlation coefficient
test. C) Two-dimensional plot of lovastatin-treated wild-type cells and the hmg1 mutant. Scores for the 104 principal components are plotted. The red
line represents a linear regression model (R = 0.512).
doi:10.1371/journal.pone.0010177.g004
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CalMorph can be used to examine 1111 morphologic parameters,

including additional characteristics of various cellular components

such as mitochondria, vacuoles and spindle pole bodies [45]. The

new version of CalMorph should improve the inference accuracy

and generality of this approach for a variety of chemicals by

expanding the available morphologic data from the mutant panel.

Materials and Methods

Media and strain
S. cerevisiae were grown in rich medium consisting of YPD

medium, 1% (w/v) Bacto yeast extract (BD Biosciences, CA,

USA), 2% (w/v) Bacto peptone (BD Biosciences), and 2% (w/v)

glucose. The wild-type S. cerevisiae strain (access number: Y02458:

MATa his3::KanMX leu2 met15 ura3) used in this study was

purchased from the European Saccharomyces cerevisiae Archive for

Functional Analysis (EUROSCARF: http://web.uni-frank

furt.de/fb15/mikro/euroscarf/).

Chemicals and test conditions.
Stock solutions of 2 M hydroxyurea (Sigma-Aldrich, MO, USA),

100 mM concanamycin A (Sigma-Aldrich), 20 mg/ml lovastatin

(Wako Pure Chemical Industries, Osaka, Japan), and 2 mg/ml

echinocandin B (gift from Dr. T. Watanabe) were prepared in

various solvents: distilled water (DW); dimethyl sulfoxide (DMSO)

(Wako Pure Chemical Industries, Ltd.); ethanolic NaOH containing

15% (v/v) ethanol (Wako Pure Chemical Industries) and 0.25%

(w/v) NaOH (Wako Pure Chemical Industries) in DW; and DMSO,

respectively.

To grow wild-type yeast treated with each reagent, cells were

precultured in rich medium, and were used to inoculate wells of a

microtiter plate containing fresh rich medium and various

inhibitory concentrations of the reagent or the solvent alone (flat-

bottomed 96-well plates with lids; Asahi Techno Glass Corporation,

Chiba, Japan). The cultures were incubated at 25uC in a shaking

incubator (Micro mixer E-36, Taitec Corporation, Saitama, Japan)

and their optical densities were measured at 600 nm at more than

10 time points over the course of 2 days using a SpectraMax Plus384

spectrophotometer (Molecular Devices, CA, USA). Growth tests

were performed twice for each reagent, the averaged doubling time

was calculated, and the concentration that delayed the doubling

time by approximately 10% was determined.

Image acquisition and analysis
Cells (86106 cells/ml) growing at 25uC in rich medium with or

without various concentrations of each reagent (Table 1) were

fixed in medium supplemented with 3.7% formaldehyde (Wako

Pure Chemical Industries) and 0.1 M potassium phosphate buffer

(pH 6.5). Triple staining of the yeast cells and image analysis with

CalMorph (ver. 1.1) were performed as described previously [8].

CalMorph automatically characterizes each yeast cell by calculat-

ing 501 morphologic parameters based on data from more than

200 cells. Five independent cultures grown under each condition

were analyzed.

Statistical analysis
Calculation of the doubling time and plotting of the analyzed

data was performed using R (http://www.r-project.org/). High-

content image-profiling, including the PCA, Jonckheere-Terpstra

test, Pearson product-moment correlation analysis, and bootstrap-

based estimation of the FDR [17], was performed using a newly

built Java program. The Java program includes a graphical user

interface and is available upon request. Morphologic data about the

4718 mutants and 126 replications of wild-type cells were described

previously [8]. Among the replicated wild-type data, three

replications were discarded because of missing values. A Box-Cox

power transformation was used as described previously [8].

GO::TermFinder, a set of Perl modules, was downloaded from

http://search.cpan.org/dist/GO-TermFinder/and used to exam-

ine enrichment of GO terms in 4718 genes [19]. In order to

implement GO::TermFinder at local computer, two files including

gene information and ontology information were downloaded from

the Sacchromyces Genome Database (http://www.yeastgenome.org/)

[18] and the Gene Ontology website (http://www.geneontology.

org/) [46], respectively.

Supporting Information

Table S1 A list of parameters identified from hydroxyurea-

treated cells using Jonckheere-Terpstra tests at FDR = 0.01.

Green, red, and blue in the ‘ID’ column indicate parameters that

were calculated from images of the cell wall, actin, and DNA,

respectively. Red and green in the ‘P value’ column indicate

increases and decreases, respectively, in the parameter values

following hydroxyurea treatment with a given FDR from the

Jonckheere-Terpstra test. All 501 parameters were described

previously. A) A list of parameters detected at stage A (unbudded

cells with one nucleus). B) A list of parameters detected at stage

A1B (budded cells with one nucleus). C) A list of parameters

detected at stage C (budded cells with two nuclei). D) A list of

parameters representing various cellular ratios.

Found at: doi:10.1371/journal.pone.0010177.s001 (0.06 MB

XLS)

Table S2 A list of GO terms enriched in the top 100 genes

ranked by the high-content image-based profiling for hydroxyurea

treatment. Of the 4718 genes, 4379 genes were associated to at

least one GO term, in which 91 of top 100 genes ranked by high-

content image-profiling for hydroxyurea were included. Using the

GO term finder (see Materials and Methods), significant

enrichment of 111 GO terms was detected at P,0.05 with the

Bonferroni correction (Corrected P-value column) among the 91

genes from 4379 genes, and GO terms associated with 100 and

fewer genes in the 4379 genes (Number of annotations in the 4718

genes column) were listed.

Found at: doi:10.1371/journal.pone.0010177.s002 (0.03 MB

XLS)

Table S3 A list of parameters identified from concanamycin A-

treated cells using Jonckheere-Terpstra tests at FDR = 0.05. The

color scheme is the same as that used in Table S1. A) A list of

parameters detected at stage A (unbudded cells with one nucleus).

B) A list of parameters detected at stage A1B (budded cells with

one nucleus). C) A list of parameters detected at stage C (budded

cells with two nuclei). D) A list of parameters that represent various

cell ratios.

Found at: doi:10.1371/journal.pone.0010177.s003 (0.04 MB

XLS)

Table S4 A list of GO terms enriched in the top 100 genes

ranked by the high-content image-based profiling for concanamy-

cin A treatment. Of the 4718 genes, 4379 genes were associated to

at least one GO term, in which 90 of top 100 genes ranked by

high-content image-profiling for concanamycin A were included.

Using the GO term finder (see Materials and Methods), significant

enrichment of 89 GO terms was detected at P,0.05 with the

Bonferroni correction (Corrected P-value column) among the 90

genes from 4379 genes, and GO terms associated with 100 and

fewer genes in the 4379 genes (Number of annotations in the 4718

genes column) were listed.
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Found at: doi:10.1371/journal.pone.0010177.s004 (0.03 MB

XLS)

Table S5 A list of parameters identified from lovastatin-treated

cells using Jonckheere-Terpstra tests at FDR = 0.20. The color

scheme is the same as Table S1. A) A list of parameters detected at

stage A (unbudded cells with one nucleus). B) A list of parameters

detected at stage A1B (budded cells with one nucleus). C) A list of

parameters detected at stage C (budded cells with two nuclei). D) A

list of parameters that represent various cell ratios.

Found at: doi:10.1371/journal.pone.0010177.s005 (0.04 MB

XLS)

Table S6 A list of GO terms enriched in the top 100 genes

ranked by the high-content image-based profiling for lovastatin

treatment. Of the 4718 genes, 4379 genes were associated to at

least one GO term, in which 92 of top 100 genes ranked by high-

content image-profiling for lovastatin were included. Using the

GO term finder (see Materials and Methods), significant

enrichment of three GO terms was detected at P,0.05 with the

Bonferroni correction (Corrected P-value column) among the 92

genes from 4379 genes, and GO terms associated with 100 and

fewer genes in the 4379 genes (Number of annotations in the 4718

genes column) were listed.

Found at: doi:10.1371/journal.pone.0010177.s006 (0.02 MB

XLS)

Table S7 A list of parameters identified from echinocandin

B-treated cells using Jonckheere-Terpstra tests at FDR = 0.01.

The color scheme is the same as Table S1. A) A list of parameters

detected at stage A (unbudded cells with one nucleus). B) A list of

parameters detected at stage A1B (budded cells with one nucleus).

C) A list of parameters detected at stage C (budded cells with two

nuclei). D) A list of parameters that represent various cell ratios.

Found at: doi:10.1371/journal.pone.0010177.s007 (0.06 MB

XLS)

Table S8 A list of GO terms enriched in the top 100 genes

ranked by the high-content image-based profiling for echinocan-

din B treatment. Of the 4718 genes, 4379 genes were associated to

at least one GO term, in which 84 of top 100 genes ranked by

high-content image-profiling for echinocandin B were included.

Using the GO term finder (see Materials and Methods), significant

enrichment of 52 GO terms was detected at P,0.05 with the

Bonferroni correction (Corrected P-value column) among the 84

genes from 4379 genes, and GO terms associated with 100 and

fewer genes in the 4379 genes (Number of annotations in the 4718

genes column) were listed.

Found at: doi:10.1371/journal.pone.0010177.s008 (0.03 MB

XLS)
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