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Abstract

The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly
benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess
protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment
screening, we dock ,11000 fragments against a given binding site and compute a computational hit rate based on the
fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach
on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured
experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment
screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and
protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations,
including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets,
this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and
suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.
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Introduction

Since the completion of the human genome, there has been

much interest in the ‘‘druggability’’ of new potential drug targets,

and what fraction of the proteome is druggable. In this paper we

are concerned with protein druggability in the sense defined by

Hopkins and Groom [1], i.e., the ability of a protein to bind small,

drug-like molecules with high affinity. For many classes of protein

binding sites, such as the ATP binding sites in kinases, there is little

ambiguity about whether the site is druggable; the challenge in

developing inhibitors in such cases is achieving selectivity and

other desired properties. However, not all biological targets are

druggable since only certain binding sites are complementary to

drug-like compounds in terms of physicochemical properties (i.e.

size, shape, polar interactions and hydrophobicity) [1,2]. An

accurate method for predicting druggability would be particularly

valuable for assessing emerging classes of binding sites such as

protein-protein interactions (PPI) [3] and allosteric sites [4], which

are generally considered more challenging but are attracting

increasing interest in both academia and industry as drug targets.

For example, while some PPI sites have led to potent small

molecule inhibitors, others have not despite substantial effort [5,6].

A first step in evaluating target druggability is to detect the

presence of binding pockets of suitable size, shape, and

composition to accommodate drug-like molecules. Many such

methods have been developed and tested using training sets of

ligand binding sites extracted from the Protein Data Bank (PDB).

Several in-depth reviews are available that summarize computa-

tional methods for protein binding pocket detection [7,8,9], many

of which can be classified as geometry-based [10,11,12,13],

information-based [14,15] and energy-based algorithms [16,17].

Combinations of these strategies have also been developed

[18,19,20,21,22]. In addition, more complex free-energy calcula-

tion methods have also been used to predict binding sites and

identify energetically favorable binding site residues, including

computational solvent mapping [23] and grand canonical Monte

Carlo simulations [24].

The presence of a ‘‘suitable’’ protein pocket is necessary but not

sufficient to guarantee potent binding of drug-like small molecules.

A few studies have attempted to more directly predict druggability

of binding sites. Several studies have predicted protein druggability

on the basis of sequence and structural homology to known drug

targets [1,2,8]. However, not all members of the same protein

family are equally druggable [25]. More importantly, such

methods cannot be used to assess druggability of novel target

families. Recently, an alternative approach was described to

predict the maximal affinity for a passively absorbed oral drug to a

given binding site, by quantitatively approximating the physical

forces driving protein-ligand binding. Specifically, hydrophobic

surface area and curvature of the binding pocket were used to fit

the binding affinities of a training set of protein-ligand binding

complexes. Notably, this model was successfully applied to predict

the relative druggability of two novel targets before experimental

validation [26].

To date, the most extensive experimental assessment of

druggability on various targets has been performed by Hajduk

and coworkers [27]. The heteronuclear-NMR-based technique

was applied to screen fragment-like libraries against a set of 23
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protein targets containing 28 different binding sites. This study

revealed that small ligands bind almost exclusively to well-defined

binding pockets on the protein surface, independent of their

affinity. Remarkably, the authors observed a strong correlation

between the experimental NMR hit rate and the ability to bind

drug-like ligands with high affinity in a particular binding site.

Furthermore, they derived a linear regression model to fit the

experimentally measured hit rates to physicochemical descriptors

of these 28 binding pockets. These results suggested that the

druggability of a particular binding site is related to its propensity

to bind low-affinity, fragment-size compounds.

We wondered whether in silico fragment screening would also

be useful in this regard, with the obvious advantages of speed

and cost relative to experimental screening. Here we describe

the development and evaluation of such a method, making use

of a molecular mechanics-based scoring method for the protein-

ligand interactions (Method Section) [28,29]. Specifically, we

report the results of virtually screening ,11,000 diverse

fragment-like compounds against a total of 152 protein binding

sites, including the training dataset and external dataset studied

by Hajduk and coworkers [27]. We demonstrate that the hit rate

calculated from computationally screening a diverse fragment

library correlates with the hit rate measured experimentally

from the NMR-based screening method, despite the fact that we

could not directly replicate the experiment in silico because the

fragment libraries used for the NMR screening are proprietary.

Secondly, we show that the in silico fragment screening method

can be used to distinguish known druggable and non-druggable

targets, including both enzymes and protein-protein interaction

sites. Finally, we explore the sensitivity of the results to different

receptor conformations, including flexible protein-protein inter-

action sites.

Results and Discussion

Comparison between NMR-based and Virtual Fragment
Screening

The key results of virtual fragment screening against the

Hajduk et al. training dataset [27] are summarized in Table 1

and Figure S1. Table 1 summarizes the druggability scores

measured from NMR-based screening, predicted by an empir-

ically fitted model by Hajduk et al., and predicted by our virtual

fragment screening method. Our calculated druggability scores

correlate reasonably well with the NMR-based fragment

Table 1. Targets, binding sites, and hit rate data from NMR-based fragment screening and two different computational models.

Target Binding site PDB ID
NMR-based Screeninga

Log (Hit Rate) Model of Hajduk et al.a
Virtual Fragment Screening
Log (Hit Rate)

AK Adenosine 1lii 20.66 20.42 0.82

Akt-PH IP3 1h10 21.91 21.98 20.51

Bcl-XL Bak 1bxl (1ysn)c,d 20.11 20.64 0.86 (0.88)

Bir3b Peptide 1g3f 21.03 20.72 20.62

CMPK CMP 1q3tc 21.13 20.72 0.12

E2-31b DNA 1dhmc 20.71 20.72 21.05

ErmAM SAH 1qam 21.01 20.87 1.04

FBP DNA 1j4w 21.61 21.04 20.28

FKBP FK506 1fkj 20.03 20.24 0.66

FKBP 2nd site 1fkj 21.24 21.22 20.22

HI-0065 ADP 1fl9 20.82 21.28 0.59

LCKb pTyr 1lkl 20.21 21.07 20.67

LFA IDAS 1rd4 20.40 20.35 0.74

MDM2 P53 1rv1 (1ycr)d 20.49 20.35 0.92 (0.45)

MurI Glu 1zuw 21.93 22.00 20.12

PAK4 ATP 2cdzc 20.78 20.63 0.85

PDZ-PSD95 Peptide 1iu0 22.00 21.99 20.60

Pin1 Peptide 1i8h 20.94 21.49 20.05

PTP1B Catalytic pTyr 1ph0 20.68 21.15 0.72

PTP1B Noncatalytic pTyr 1ph0 21.77 21.66 20.31

SARS N-term RNA 1sskc 21.93 21.92 20.03

SCD Substrate 1g4k 20.09 20.55 0.51

Survivin Bir3 1e31 21.97 21.99 20.37

UK Peptide 1fv9 20.40 20.81 1.46

For the NMR-based screening results and the predictive model of Hajduk et al., druggable is defined as log (Hit Rate) .21.0 and non-druggable as log (Hit Rate) #21.0;
the corresponding cut-off in our virtual fragment screening model is 0.36.
afrom Reference [27].
bThree outliners (Bir3, E2–31 DNA site and LCK pTyr binding site) identified in our study.
cStructures were not reported in the Hajduk et al. dataset.
dFor Bcl-xl and MDM2, we used two structures, peptide-bound (1bxl and 1ycr, respectively) and small ligand bound (1ysn and 1rv1, respectively).
doi:10.1371/journal.pone.0010109.t001
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screening results (Figure 1) except for three binding sites (Bir3,

E2–31 DNA site, and LCK pTyr binding site), for which we

compute much lower hit rates. Our primary goal is not to

reproduce the NMR screening data per se, but to predict

druggability, as we discuss in the next section. Nonetheless, these

outliers deserve brief comment. First, the experimentally

measured binding affinity of the best fragment hits ranges are

rather weak, from 200 to 1,000 mM, for these three outliers,

several-fold higher than other targets with similar NMR hit rates

(less than 50 mM) [27]. Further, although these sites were

classified as druggable or moderately druggable based on the

NMR hit rates, no high-affinity druglike binders have been

reported to our knowledge. The LCK pTyr binding site and Bir3

have been suggested to be not druggable due to their highly polar

or very small binding sites [30]. The reported LCK pTyr site

‘‘druglike’’ ligand contains a diphosphonophenylalanine group to

target the pTyr site, and a cyclohexane ring inserts deeply into an

extra spatially distinct hydrophobic binding pocket (pTyr+3) [31],

which further indicates that LCK pTyr site is not a truly

druggable site by itself. We cannot rule out the possibility that

these outliers reflect a deficiency in our method, but for the

reasons discussed above, we have excluded them from further

analysis.

Figure 1 presents the correlation between the NMR-based

druggability score and our calculated druggability score for the

remaining 21 binding sites. Encouragingly, a reasonable correla-

tion is achieved (R2 = 0.69), especially considering that the

compounds screened by NMR and by docking are different.

The empirical model developed by Hajduk et al. by fitting to this

data, using multiple adjustable parameters, gives a correlation of

R2 = 0.79 for these 21 binding sites, and the slopes of the two

models are similar in Figure 1 (0.72 and 0.81, respectively).

Hajduk et al. defined binding sites as ‘‘highly druggable’’ if

they have a log(hit rate).21.0. Based on the correlation in

Figure 1, the corresponding value of the computational log(hit

rate) is 0.36, and we use this value to classify proteins as

druggable or non-druggable in the following sections. Note that,

although Hajduk et al. distinguish between ‘‘highly druggable’’

and ‘‘moderately druggable’’, we use a simple binary classifica-

tion for simplicity.

Classification of Binding Sites as Druggable/Non-
Druggable

Using the druggability score cutoffs derived above, we evaluated

the ability of the virtual fragment screening protocol to classify the

binding sites in the Hajduk et al. external dataset, which contains

72 targets, including 35 classified as druggable and 37 as non-

druggable. Table S1 summarizes the druggability scores calculated

using the empirical model of Hajduk et al. and our virtual

fragment screening method.

In evaluating the success of our method, we put more

emphasis on ‘‘true positives’’, i.e., the ability to identify

proteins as druggable when they have in fact been shown to

bind small drug-like molecules with high affinity. By contrast,

the lack of a published, potent small molecule inhibitor does

not necessarily prove that a target is not druggable, and thus

we put less emphasis on putative ‘‘false positives’’. In addition,

in practical application, incorrectly predicting a site to be non-

druggable when it is in fact druggable arguably would be worse

than incorrectly predicting a non-druggable site to be

druggable. However, it is clear from the ROC plot that a

different hit rate cutoff could also be used to reduce the

number of false positives while maintaining a relatively high

true positive rate, if desired.

As shown in Figure 2, our method is able to effectively distinguish

between druggable and non-druggable sites. Encouragingly, our

method, using the default hit rate cutoff, correctly identified almost

all the true positives except for only one case, protein kinase C

(PKC-delta). Because PKC–ligand binding was shown to be

dependent on phospholipid binding [32], it is perhaps not surprising

that our method failed to predict PKC-delta as a druggable site since

we do not treat the effects of membrane binding. With respect to

false positives, we classified several proteins that bind sugars or sugar

analogs as moderately druggable, whereas these are annotated as

non-druggable targets due to the lack of reported high-affinity

druglike binders in the literature.

Based on a survey of recent literature, a few of the putative

‘‘false positives’’ are possibly incorrectly classified as non-

Figure 1. Correlation between the experimental NMR hit rate
and our calculated druggability score (red line) for 21 binding
sites as described in the text, comparing to the Hajduk et al.
predictive model for these 21 sites (blue line). Note that three
outliers in our druggability calculation were excluded in regression
analysis, and are only labelled here for visualization purpose.
doi:10.1371/journal.pone.0010109.g001

Figure 2. ROC curve plotting the false positive rate vs the true
positive rate as a function of the score used for differentiating
druggable vs non-druggable binding sites in the external
dataset of Hajduk et al. The values for the default cutoff scores are
marked with a solid circle and shown in parentheses. For this analysis,
true positives were defined as the 35 binding sites with known high
affinity ligands, while true negatives were the remaining 37 binding sites.
doi:10.1371/journal.pone.0010109.g002
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druggable (Table S1). For example, fatty acid binding protein

(FABP) was annotated as a non-druggable target; however, both

ours and the empirical model of Hajduk et al. predicted it to be

highly druggable. Small fragment-like ligands were identified by

an NMR-based screening method [33], and also a high-affinity

drug-like inhibitor was recently reported to be an effective

therapeutic agent to prevent and treat metabolic diseases [34].

In contrast to prediction of Hajduk et al., our method ranked three

targets (guanylate kinase, guanine nucleotide-binding protein, and

deoxynucleoside-monophosphate-kinase) as highly druggable hits,

whereas they were annotated as non-druggable targets. Consid-

ering the similarity of these targets to well-known kinase targets,

we wonder whether these three nucleoside/nucleotide binding

proteins may prove to be druggable.

Application to Known Drug Targets with Multiple
Conformations

As an additional data set, we assembled a diverse set of well-

known drug targets that have multiple crystal complex

structures available, and generally display significant sidechain

movement upon binding to different ligands [35] (Table 2).

Thus, these targets serve as additional positive controls, and also

allow us to investigate the consequences of protein conforma-

tional flexibility.

All of these targets are predicted to be druggable based on

the cutoff of 0.36 used above. Most of the targets have much

higher druggability scores (.1.0), regardless of which crystal

structure was used. The lowest druggability scores of 0.45 and

0.52 were calculated for angiotensin-converting enzyme (ACE,

1o86) and neuraminidase (NA, 1a4g), respectively. These

binding sites are highly charged. It has been argued elsewhere

that such binding sites are in fact less druggable than more

hydrophobic binding sites [26]. Nevertheless, it is encouraging

that our fragment virtual screening method is capable of

assigning a reasonable druggability score to highly charged but

druggable binding sites.

The histograms of energy scores (Figure S2) and the

druggability scores calculated from them do change using

different crystal structures, as expected, but in most cases the

changes are remarkably small. The largest variation in the

virtual fragment screening results between different crystal

structures is seen for P38 MAPK, which also displays some of

the largest conformational changes: the largest movement of a

binding site side chain (RMSDmax.) is more than 10 Å, and

the average movement of binding site side chains (RMSDave.)

is ,4 Å. In the other cases, where conformational changes in

the binding site are relatively small (RMSDmax.,3 Å), the

druggability scores vary only slightly, including for the cases

where ligand-free structures were available (Alr2, CDK2,

DHFR and thrombin). As shown below, the results on PPI sites

show a much more striking dependence on conformational

states.

Table 2. Druggability score calculated on 15 well-known drug targets.

Drug Target PDB ID RMSDave (Å) RMSDmax (Å) Log (Hit Rate) Drug Target PDB ID RMSDave (Å) RMSDmax (Å) Log (Hit Rate)

ACE 1uze 0.60 HIVRT 1vrt 1.66

1o86 0.17 0.37 0.45 1rt1 1.51 2.45 1.75

1uzf 0.35 0.79 0.69 1c1ca 1.88 3.12 1.61

Alr2 1ah0 1.42 1rtha 1.62 2.28 1.61

1ah3a 1.06 3.19 1.27 HMGR 1hw8 1.39

2acra,b 0.88 1.72 1.10 1hwk 0.61 1.49 1.31

CDK2 1aq1a 1.32 NA 1a4g 0.57

1buha,b 1.77 3.20 1.44 1a4qa 0.48 2.11 0.52

1dm2a 1.75 4.49 1.62 1nsca 0.34 1.49 0.52

COX-2 1cvu 1.51 P38 MAPK 1a9u 1.00

1cx2a 1.24 3.78 1.53 1kv1 3.84 10.41 1.16

3pgha 1.11 3.96 1.64 1kv2 3.54 11.26 1.61

DHFR 3dfr 1.01 PDE5 1xoz 1.18

6dfrb 1.47 1.96 1.02 1xp0 0.79 2.23 1.24

ER 1l2i 1.69 PPARg 1fm6 1.46

3erta 2.61 4.47 1.55 1fm9a 1.47 4.64 1.62

1erra 2.01 4.39 1.61 2prga 0.71 1.27 1.43

Fxa 1f0r 1.64 Thrombin 1ba8 1.53

1fjs 1.09 2.57 1.59 1hgtb 0.69 1.85 1.55

1ksna 0.67 1.65 1.59 TK 1kima 1.58

1xkaa 1.27 2.46 1.56 1ki4a 1.78 2.90 1.40

RMSDave was defined as the sidechain RMSD based on binding site residues within a cutoff distance of 4.5 Å from crystallographic ligands; RMSDmax is defined as the
largest sidechain RMSD value among all the binding site residues.
aStructures used in the induced fit docking dataset of Sherman et al. [35].
bApo structure, the rest are all holo structures.
ACE, angiotensin-converting enzyme; ALR2, aldose reductase; CDK2, cyclin-dependent kinase 2; COX-2, cyclooxygenase-2; DHFR, dihydrofolate reductase; ER, estrogen
receptor; FXa, factor Xa; HIVRT, HIV reverse transcriptase; HMGR, hydroxymethylglutaryl-CoA reductase; NA, neuraminidase; P38 MAPK, P38 mitogen activated protein
kinase; PDE5, phosphodiesterase 5; PPARg, peroxisome proliferator activated receptor gamma; TK, thymidine kinase.
doi:10.1371/journal.pone.0010109.t002
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Druggability Assessment for Protein-Protein Interaction
Sites

Protein-protein interactions are central to many biological

processes, and therefore represent an important class of molecular

targets for developing therapeutic agents. However, PPIs have

been historically considered to be difficult targets for small

molecular inhibitors due to the lack of suitable binding pockets

to accommodate drug-like molecules. In addition, the binding

interfaces in PPIs are generally highly conformationally flexible.

Nevertheless, important progress has been made in discovering

small molecular inhibitors of several important protein-protein

interaction targets, such as MDM2-p53, BCL-XL-BAK and

IL2-ILR [3,36]. Therefore, it is desirable to computationally

evaluate the druggability of PPIs, and identify specific druggable

conformations.

Among the PPI sites studied here, high-affinity small molecule

ligands have been found for IL-2, MDM2, BCL-XL, and HPV E2.

MDM2 and BCL-XL were correctly predicted to be druggable

regardless of which crystal structure was used. By contrast, IL-2

and HPV E2 were correctly predicted to be druggable only when

using the co-crystal structure with a small molecule inhibitor, and

not when using a crystal structure with a peptide or protein bound.

To date, only micromolar binders have been discovered for TNF

and ZipA. ZipA was predicted to be non-druggable using both

structures, while TNF was predicted to be druggable.

In general, the structural variation among different structures of

PPI targets (Table 3) is larger than in receptors or enzymes

(Table 2). For example, as illustrated in Figure 3, a remarkable

conformation change occurs upon ligand binding in IL-2. Clearly,

the druggability score varies for different protein conformations

[37], especially for IL-2, MDM2, and HPV E2 (Table 3 and

Figure S3).

Two Case Studies
Here we examine in more depth two case studies, focusing on

the chemical composition and binding modes of top-ranked

fragments. The first case study is protein tyrosine phosphatase 1B

(PTP1B). The PTP1B catalytic site and vicinal non-catalytic site

are surface-exposed, highly hydrophilic, and recognize charged

phosphotyrosine (pTyr) residue or pTyr mimetics (Figure 4A).

Characterizing the binding properties of such sites is particularly

challenging because the binding sites contain numerous polar and

charged groups, and ligand binding is a complex tradeoff between

forming favorable electrostatic interactions and the cost of

desolvation. NMR-based screening results suggested that the

catalytic site is highly druggable while the non-catalytic site is non-

druggable. The Hajduk et al. empirical model assigned the PTP1B

catalytic site as moderately druggable [27], while the computa-

tional solvent mapping technique predicted this site to be non-

druggable [23]. Encouragingly, our virtual screening method

correctly classifies the catalytic and non-catalytic sites as druggable

and non-druggable, respectively. It even reproduces the relative hit

rate observed in the NMR experiment (,10 times higher for the

catalytic site), although this may be a fortuitous result. Appropri-

ately, the high-ranking fragment hits identified for the PTP1B

catalytic site are dominated by heterocyclic carboxylic acids, and

hits for the non-catalytic site contain many neutral methyl

salicylate moieties (Figure 4B), which is consistent with previously

identified fragments from experimental screening studies (chemical

structures are shown in Figure S4) [38,39].

The second case study is P38 MAPK, which was chosen due to

its significant structural flexibility, where a new allosteric binding

site spatially distinct from the ATP catalytic pocket is induced

upon binding to a diaryl urea type of inhibitor. We focus on the

crystal structure (1kv2) bound with most potent MAPK inhibitor,

BIRB796 (Figure 5A), and the crystal structure (1kv1) bound with

a micomolar diaryl urea type of inhibitor (Figure 5B). BIRB796

binds potently by forming strong interactions to both the ATP

binding pocket and the allosteric site, including the crucial

hydrogen bonding interaction between the morpholino group

and the main chain amide of residue Met109; the hydrophobic

interaction between its naphthyl moiety and the lipophilic pocket

formed by the side chains of Lys53, Leu75, Ile84, Leu104 and

Thr106; the hydrogen bonds between the urea group and the side

chain carboxylate group of residue Glu71 and the main chain

amide of residue Asp168; and the hydrophobic interactions

between its tolyl and t-butyl groups on the pyrazole ring and the

allosteric pocket [40]. The top scoring fragment hits occupy

different binding regions. For example, pyridinyl-imidazole

scaffolds are predicted to target the ATP binding pocket, while

urea-like moieties on substituted naphthyl rings establishing

interactions with the Glu71 sidechain and the lipophilic pocket,

and substituted heterocyclic rings bury deeply into the allosteric

binding pocket (Figure 5C). It is notable that the predicted

fragment bound to the ATP binding pocket structurally resembles

an aminopyridine type of fragment identified by fragment-based

crystallography screening (chemical structures are shown in Figure

S5) [39]. The results using the crystal structure bound with a

micomolar diaryl urea type of inhibitor are similar, and high-

ranking fragment hits mimic binding interactions seen for the

picomolar inhibitor (Figure 5D).

In summary, we have developed an in silico fragment screening

method, analogous to an NMR-based screening method that was

previously shown to be effective at assessing the druggability of the

binding sites. This approach does not require fitting any

Table 3. Druggability scores calculated for 6 targets involved in protein-protein interactions.

PPI Target PDB ID RMSDave. (Å ) RMSDmax. (Å ) Log (Hit Rate) PPI Target PDB ID RMSDave. (Å ) RMSDmax. (Å ) Log (Hit Rate)

IL-2 1z92a 0.13 MDM2 1ycra 0.45

1py2 2.59 5.80 0.62 1rv1 1.82 3.32 0.92

1m48 2.51 4.57 0.62 1t4e 1.57 2.91 0.66

BCL-XL 2bzwa 1.04 HPV E2 1tuea 20.24

2yxj 2.54 6.16 0.84 1r6n 2.80 4.32 1.02

TNF 1tnfa 0.95 ZipA 1f47a 20.02

2az5 2.90 5.65 0.96 1y2f 0.59 1.26 20.10

aReference structure bound with protein or peptide substrate; the remaining structures contain small molecule ligands.
doi:10.1371/journal.pone.0010109.t003
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physicochemical parameters derived from protein binding pocket.

We performed a large scale assessment on a total of 152 protein

binding sites. We demonstrated that the hit rate calculated for 21

binding sites using our approach correlates with the hit rate

measured experimentally from NMR-based screening method,

and that the method could successfully distinguish known

druggable and non-druggable targets. We are investigating

extensions of the method to identifying druggable conformations

of flexible binding sites for molecular docking, and suggesting

strategies for growing or joining initial fragment hits to obtain

more potent inhibitors.

Methods

Dataset Selection
24 binding sites (Table 1) were chosen from the training dataset

of Hajduk et al. [27] to develop our physics-based druggability

prediction model. A total of 28 binding sites were experimentally

investigated via the NMR-based fragment screening approach.

However, structural information for CMPKother, E2–31other and

Survivinother sites are not publicly available, and the crystal

structure of MurA is fosfomycin-covalent modified, so these 4

binding sites were excluded in our study. The external dataset

defined by Hajduk et al. [27] contains 72 proteins, of which 35

binding sites were assigned as druggable and the remaining 37 sites

as non-druggable, based on whether high-affinity druglike binders

could be found in the literature. We have used all 72 binding sites

(Table S1) to assess our prediction on new targets. For both the

training and the external datasets, the same protein structures

were used as in the Hajduk et al. study unless it was not reported

(i.e. Bcl-XL, CMPK, E2–31, PAK4 and SARS-RNA site).

To supplement these targets, we selected 15 well-known drug

targets from the DUD dataset [41] as true positives, and two or

more crystal structures were chosen for each target (Table 2).

Many of these structures were also used by Sherman et al. for

testing a strategy for docking against flexible binding sites [35]. We

use these flexible binding sites to evaluate the consequence of

structural flexibility in our druggability calculation. Finally, six

protein-protein interaction (PPI) targets [3] (Table 3) were chosen

from the recent literature.

To quantitate the flexibility of ligand binding sites, the crystal

structures for each target were superimposed using Chimera [42],

and root mean squared distance (RMSD) values were calculated

for each binding site residue or a combination of several binding

site residues. Residues that could not be aligned, as well as those

with missing atoms, were ignored during RMSD calculations.

Figure 4. Top ranked fragments from the virtual screen mimic portions of a known potent PTP1B inhibitor. (A) A co-crystallized ligand
(stick) is shown bound to PTP1B (1ph0), and extends across both the catalytic and non-catalytic sites. The key hydrogen bonding interactions
between the ligands and the binding site residues are illustrated with yellow lines. Different portions of the ligand are colored for comparison with
the fragments in (B). (B) Two high-ranking fragments from virtual screening. One predicted heterocyclic carboxylic acid (carbon atoms colored green,
rank 49) is shown bound to the PTP1B catalytic site, and one neutral methyl salicylate hit (carbon atoms colored magenta, rank 59) is shown bound to
the non-catalytic site. Molecular images were generated with UCSF Chimera [42].
doi:10.1371/journal.pone.0010109.g004

Figure 3. Conformational changes in IL-2. (A) IL-2 holo conformation bound with the co-crystallized ligand FRH (1py2). (B) The same ligand is
superimposed on the apo conformation of the protein (1z92), highlighting the conformational changes. Molecular images were generated with UCSF
Chimera [42].
doi:10.1371/journal.pone.0010109.g003
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Fragment Library Preparation
The diverse set of fragments was selected from the fragment-like

subset of the ZINC database (version 6, December 2005) [43].

This subset contains 49,134 compounds with relatively low

molecular weight (MW # 250), few rotatable bonds (RB , 3),

low hydrophobicity (22 , log P , 3), and weak hydrogen

bonding potentials (HBdonor ,3 and HBacceptor ,6). We also

eliminated fragments with more than 15 heavy atoms, based on

the previous observation that maximal binding free energy

increases more slowly for ligands containing more than 15 heavy

atoms [44]. This filter reduced the library size to 32,717 molecules.

Finally, we performed structural similarity analysis to reduce

redundancy. Feature key fingerprints were calculated using

CACTVS [45] and the fingerprint-based similarity analysis was

performed with a modified version of the program SUBSET [46].

Representative structures were selected for each structural cluster

with Tanimoto coefficient (Tc) less than 0.9 to other clusters. This

further reduced the library to 11,129 diverse molecules. To assess

any potential bias resulting from the diversity-based filtering,

32,717 ZINC fragment-like compounds were used to redo the

screening for the Hajduk et al. training dataset. The computed

energy distributions are very similar (data not shown).

Computational Druggability Assessment Protocol
The detailed virtual screening protocol was published elsewhere

[28,47]; here, a brief overview is presented (Figure 6). Our scoring

method consists of two steps: predicting the binding poses of

ligands using a docking program, and then refining and rescoring

those protein-ligand complexes using a more computationally

intensive molecular-mechanics based energy function. This

protocol uses a high-throughput docking program to initially

orient and score the ZINC fragment-like compounds in the

binding site, and subjects the best single docking pose for each

docked compound to a rescoring stage in which the ligand is

energy minimized and the binding affinity is estimated using an

all-atom molecular mechanics force field combined with an

implicit solvent model. Most of the labor-intensive, manual steps

during the docking and rescoring stages were automated for large

scale application here.

The program DOCK 3.5.54 was used to dock the fragment

database into the protein binding site [48,49]. A maximum of 120

matching spheres were used to ensure adequate ligand sampling

within large binding surfaces like protein-protein interfaces.

Ligand conformations were scored based on the docking total

energy (Etot = Eele + Evdw 2 DGlig-solv), which was the sum of

electrostatic (Eele) and van der Waals (Evdw) interaction energies

corrected by the ligand partial desolvation energy (DGlig-solv) [49].

Final energies were computed after rigid-body minimization.

Then, a single docking pose with the best total energy score was

saved for each docked molecule for the next stage of scoring.

The docked protein-ligand complex and ligand were then

submitted to multi-scale Truncated Newton energy minimization

Figure 5. Top ranked fragments from the virtual screen mimic portions of known inhibitors of p38 MAP kinase. (A) The high affinity
inhibitor BIRB796 (stick) is shown bound to p38 MAP kinase (1kv2). Key hydrogen bonding interactions—between the morpholino group and the
main chain amide of residue Met109, the urea group and the side chain carboxylate group of conserved residue Glu71, and the main chain amide of
residue Asp168—are illustrated with yellow lines. Portions of the ligand are colored for comparison with fragments in panels (C) and (D). (B) A low-
affinity ligand BMU (stick) is shown bound to the allosteric pocket (1kv1). (C) Three partially overlapping top fragment hits (stick) identified from
virtual screening against the 1kv2 structure are shown: a pyridinyl-imidazole type of fragment (carbon atoms colored green, rank 155 in the virtual
screen) bound to the ATP binding pocket; a urea-like moiety on a substituted naphthyl ring (carbon atoms colored cyan, rank 55) interacting with the
Glu71 sidechain and the lipophilic pocket; and a substituted heterocyclic ring (carbon atoms colored magenta, rank 165) deeply buried into the
allosteric binding pocket. (D) The overlap of three top scored fragment hits identified from virtual screening against the 1kv1 structure (ranks 6, 136
and 210). Molecular images were generated with UCSF Chimera [42].
doi:10.1371/journal.pone.0010109.g005
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in all-atom OPLS force field and Generalized Born (GB) solvent

using the Protein Local Optimization Program (PLOP) [50,51,52].

The molecular mechanics forces are divided into short-range

(bond, angle, torsion, and local non-bonded) and long-range

components, with the long-range forces updated only intermit-

tently. The algorithm was also optimized for minimizations with

GB solvent that increases the computational expense by only a

factor of ,3 relative to the vacuum. Thus, this scoring approach

accounts for accurate and efficient calculations of ligand-protein

interaction energies, the ligand/receptor desolvation, and to a

lesser extent, ligand strain energies. In this work, the protein was

kept rigid during ligand-protein complex minimization to reduce

the computational expense. The binding energy (Ebind = ER*L 2

EL 2 ER) was calculated by subtracting the energies of the

optimized free ligand in solution (EL) and the free protein in

solution (ER) from the optimized ligand-protein complex’s energy

in solution (ER*L). The van der Waals energy component was

empirically scaled by a factor of 2 as we suggested previously [28].

To compute a ‘‘hit rate’’ for the in silico screening, we chose an

energy cutoff value empirically to maximally differentiate

druggable and non-druggable binding sites. The ‘‘druggability

score’’ in this work is defined as log(hit rate). At the present time,

docking scoring functions cannot robustly reproduce absolute

binding affinities in realistic applications. Although useful for rank-

ordering compounds [47], the molecular-mechanics based scoring

function used here also cannot be interpreted in terms of absolute

binding affinities, in part because entropy losses are not computed.

The cutoff chosen (240 kcal/mol) was based primarily on visual

inspection of the energy distributions for the 13 druggable binding

sites and 11 non-druggable sites in the Hajduk et al. training data

set. The effect of varying the cutoff is explored with respect to

differentiating between druggable and non-druggable binding sites

(Figure S6). Interestingly, the correlation between the docking

screening hit rates and the NMR screening results is relatively

insensitive to the value of the energy cutoff within a certain range

(from 240 to 234 kcal/mol). Unless stated otherwise, the results

below use an energy cutoff of 240 kcal/mol for computing the in

silico ‘‘hit rate’’.

Supporting Information

Table S1 Targets, binding sites, available ligand binding

information, and hit rate data predicted by two different

computational models.

Found at: doi:10.1371/journal.pone.0010109.s001 (0.19 MB

DOC)

Figure S1 Energy histograms from docking 11,129 ZINC

fragment-like compounds against 24 binding sites previously

studied by NMR-based fragment screening. Color code is defined

using the NMR druggability score: druggable (green): log (Hit

Rate) .21.0, and non-druggable (red): log (Hit Rate) #21.0.

Found at: doi:10.1371/journal.pone.0010109.s002 (1.56 MB TIF)

Figure S2 Histograms of energy scores from the virtual fragment

screening method for 15 well-known drug targets. ACE,

angiotensin-converting enzyme; ALR2, aldose reductase; CDK2,

cyclin-dependent kinase 2; COX-2, cyclooxygenase-2; DHFR,

dihydrofolate reductase; ER, estrogen receptor; FXa, factor Xa;

HIVRT, HIV reverse transcriptase; HMGR, hydroxymethylglu-

taryl-CoA reductase; NA, neuraminidase; P38 MAPK, P38

mitogen activated protein kinase; PDE5, phosphodiesterase 5;

PPARg, peroxisome proliferator activated receptor gamma; TK,

thymidine kinase.

Found at: doi:10.1371/journal.pone.0010109.s003 (1.59 MB TIF)

Figure S3 Energy histograms of docking 11,129 ZINC frag-

ment-like compounds against 6 targets involved in protein-protein

interactions. Color code is defined as druggable (green) and non-

druggable (red).

Figure 6. A virtual fragment screening protocol for druggability assessment.
doi:10.1371/journal.pone.0010109.g006
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Found at: doi:10.1371/journal.pone.0010109.s004 (1.03 MB TIF)

Figure S4 Chemical structures of a ligand co-crystallized with

PTP1B (1ph0), binders identified in experimental screening, and

high-ranking fragment hits identified from virtual fragment

screening (fragments bound to the catalytic site are colored in

green and to the non-catalytic site in magenta).

Found at: doi:10.1371/journal.pone.0010109.s005 (1.01 MB TIF)

Figure S5 Chemical structures of a ligand co-crystallized with

P38 MAPK (1kv2), binders identified in experimental screening,

and high-ranking fragment hits identified from virtual fragment

screening using two different crystal structures, 1kv2 and 1kv1

(fragments bound to ATP site colored in green, lipophilic pocket

colored in cyan, and allosteric site in magenta).

Found at: doi:10.1371/journal.pone.0010109.s006 (1.06 MB TIF)

Figure S6 The correlation between the virtual fragment

screening hit rates and the NMR screening results, using different

energy cut-offs for defining the fragment-like compounds as ‘‘hits’’

in the virtual screen.

Found at: doi:10.1371/journal.pone.0010109.s007 (0.78 MB TIF)
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