
Natural Spike Trains Trigger Short- and Long-Lasting
Dynamics at Hippocampal Mossy Fiber Synapses in
Rodents
Anja Gundlfinger1,2.¤, Jörg Breustedt1., David Sullivan3, Dietmar Schmitz1,2*
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Abstract

Background: Synapses exhibit strikingly different forms of plasticity over a wide range of time scales, from milliseconds to
hours. Studies on synaptic plasticity typically use constant-frequency stimulation to activate synapses, whereas in vivo
activity of neurons is irregular.

Methodology/Principal Findings: Using extracellular and whole-cell electrophysiological recordings, we have here studied
the synaptic responses at hippocampal mossy fiber synapses in vitro to stimulus patterns obtained from in vivo recordings
of place cell firing of dentate gyrus granule cells in behaving rodents. We find that synaptic strength is strongly modulated
on short- and long-lasting time scales during the presentation of the natural stimulus trains.

Conclusions/Significance: We conclude that dynamic short- and long-term synaptic plasticity at the hippocampal mossy
fiber synapse plays a prominent role in normal synaptic function.
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Introduction

Synaptic plasticity changes the transmission efficacy at neuronal

connections short- and longlastingly in an activity- and experience-

dependent manner. Many characteristic features and important

signaling cascades involved in different forms of plasticity have

been elucidated by the use of acute slice preparations [1,2]. In this

context, the overwhelming majority of studies have used induction

paradigms which consist of constant frequency stimulation

patterns, like paired pulses, a tetanic stimulus or a theta burst

protocol. A major drawback of all these induction paradigms is

that they most likely do not resemble naturally occurring discharge

patterns of single neurons in vivo.

A prominent trait of neuronal action potential discharges in vivo in

the hippocampus is that specific neurons fire at an elevated rate when

an animal traverses a certain position in space - the so-called place field

of that neuron [3]. An extensive number of studies have elucidated

general characteristics, mechanisms and function of such place-field

activity in CA3 and CA1 pyramidal neurons of the hippocampus [4,5].

Rather little, however, is known of place field related spiking activity in

dentate gyrus granule cells [6,7], as hippocampal granule cells are

exceptionally hard to identify in long-term tetrode recordings due to

their low discharge rate, small size and dense packing [8].

Such data are all the more interesting since the hippocampal

mossy fiber synapse, here referring to the connection between

granule cells and CA3 pyramidal cells, has received special interest

for its peculiar short-term as well as long-term plasticity

characteristics [9,10]. The mossy fiber synapse serves as a model

system for presynaptically induced and expressed long-term

potentiation [11]. However, a limitation of the existing literature

is that static and rather unphysiological stimulation paradigms

typically were used to study plasticity and related signaling

cascades at this synapse. We have recently provided a compre-

hensive description of mossy fiber synaptic short-term dynamics

employing irregular stimulus trains [12], that were motivated by

mean spike train statistics of dentate gyrus granule cells [13].

These were, however, still modelled spike trains and limited in the

inter-spike interval range to values between 50 ms and 50 s,

omitting high-frequency bursts of action potentials during place

field crossings.

In this study, we have now investigated the effects of naturally

occurring stimulus patterns on synaptic transmission at mossy fiber

synapses in acute hippocampal slice preparations. For this

purpose, we activated mossy fibers with stimulus patterns obtained

from in vivo recordings of granule cell place field activity and found

both large short-term facilitation and presynaptically induced and
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expressed long-term potentiation upon activation with place field

associated spike trains.

Materials and Methods

Ethical guidelines
All animal experiments were performed according to national

and institutional guidelines of the Charité - Universitätsmedizin

Berlin (in vitro electrophysiology) and the Center for Molecular and

Behavioral Neurobiology at Rutgers University (in vivo tetrode

extracellular unit recordings).

In vivo recordings and granule cell identification
LFP and unit activity was recorded during active waking

behaviour and sleep from one adult male Long-Evans rat (500g),

which was fed ad libitum. A 64-site silicon recording probe (8

shanks, 8 recording sites per shank, 200 mm lateral spacing

between shanks, 20 mm vertical spacing between recording sites)

was implanted into the dorsal right hippocampal CA1 region

under isoflurane anesthesia. A bipolar electrode was implanted

into the right angular bundle for perforant path stimulation.

Ground and reference screws were implanted above the midline

of the cerebellum. After implantation, the probe was lowered

into the hippocampus by 37–150 mm at the end of each day

until the evoked LFP response to perforant path stimulation

reversed polarity from negative to positive. Anatomical locations

of the silicon probe shanks were verified post-mortem via Nissl

staining. Electrophysiological signals were acquired continuous-

ly at 32 kHz on a 128-channel, 16-bit Digital Lynx system

(Neuralynx, Inc.). The rat was water deprived to encourage

foraging for randomly sprinkled droplets of water in the open

environment (1.95 m61.20 m). The rat’s position in the open

environment was recorded via an overhead camera. Recorded

signals were filtered below 800 Hz and thresholded for spike

detection. Unit isolation was performed post-hoc using the

KlustaKwik software package [14], followed by manual

clustering using Klusters software [15]. An isolated unit was

considered to be a putative granule cell if it (1) was recorded

during a session in which the recording sites were located in the

granule cell layer and (2) its spike autocorrelogram indicated

spike bursts. Spike train 1 used in this study was derived as

described above. Spike train 2 was taken from a previous

publication (Henze et al., 2002) and, in brief, consists of a short

episode of granule cell firing recorded in a behaving mouse

during a traversal of its respective place field.

Brain slice preparation
Hippocampal slices were prepared from C57/Bl6 mice (P16–

42) as previously described [16]. In brief, animals were

anesthetized with isoflurane, decapitated and the brains removed.

Tissue blocks containing the subicular area and hippocampus were

mounted on a Vibratome (Leica VT1200S, Leica Microsystems,

Wetzlar, Germany), in a chamber filled with ice-cold artificial

cerebrospinal fluid (ACSF), containing (in mM): 87 NaCl; 75

sucrose; 25 NaHCO3, 2.5 KCl, 1 NaH2PO4, 0.5 CaCl2, 7

MgSO4, 10 glucose, pH 7.4. Slices were cut at 300–400 mm

thickness and heated to 35Cu for 30 minutes. The slices were then

cooled to room temperature and transferred to ACSF containing

(in mM): 124 NaCl, 26 NaHCO3, 10 glucose, 3 KCl, 2.5 CaCl2,

1.3 MgSO4, 1.25 NaH2PO4. All ACSF was equilibrated with 95%

O2 and 5% CO2. The slices were stored in a submerged chamber

for 1-5 hours before being transferred to the recording chamber,

where they were perfused with ACSF at a rate of 3-4 ml/min.

Field potential and whole-cell recordings
Whole cell voltage-clamp and field excitatory postsynaptic

potential (fEPSP) recordings were performed using a Multiclamp

700A (Axon Instruments, Foster City, CA, USA). Data were

digitized (National Instruments BNC-2090) at 5–10 kHz and

recorded and analyzed with custom-made software in IGOR Pro

(WaveMetrics Inc., OR, USA). Patch electrodes (with electrode

resistances ranging from 3 to 6 MV) were filled with (in mM): 135

K-gluconate, 20 KCl, 2 MgATP, 10 HEPES, 0.2 EGTA, 5

phosphocreatine, and adjusted to pH 7.3. Series resistances were

10.861.1 MV (, mean6stdev), and were continuously checked

during the recordings and not allowed to vary more than 25%

during the course of the experiment. fEPSP recordings were

performed with low resistance patch pipettes filled with external

solution placed in stratum lucidum. Mossy fibers were extracel-

lularly stimulated with patch pipettes filled with external solution

and placed in the granule cell layer or in the hilus region. Mossy

fiber origin of recorded signals was routinely verified by frequency

facilitation .400% and application of the group II metabotropic

glutamate receptor agonist DCGIV (1 mM) at the end of the

experiment, which had to block responses completely.

Drugs
D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV), (2S,29R,39R)-

2-(29,39-Dicarboxycyclopropyl)glycine (DCG IV) and (2S)-2-Amino-2-

[(1S,2S9-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propionic acid (LY-

341496) were purchased from Tocris International (via Biotrend,

Cologne, Germany). All other drugs were obtained from Sigma-

Aldrich (Munich, Germany).

Results

We recorded spiking activity of putative hippocampal dentate

gyrus granule cells in vivo while animals were exploring a

rectangular environment. The exemplary granule cell exhibits a

single place field in the down-left corner of the rectangular

environment. Six visits of this place field could be detected during

the shown recording epoch (Figure 1A and B).

We then delivered this 15 minute epoch of continuous in vivo

granule cell recording (spike train 1) as an extracellular stimulation

pattern to hippocampal mossy fibers in an acute slice preparation.

Spike train 1 consisted of 223 stimuli with an average frequency of

0.265 Hz, a median inter-stimulus interval (ISI) of 244.4 ms and a

total length of 868 seconds. The spike train covered episodes inside

and outside of a recognized place field. The corresponding

excitatory postsynaptic potentials (fEPSPs) were recorded in

stratum lucidum of area CA3. The spike train elicited stable

postsynaptic responses, which drastically increased to 400 to 500%

of control values during periods of place field activity (n = 5,

Figure 1C to E, red circles denote place field responses). After

place field traversal the granule cell activity outside of the place

field led to gradual decrease of the fEPSP amplitudes to values

slightly elevated above pre-place field activity (Figure 1F). This

highly dynamic response pattern strongly resembled the frequency

facilitation response observed when static stimulation paradigms

with a constant frequency of 1 Hz are applied to mossy fibers

[9,11]. During the complete recording epoch the instantaneous

granule cell firing frequency ranged from 0.01 to up to 300 Hz.

The corresponding postsynaptic response amplitudes were roughly

bell-shaped with respect to stimulation frequency and achieved a

maximum at frequencies between 1 and 30 Hz (Figure 1G and H),

which were mostly reached during place field traversals.

To assess any long-lasting effect of spike train 1, we also

determined the basal mossy fiber synaptic amplitude in response to

Dynamics at MF Synapses
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Figure 1. Spiking activity of dentate gyrus granule cells during exploratory behaviour evokes large short-term plasticity at mossy
fiber synapses in vitro. (A) Color-code depicts the location-dependent modulation of firing frequency in Hz of a putative dentate gyrus granule cell
while the animal was exploring a rectangular environment. A place field is visible in the down-left corner. (B) Time-resolved plot of spike train 1 (up)
of a ,15 minute recording session of putative granule cell activity, that (A) was based on, and continuous recording of mossy fiber fEPSP (down) in
response to presentation of that spike train in vitro. Stimulation artifacts were removed for clarity. Red bars indicate episodes inside the place field.
(C) Representative recording of mossy fiber fEPSPs during response to spike train 1, where highly dynamic fEPSP amplitudes were evoked. Grey
indicates responses to spikes outside the cell’s place field, red indicates responses within. (D) Summary of n = 5 such experiments. Short-term
synaptic dynamics were reproducible and comparable between experiments. Data points depict mean 6 sem. (E) Pronounced short-term facilitation
of fEPSPs is induced by stimulus bursts during traversal of place fields. Line graphs show the first 10 mossy fiber fEPSP response amplitudes during six
episodes of place field spiking activity (as indicated by red in C). Red circles indicate responses during 1st burst, white circles responses during 6th

burst, redish shadings correspond to bursts in between. Single exemplary recording is shown. (F) Mossy fiber fEPSP amplitudes decrease again during
the first 10 stimuli after place field traversal indicated by grey shadings. Single exemplary recording is shown. (G/H) Field EPSP response amplitude as
a function of preceding inter-stimulus interval during spike train 1. A large dynamic range of response amplitudes is apparent with amplitudes
generally largest with ISIs ranging from 50–1000 ms. (G) depicts single exemplary recording, (H) summarizes n = 6 such experiments. Red circles
indicate fEPSP responses during spikes of place field traversal, grey circles such outside of place fields. Blue dashed lines in panels C to H indicate
basal response amplitudes to constant stimulation at 0.05 Hz.
doi:10.1371/journal.pone.0009961.g001
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a constant stimulation frequency of 0.05 Hz before and after

applying spike train 1. Here, we not only found a post-tetanic

potentiation within the first minutes after train presentation, but

also detected a persistent increase in transmission to 117.560.5%

of control values as assessed 25 to 30 minutes after the train (n = 5,

Figure 2A and B).

In a next set of experiments, we then applied a place field

specific spike episode obtained from a different in vivo granule cell

recording (spike train 2) as published in Henze et al. [17]. Spike

train 2 consisted of 45 stimuli with an average frequency of

32.7 Hz, a median inter-stimulus interval (ISI) of 13 ms and a total

length of 1.4 seconds (Figure 2C). A single presentation of this

Figure 2. Place field specific spiking activity of dentate gyrus granule cells triggers long-term potentiation of mossy fiber synaptic
responses in vitro. (A) Presentation of spike train 1 (indicated by grey area) led to potentiation of mossy fiber fEPSP amplitudes in this examplary
recording. Constant stimulation frequency before and after delivery of spike train was 0.05 Hz. Application of DCGIV at the end of experiment
blocked mossy fiber synaptic transmission. Upper traces show averages of 10 sweeps under control condition and 30 min after presentation of spike
train 1. (B) Summary of n = 5 such experiments. Presentation of spike train led to reliable long-term potentiation of fEPSP amplitudes to ,130% of
control values 25 min after spike train 1. (C) Time-resolved plot of another place field specific spike episode (spike train 2, up) and continuous
recording of mossy fiber fEPSP response to single presentation of this spike train (lower part). Stimulus artifacts are cut for visual clarity. Please note
different timescale compared to spike train 1. (D) Examplary mossy fiber synaptic fEPSP recording, where a single presentation of spike train 2 (grey
bar, not drawn to scale) leads to long-term potentiation of fEPSP responses. Arrow points to frequency facilitation paradigm (switch of stimulation
frequency from 0.05 Hz to 1 Hz for 20 stimuli). Application of DCGIV (1 mM) at the end of experiment blocked mossy fiber fEPSPs. Upper traces show
averages of 10 sweeps each under control condition and 25 minutes after presentation of spike train. Constant stimulation frequency was 0.05 Hz. (E)
Repetitive presentation of spike train 2 (5x with 30 s pauses inbetween) resulted in pronounced long-term potentiation of mossy fiber fEPSP
amplitudes in this examplary experiment. Upper traces show averages of 10 sweeps each under control condition and 25 minutes after repetitive
presentation of spike train. (F) Summary of n = 6 experiments with single presentation of spike train (open circles) and n = 7 experiments with
repetitive presentation (filled circles). Both paradigms led to significant long-term potentiation of response amplitudes to ,150% and ,230% of
control values, respectively. Data shows mean 6 sem. Upper dashed lines in subpanels indicate basal response amplitudes to constant stimulation at
0.05 Hz.
doi:10.1371/journal.pone.0009961.g002
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short action potential pattern, that contained only place field

activity, triggered robust post-tetanic potentiation of over

411638.2% (n = 7) and to a long-term potentiation of synaptic

transmission of 143.768.2% (n = 7, Figure 2D and F). Application

of 5 repetitions of spike train 1 with 30 second pauses in between,

yielded an even stronger potentiation of 227.9611.3% (n = 7,

Figure 2E and F).

It is generally agreed upon that induction of classical mossy fiber

long-term potentiation (LTP) is independent of NMDA-type

ionotropic glutamate receptors, whereas the involvement of group

1 metabotropic glutamate receptors (mGluRs) remains controver-

sial [18,19]. In order to test for the possible participation of these

two receptors in LTP induction with place field associated spiking

activity, we again applied spike train 2 in the continuous presence

of APV (50 mM) and the broad spectrum antagonist LY341495

(100 mM), to block NMDARs and mGluRs respectively. LTP was

readily induced in the presence of the two drugs and was of the

same magnitude when compared with control conditions

(221.368.4%, n = 6, p = 0.66, Figure 3A and B), indicating that

here mossy fiber LTP is independent of NMDARs and mGluRs.

To investigate the mechanism of long-term potentiation

induced by a naturally occurring stimulus train more thoroughly,

we performed whole-cell patch-clamp recordings from CA3

pyramidal neurons. In this set of experiments, we used low-

intensity extracellular stimulation of presynaptic mossy fibers to

test whether single fiber stimulation was sufficient to elicit mossy

fiber LTP by natural spike trains. Indeed, five successive

applications of spike train 2 induced a robust potentiation of

transmission to 220% of control synaptic EPSCs (n = 6, Figure 4A

and B). To assure that postsynaptic voltage-dependent Ca2+

channels in the CA3 pyramidal cell were not involved in mediating

the induction of potentiation, spike train-induced depolarization

was blocked during the induction phase by voltage-clamping the

postsynaptic cell at 260 mV.

The expression of classical MF LTP is due to an increase in

transmitter release and both pharmacological and genetic analyses

indicate that a rise in presynaptic cAMP is a critical component

[20,21]. Thus, we tested whether cAMP-mediated increase in

synaptic response amplitude occludes LTP induced by the applied

spike trains. Indeed, the application of the adenylate cyclase

activator forskolin (50 mM) led to an enhancement of EPSCs

amplitudes and reduced spike train induced mossy fiber LTP to

34.3% compared to control values (Figure 5A and B, n = 4).

Further analysis of the synaptic EPSC distributions gained in

the minimal stimulation experiments yielded two additional

indicators for a presynaptic expression site of long-term potenti-

ation: First, the coefficient of variation before and after induction

of LTP by natural spike trains scaled linearly with the response

mean (Figure 4C). Second, the use of a minimal stimulation

technique in whole-cell recordings enabled us to analyze the

amount of transmission failures. We obtained a percentage of

25.763.1% of transmission failures under control conditions,

similar to [22] where minimal stimulation techniques had been

used. During LTP expression, we found the failure rate to be

significantly reduced to 14.364.7% (Figure 4A and D, n = 6,

p,0.05), which is indicative of an increase in synaptic release

probability and therefore a presynaptic expression locus.

In conclusion, we found that mossy fiber synaptic strength is

strongly affected on short and long time scales by the presentation

of physiological spike trains. Most importantly, different place field

associated spike trains effectively trigger long-term potentiation at

mossy fiber synapses, which is comparable in amount and

mechanism to that of classical static induction paradigms (see

Figure 6 for summary).

Discussion

In general, synapses exhibit activity-dependent plasticity of their

transmission efficacy on timescales ranging from milliseconds to

days. Classically, these dynamic processes are assessed by constant

stimulation paradigms, for example paired-pulse stimuli with

varying inter-stimulus intervals to test for short-term plasticity

(STP) or high-frequency (tetanic) stimuli to induce long-term

plasticity (LTP). While these paradigms are explicitely designed to

minimize interfering effects of STP on LTP and are experimen-

tally convenient, they are hardly physiological. More recent studies

have focussed on using different physiologically motivated input

distributions as stimulation paradigms, representing irregular in

vivo activity of neurons under various behavioral conditions

Figure 3. Natural spike trains induce mossy fiber LTP indepedent of NMDAR and mGluR activation. (A) Exemplary mossy fiber fEPSP
recording under blockage of NMDA- and mGlu-receptors. Repetitive presentation of spike train 2 still induced significant long-term potentiation.
Arrow points to frequency facilitation paradigm. Upper traces are averages of 10 sweeps each under control condition and 25 min after presentation
of spike trains. Constant stimulation frequency was 0.05 Hz. (B) Summary of n = 6 such experiments and experiments under control conditions,
respectively. Repetitive presentation of spike train 2 resulted in potentiation of response amplitudes to ,220% of control values 30 min after
presentation of spike trains. Data was binned to 1 min time points and depicts mean 6 sem. Upper dashed lines in subpanels indicate basal response
amplitudes to constant stimulation at 0.05 Hz.
doi:10.1371/journal.pone.0009961.g003
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[23–27], which has provided synapse- and systems-specific insights

into the quality and amount of plasticity.

Characteristics of natural spike trains
Spiking activity of hippocampal principle cells varies with the

location of behaving rodents, with firing frequencies rapidly

increasing to values up to 20 to 30 Hz while the animal traverses a

so-called place field [3]. The characteristics, formation and

modifiability of such place cell firing CA1 and CA3 pyramidal

neurons have been investigated in detail [28][29][30]. To date,

descriptions of typical dentate gyrus granule cell firing activity

under in vivo conditions are, however, sparse due to difficulties in

effective spike sorting and cell assignement. Granule cells do also

exhibit place field firing, with short, high-frequent spike episodes

inside a place field and episodes of low firing outside, but the

published data on mean values and ranges of spike frequencies as

well as inter-spike interval distributions vary significantly between

studies and behavioral conditions. Mean firing rates range from

0.2 Hz during locomotor behavior [7], to up to behaviorally

coupled 10 Hz [31], to a mean rate of 1.7 Hz outside or 26 Hz

inside a place field during freely behaving locomotion [17]. In our

study, we have used several complementary examples of dentate

gyrus granule cell spiking activity during exploratory behavior,

covering episodes inside and outside of detected place fields. We

therefore believe that our results reflect a representative descrip-

tion of short- and long-term plasticity events at the mossy fiber

synapse occuring under spiking activity as found in vivo.

Short-term plasticity induced by natural spike trains at
mossy fiber synapses

The hippocampal mossy fiber synapse is well known to exhibit

remarkable short-term plasticity with paired-pulse ratios of up to 4

and frequency facilitation of synaptic amplitudes under 1 Hz

stimulation to at least 400%. [9][11]. An exceptionally large range

of postsynaptic response amplitudes is also observed with irregular

presynaptic stimulation [12]. In our experiments, we observed

comparable increases in synaptic responses of up to 500% when

mossy fibers were stimulated with patterns of naturally occuring

Figure 4. Mossy fiber synaptic LTP - induced by place field specific spiking activity of dentate gyrus granule cells - is
presynaptically expressed. (A) Examplary whole-cell recording of mossy fiber synaptic responses in CA3 pyramidal cell. Repetitive presentation of
spike train 2 (grey bars, compare Figure 2) induces long-term potentiation of EPSC amplitudes. Upper traces show averages of 10 sweeps each under
control condition and 20 min after presentation of spike train. Constant stimulation frequency outside of spike train 2 was 0.1 Hz. CA3 pyramidal cell
was held in voltage-clamp condition at -60 mV, also during presentation of spike train. Upper dashed line indicates basal response amplitudes to
constant stimulation at 0.1 Hz. (B) Summary of n = 5 whole-cell experiments where repetitive presentation of spike train 2 induces long-term
potentiation of mossy fiber EPSC amplitudes. Potentiation to ,220% of control values was visible 30 min after spike train. Data was binned to
0.5 min time points and depicts mean 6 sem. (C) CV2 analysis of data from experiments in A. The change in the squared coefficient of variation in
control versus LTP condition shows a linear dependence on the change in the mean response amplitude. (D) The mean rate of failures of synaptic
transmission is decreased after expression of LTP. Upper traces show 50 individual sweeps (grey) and mean sweeps (black) in control and LTP
condition of an exemplary whole-cell recording. Note the large incidence of synaptic failures under control conditions.
doi:10.1371/journal.pone.0009961.g004
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granule cell activity. Large facilitation was prominent during

place-field related high-frequent activity, while synaptic responses

slowly decreased again during low-frequent episodes between

place-field crossings. The postsynaptic responses increase propor-

tionally with higher instantaneous stimulation frequencies with a

maximum of facilitation at 10 to 30 Hz. Responses facilitated

slightly less at even higher stimulation frequencies between 30 and

300 Hz. This predominantly facilitatory short-term plasticity is

prone to generate high-pass filtering characteristics of the synapse,

enabling high reliability of transmission during burst-like activity

epochs [26,32,33]. The strong facilitation and large dynamic

range of postsynaptic responses clearly separates the mossy fiber

synapse from other synaptic systems [23,24,26]. In particular, the

hippocampal Schaffer collateral to CA1 synapses have been

described to exhibit a bandpass of even switch-like filtering

behavior when tested with natural input statistics [26]. In general,

the short-term dynamics reported here were highly reproducible in

recordings from different slices and thus give a representative

description of mossy fiber synaptic short-term plasticity in response

to natural input statistics.

Long-term synaptic plasticity induced by natural spike
activity

In addition to eliciting prominent short-term dynamics, the

delivery of place-field associated spike trains on a longer timescale

led to robust potentiation of mossy fiber synaptic responses. Both

Figure 5. Natural spike train induced long-term potentiation is strongly reduced in the presence of elevated cAMP levels. (A)
Application of the adenylate cyclase activator forskolin (50 mM) enhances synaptic transmission in this exemplary experiment and strongly reduces
long-term potentiation induced by repetitive (5 x) delivery of spike train 2. Traces on top are averages of five consecutive sweeps taken at the time
point indicated by the numbers in the graph. Triangle denotes frequency facilitation paradigm for 20 pulses with 1 Hz, arrow indicates time point of
spike train 2 application, second horizontal bar represents application of DCGIV (1 mM) at the end of experiment. (B) Summary plot displaying the
drastically reduced potentiation for n = 4 such experiments (closed circles). Values are normalized to the amplitude in forskolin before train delivery.
For comparison, the potentiation elicited by spike train 2 in the absence of drugs (open circles, same dataset as in Figure 2F) is overlayed. In the
presence of forskolin the potentiation was reduced to 143.4611.5% (p,0.001, compared to control).
doi:10.1371/journal.pone.0009961.g005

Figure 6. Summary of the amount of potentiation induced by different stimulation paradigms. (A) Long-term potentiation induced by
repetitive presentation of spike train 2 (open circles) is comparable to LTP induced by a classical LTP induction protocol (grey circles) by tetanic
stimulation (36125 pulses at 25 Hz with 30 s pauses in between). (B) All used stimulation paradigms based on place field specific spiking activity of
granule cells triggered a significant long-term potentiation of synaptic responses when compared to control values. Asterisks point to a significant
increase in fEPSP amplitude (single distribution t-test against 100%). The amount of LTP induced by repetitive presentation of spike train 2 was not
significantly (ns) different from LTP induced by a classical tetanic paradigm or under the action of AP-V and LY341496.
doi:10.1371/journal.pone.0009961.g006
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spike train 1 and spike train 2, in single and multiple applications,

triggered a significant and long-lasting enhancement of transmis-

sion, which was comparable to the amount of potentiation

typically described when using classical LTP induction paradigms.

Regarding the mechanism of induction, there is rather

unequivocal agreement that classical mossy fiber LTP is NMDAR

independent, while some controversy exists about the necessity of

mGluR activation [11]. In this context, strong induction protocols

[18] or a newly discovered NMDAR dependent postsynaptic form

of mossy fiber LTP [34][35] have been shown to rely on mGluR5

activation. In the experiments presented here, we found the

induction of LTP through natural spike trains to be independent of

NMDAR and mGluR activation, as LTP could readily be induced

in the presence of the respective receptor antagonists.

The mechanism of expression of classical mossy fiber LTP has

been shown to be presynaptically located and based on an increase

in the probability of transmitter release (Pr) [11]. In this study,

several lines of evidence suggest that mossy fiber long-term

potentiation induced by natural spike trains likewise leads to a

presynaptic inrease in Pr: (1) In whole-cell recordings of CA3

pyramidal neurons using a minimal stimulation procedure the

number of transmission failures decreased after LTP induction

with spike train 2, (2) the analysis of the coefficient of variation

shows that the CV2 is scaled linearly with the response amplitude

after LTP induction [36], and finally, (3) the paired-pulse ratio

decreased after LTP.

Effects of natural spiking activity on network function
Several previous in vitro studies focussing on the CA1 region of

the hippocampus have already highlighted the importance of using

natural input statistics to fully unravel the characteristics of

synaptic dynamics. Place-field associated spike trains trigger short-

term plasticity at Schaffer collateral to CA1 pyramidal cell

synapses composed of an overlap of facilitation and depression,

while static stimulation paradigms yield either faciliation or

depression depending on the developmental stage [24]. Applica-

tion of high-frequency episodes of place cell firing via bulk

stimulation also induces LTP at Schaffer collateral to CA1

pyramidal neurons [23], while the induction of LTP in CA1

pyramidal cells on a single-cell level appears to require temporally

coordinated pre- and postsynaptic firing sequences from overlap-

ping place fields and the correct level of cholinergic neuromod-

ulatory tone [27]. Such results illustrate the short- and long-term

impacts of even very brief natural spike trains on synaptic

functioning, which consequently should also alter the computa-

tional principles of the underlying network. These findings are well

reflected in recent in vivo work, where recordings of the large-scale

network activity in the CA1 area of the hippocampus revealed

very distinct spiking ensembles under control behavior and during

startling conditioning paradigms as well as immediate encoding of

associative memory traces [37][38]. Appropriate pre- and

postsynaptic firing statistics are certainly required to induce such

large functional network rearrangements and these should

manifest themselves also at the synaptic level.

Summarizing our results, we here could show that physiological

granule cell spiking activity is sufficient and effective in triggering

both synaptic short-term dynamics of large range and a

presynaptically induced and expressed form of mossy fiber long-

term potentiation. These findings underline the importance to

further elucidate the detailed signalling cascades involved in this

peculiar form of plasticity at hippocampal mossy fiber synapses –

as it does indeed occur with natural spiking activity.
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