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Abstract

Background: Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble
at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in
acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular
tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the
underlying genetics.

Methodology: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately
200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root
growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and
physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.

Conclusions: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage
analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate
transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high
priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize.
Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient
marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
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Introduction

Aluminum (Al) toxicity from acidic soil is a major constraint to

worldwide crop production. Al, one of the most abundant

elements in the soil, is solubilized as Al3+ under acidic soil

conditions. This form of Al is highly toxic to plant roots.

Approximately 30% of the worlds ice-free soils are acidic, 17%

of which are considered arable [1]. Maize has become one of the

most important grain crops grown on acidic soils due to its

demand as a food crop and its ability to tolerate Al [1]. Up to a

70% reduction in maize yields have been seen in these regions due

to Al toxicity [1–3]. Acid precipitation and intensive agricultural

practices such as overuse of ammonia fertilizers accelerate the

natural process of soil acidification, especially in the tropical and

subtropical regions [4]. Soil amelioration with compounds such as

lime can be used to temporarily neutralize the topsoil. However,

this is not a feasible option for resource poor farmers or for subsoil

acidity, and is not an economically or agronomically sustainable

solution. Investing in the production of Al tolerant maize varieties

and alternative management practices can contribute greatly to

increased yield and sustainable crop production from acidic soils

[5,6]. Therefore, an understanding of the genetic and molecular

mechanisms underlying Al tolerance in maize is essential to

accelerate the development of Al tolerant varieties.

The toxic effects of acid soil result from an interaction between

pH and elements in the soil. Several metals, including Al and Mn,

become soluble at and below pH 5.5, which causes stress in the

plant. In a neutral or basic environment, Al is found in insoluble

divalent and monovalent forms of Al-oxides or Al-hydroxides, but

the soluble trivalent Al3+ ion becomes the dominant species in an

acidic environment [4]. Al3+ disrupts many physiological processes

in plants through both apoplastic and symplastic interactions, but

exact mechanisms remain elusive [7,8]. The root apex is the most

sensitive part of the plant to Al because it is the site of cell division

and expansion for the root [9,10]. Al-induced inhibition of root

growth is the primary symptom of Al toxicity [7,9]. Reduction in
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root growth and function leads to increased susceptibility to other

stresses, primarily drought and mineral deficiencies, due to the

limited capacity of Al-intoxicated roots to acquire sufficient water

and nutrition from the soil. There have been numerous

mechanisms proposed for Al toxicity, but it is likely from the

disruption of a number of different processes. One important site

of Al3+ intoxication is the cell wall of the root apex [11]. In

response to Al3+ exposure, callose formation seals off the cell walls,

increasing rigidity, decreasing extensibility and preventing further

transport into the cell [12]. Al3+ displaces Mg2+ and Ca2+, which

are required for ATPases, cell signaling, and altering or

inactivating the function of many proteins [9,13]. Other possible

mechanisms of Al toxicity include interference with the cytoskel-

eton, promotion of lipid peroxidation and blocking of Ca2+

channels [14,15]. Specifically for maize grown in the field, Al

intoxication causes several stress related physiological effects,

including stunting, reduced number of ears per plant, delayed

flowering, and reduced biomass and total yield [3,5].

Plants have developed several mechanisms for dealing with Al

toxicity, which can be classified as either external or internal tolerance

mechanisms [13]. External mechanisms include differential binding

of Al to the cell wall, selective permeability of the plasma membrane,

formation of a plant induced pH barrier in the rhizosphere, and root

exudation of chelating compounds, such as organic acids (OA) or

phenolic compounds. Internal mechanisms include chelation of Al in

the cytosol, compartmentalization in the vacuole, Al-binding

proteins, Al tolerant enzyme isoforms, and elevated enzyme activity

[4,13]. Most Al tolerance research has focused on Al induced root

exudation of OA to chelate Al in the rhizosphere, where non-toxic

complexes can be formed between Al and an OA such as citrate.

Root exudation of OAs is a widespread response to Al in both

monocots and dicots [16,17]. This mechanism has been shown to

play a role in Al tolerance in several species though the activation of

anion transporters in the plasma membrane [16–20].

Maize has considerable genetic variation in levels of Al

tolerance, but clear physiological bases and molecular mechanisms

for this tolerance remain elusive. Physiological studies found that

OA exudation contributes to maize Al tolerance, but is not the

only mechanism, as some Al sensitive varieties have been shown to

exude high amounts of OA from the roots [21]. Differences in cell

wall pectin content and degree of methylation have also been

suggested to contribute to Al tolerance in maize [22]. Under-

standing the mechanisms of Al tolerance can accelerate the efforts

to identify and incorporate superior genes and alleles into maize

breeding programs. Recurrent selection has been used to develop

Al tolerant maize populations with yields as much as 200% greater

than susceptible lines [3,23]. However, a strong genetic by

environment (GxE) interaction and relatively low heritability of

Al tolerance in maize complicates selection and has made

substantial progress difficult [3,5,24].

The genetic variation for Al tolerance in maize indicates it is a

complex trait, involving many genes and physiological processes

[3,24,25]. Several QTL studies examined Al tolerance in maize,

and suggest that about 6 loci account for ,60% of the variation in

tolerance levels [21,26–28]. However, QTL in these different

biparental populations are not shared, suggesting genetic hetero-

geneity [29]. This is not unreasonable, as the first two populations

were constructed from South American maize varieties and the

latter from North American lines. Transgressive segregation is

seen in these three biparental mapping populations indicative of

additive and/or interaction effects among alleles contributed by

the two parents. Al stress was likely a powerful selective force

during maize domestication and early improvement, as maize

exhibits regional adaption to various levels of Al toxicity [4].

Biparental crosses used in linkage mapping, in which one or a

few loci controlling Al tolerance may segregate, provide limited

insight into the analysis of complex traits in general [29]. Linkage

mapping has strong statistical power and is useful for understand-

ing how and to what extent allelic effects are dependent on one

another, but provides low genetic resolution unless the population

is very large [30]. Alternatively, association mapping is a method

for high-resolution mapping of QTL based on linkage disequilib-

rium (LD), and is useful for dissecting complex traits controlled by

multiple QTL in species where LD decays rapidly [29,30]. Unlike

linkage mapping, where only two alleles are evaluated, association

mapping evaluates a greater number of alleles in a broader

population. Linkage mapping uses shared inheritance of polymor-

phism and linked markers within families of known ancestry.

Association mapping takes advantage of the historic recombina-

tion of several hundred lines, to identify common genes

contributing to the trait of interest. The LD structure of the gene

is essential in association mapping. This approach allows

evaluation of genes from smaller sampled regions, within the

range of LD decay, instead of requiring complete candidate gene

sequencing. This method requires three data types: phenotypic

trait information, genotypic data from or near the gene of interest

and an understanding of population structure within the test panel.

Beyond the requirement for prior molecular knowledge, the other

principal disadvantage of association mapping is that spurious

marker trait associations can arise from population structure.

However, we can identify many of these false positive results via a

mixed linear model (MLM) approach, which takes population

structure and varietal relatedness into account [31]. The

combination of association mapping and linkage mapping can

provide both the power and resolution needed for detecting QTL

of interest.

In this study, we used an integrated approach combining

association mapping with linkage mapping to identify and evaluate

candidate Al tolerance genes in maize. Without positively

identified mechanisms or biochemical pathways involved in Al

tolerance, selection of candidate genes requires knowledge based

on previous studies and proposed mechanisms. We tested 21

candidate genes for association with Al tolerance, in a maize

diversity panel of 282 inbred lines, using the MLM approach

discussed earlier [31–34]. Candidate genes were screened in a

subset of 27 diverse lines (DL), selected to be representative of the

genetic and phenotypic diversity in the association panel, in order

to identify highly polymorphic regions for further association

studies. Due to strong GxE effects in field studies of Al tolerance,

selection or testing of tolerance in pots of acid soil or hydroponics

solutions is a quick and efficient way to determine tolerant and

sensitive lines in maize while controlling for environmental effects

[35]. Al tolerance levels were measured, as net root growth (NRG)

in nutrient solution containing a toxic level of Al [36]. Several

genes were found to be associated with NRG under Al stress and

subsequently confirmed using linkage analysis.

Results

Phenotypic data
Phenotypic data for Al tolerance in the maize association panel

was collected as net root growth (NRG) in a hydroponic nutrient

solution with or without a toxic level of Al3+ [37]. Al stress

measurements were taken before and after 2 days of stress in a

hydroponic solution containing {27 mM Al3+} at pH 4.0. A

control treatment was carried out over the same time period in an

identical hydroponic solution, containing no Al3+. A wide range of

tolerance levels is seen in this panel for both control NRG and Al

Al Tolerance Genes in Maize
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treated NRG (Figure 1 and Table S1). Mean NRG under control

treatment and under Al stress was 50.04611.58 mm and

37.79611.91 mm, respectively. Differences between the two

groups were highly significant (p = 1.5610227). Mean correlation

between replications was 42.5% in Al stress treatments and 37.3%

in control treatment replications.

Narrow sense heritability (h2) for NRG in the Diversity Panel,

calculated using the relatedness (K) matrix, was between 30 and

32% in the Al stress environment and 22% without Al stress.

Broad sense heritability (H2) for NRG under Al stress and without

Al stress was 41% and 37%, respectively. These heritability

estimates for net root growth in seedlings are similar to those

observed in maize breeding programs for enhanced tolerance to

low pH [5].

Genotypic data
Genotypic data for association mapping came from polymor-

phisms identified in candidate gene sequences. Genes were chosen

based one of two factors: as responsive to Al-stress treatments

according to gene expression analysis or by sequence similarity to

Al tolerance genes found in other species (Table 1). Genes

throughout the remainder of this study are referred to by the Gene

ID listed in Table 1. Thirteen candidate genes were identified as

differentially responsive to Al stress treatments in root tips, from Al

tolerant and Al sensitive maize lines, in previous studies [38]. Eight

Figure 1. Distribution of Net Root Growth (NRG) in the Maize
Association Panel. Bins reflect grouping the inbred lines by 5 mm
2 d21 increments of root growth under both Al stress (circles) and
control (squares) treatments. Reported values are Least Squares Means
calculated from five replicate experiments for Al stress treatment or
three replicate experiments for control treatment.
doi:10.1371/journal.pone.0009958.g001

Table 1. Candidate Al tolerance genes evaluated by association mapping.

Gene ID Gene Name MAGI ref seq# Length (bp) Lines (#) Sites (#) Chr (#) ctg (#) BIN (#)

ME Malic Enzyme 3.1_47445 626 255 12 6 282 6.05

FE Iron-responsive transporter-like 3.1_61976 503 240 11 2 106 2.08

ANTI Major facilitator superfamily
antiporter

3.1_69188 549 246 14 6 285 6.05

ABC ABC transporter-like protein 3.1_80359 373 251 21 2 106 2.08

ISL Isocitrate Lyase 3.1_108586 526 228 6 7 322 7.03

AUX1 Amino acid permease AUX1 3.1_112316 526 206 23 2 106 2.08

SAHH SAH hydrolase 4.0_116767 500 206 6 4 160 4.03

P450 Cytochrome P450 4.0_145633 786 246 14 3 138 3.06

PME Pectin methylesterase 4.0_158804 454 270 3 1 49 1.08

PI3K Phosphatidylinositol 3-kinase 4.0_112182 590 254 10 4 172 4.05

OO2 Germin2 (oxalate oxidase) 4.0_67335 729 182 26 10 399 10.03

IDH Isocitrate dehydrogenase 4.0_48631 1061 253 14 4 173 4.05

FUM Fumerase 4.0_35824 646 269 8 1 14 1.04

AL1 ZmALMT1 3.1_92675 476 182 31 10 412 10.04

AL2 ZmALMT2 3.1_93496 487 199 17 10 412 10.04

AL3 ZmALMT3 3.1_92049 633 193 9 5 252 5.07

AL5 ZmALMT5 3.1_811363 743 215 24 10 412 10.044

AL8 ZmALMT8 3.1_90876 504 208 26 5 247 5.06

AL9 ZmALMT9 3.1_6591 288 263 2 5 214 5.03

AL16 ZmALMT16 3.1_36360 HAP* 285 1 10 415 10.06

ASL ZmASL (region 1) 3.1_41691 1179 278 32 1 9 1.02

ASL ZmASL (region 2) 3.1_41691 715 240 21 1 9 1.02

Thirteen genes were selected from gene expression analysis, while another eight came from comparative genomics. Genes were identified from genome survey
sequence contigs created by the MAGI Project. MAGI build version and reference number are reported. ‘‘Length’’ describes the total length of sequence used for
polymorphic site identification. ‘‘# Lines’’ refers to the number of entries with sufficient information to include in the association analysis. ‘‘# Sites’’ refers to
polymorphisms that occurred at greater than 10% frequency. Physical-genetic map locations for each candidate gene are reported according to chromosome, genomic
sequencing contig and genetic map bin. Genetic bins that appear in bold represent those under previously reported Al tolerance QTL. Gene AL16 was evaluated by a
large indel (*HAP) rather than by gene sequence. Gene ASL underwent two rounds of sequence analysis.
doi:10.1371/journal.pone.0009958.t001
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candidate genes were chosen by comparative genomics based on

their contribution to Al tolerance in related grass species.

TaALMT1 (Aluminum activated malate transporter) is the major Al

tolerance gene in wheat (Triticum aestivum) and is the first true Al

tolerance gene identified in any plant [39]. Seven maize genes

homologous to TaALMT1 were examined and are referred to as

ZmALMTx. One gene homologous to AltSB, the major Al tolerance

gene in Sorghum bicolor, is referred to as ZmASL (Zea mays AltSB – like)

[20]. The selection of genes using a comparative genomics

approach is based on evidence suggesting many agronomically

important traits, such as Al tolerance, may be controlled by

orthologous loci in related grasses or more distant species [40]. For

example, genes related to TaALMT1 from wheat have been

demonstrated as Al tolerance genes in Arabidopsis and rye

[18,39,41,42], while genes related to AltSB from sorghum have

been demonstrated as Al tolerance genes in Arabidopsis and

barley [20,40,42,43].

Information regarding the genes used in association mapping is

shown in Table 1. A region of high polymorphism in each gene

(based on preliminary sequencing in the 27 DL) was sequenced in

the association panel. Polymorphisms with frequency $10% were

extracted from the sequences for analysis, giving a total of 331 sites

across all genes and an average of 15 sites per gene (Table S2).

Reference sequence, length of sequence, number of lines with

sufficient quality sequence and the physical map location of each

gene are shown [44,45]. Given the heterogeneity in the rates of

LD decay for these genes, size of the genes, and the possibility for

distant regulatory elements, these polymorphism surveys are not

intended to be comprehensive surveys of polymorphism. Instead,

the sequencing results presented here are a representative sample

that enables us to efficiently screen a large number of loci and

identify markers with strong associations to Al stress tolerance.

Association mapping
The mixed linear model (MLM) was used for association

mapping [31]. The MLM accounts for multiple levels of

relatedness, defined as population structure (Q) and a pairwise

kinship matrix (K), to control for both Type I and Type II errors

[31]. A General Linear Model (GLM) including Q was also tested.

Both models, GLM and MLM, were applied to NRG under Al

stress and NRG under no Al stress. NRG under no Al stress was

also used as a fixed effect covariate in the MLM model, Q+K+C

(Table 2 & Table S3). This model was used to evaluate relative

root growth, which is frequently used as a measurement of Al

tolerance.

Six genes had statistically significant associations (p#0.01) with

NRG under Al stress and were selected for further study in F2

linkage populations: malic enzyme (ME); isocitrate lyase (ISL); SAH

hydrolase (SAHH); ZmALMT2 (ALMT2); ZmASL (ASL); pectin

methylesterase (PME) (Table 2). Complete results from the MLM

analysis can be found in Table S3. ISL was statistically significant

at a less stringent value (p,0.05) for Al stress. In order to estimate

the number of expected false positives due to multiple testing of

sites, a false discovery rate (FDR) was calculated for each model

using 1,095 random SNPs throughout the genome. FDR allows

for the comparison of significant sites in our candidate genes to

those we would expect to see by random chance alone. Based on

the FDR values for the MLMs, about 24% of the sites under the

Q+K model and 34% under the Q+K+C model under Al stress

could be accounted for by false positives. Given this high rate for

false discovery, it is crucial to test the connection between the six

genes with putative association to Al stress tolerance using an

independent line of reasoning.

Linkage mapping
If the association analysis truly identified Al tolerance genes,

then the associated SNPs should explain significant variance for Al

tolerance in segregating populations. Linkage mapping could

therefore be used to test the results of association mapping.

Linkage to Al tolerance was tested for the six genes listed in Table 2

using three F2 populations. F2 populations were phenotyped in the

same manner as the association panel and genotyped for the sites

of interest (Table S4). These F2 populations were constructed so

that each would segregate for polymorphisms associated with two

putative Al tolerance loci: ZmASL and SAHH within

B736CML247; ME and ISL within B736CML333; PME and

ZmALMT2 within B736NC350 (Figure 2). A comparison of means

for each allelic class suggested that the polymorphisms tested at

ZmASL, SAHH, ME, and ZmALMT2 were significantly associated

with Al tolerance (Figure 2). However, allelic means for ISL and

PME were equivalent no matter the state, suggesting that the

polymorphisms tested were not associated with Al tolerance.

Linkage was tested by GLM for the 4 putative Al tolerance genes,

assuming complete dominance (ZmASL, SAHH and ZmALMT2) or

additive gene action (ME; Table 3). These results indicate that

small effect (3–6% variance explained) QTL exist for Al tolerance

at these four loci. No significant interactions between Al tolerance

genes were found, suggesting that epistasis is not at work. The

identification of ISL and PME as Al tolerance gene based on

association mapping were likely false positives, as there was no

linkage to Al tolerance differences with the polymorphisms tested

in F2 populations, and is consistent with our expectations based on

the FDR calculation.

The four genes with significant association and linkage to Al

tolerance, Zea mays AltSB-like (ZmASL), S-adenosyl-L-homocysteinase

(SAHH), Malic Enzyme (ME), and ZmALMT2 (ALMT2), are

described in further detail below. All genes possessed more than

Table 2. Evaluation of association mapping results by
ANOVA.

Candidate
Genes

#
Sites

GLM
(Q)

MLM
(QK)

MLM
(QKC)

Max r2

(Model)

ME 12 0 0 3 1.3% (QKC)

ISL 6 0 0 0 1.2% (QKC)

SAHH 6 0 0 2 2.1% (QKC)

AL2 17 1 2 0 2.7% (QK)

ASL 53 26 10 5 2.0% (QK)

PME 3 0 1 1 1.6% (QK)

FDR p,0.01 40% 24% 34%

h2 n/a 0.30 0.32

H2 0.41

GLM and MLM analyses were used to evaluate the 21 candidate Al tolerance
genes, using the net root growth trait collected from Al treated plants. These
models incorporated the population structure (Q) of the Diversity Panel, the
relative kinship (K) of the Diversity Panel and net root growth of the Diversity
Panel grown without Al stress as a fixed effect covariate (C). The GLM model
used only factor Q, while the MLM models used factors Q+K and Q+K+C. Six
candidate genes gave significant results and are shown, with the number of
significant sites (p,0.01) identified per locus for each model. The maximum
value for variance explained by a marker within a gene in any model is reported.
False Discovery Rates were empirically calculated for each model based on
1,095 random SNPs throughout the genome and are expressed as percentages.
Narrow (h2) and broad sense (H2) heritability estimates were generated for each
trait based upon variance estimates from the MLM.
doi:10.1371/journal.pone.0009958.t002

Al Tolerance Genes in Maize

PLoS ONE | www.plosone.org 4 April 2010 | Volume 5 | Issue 4 | e9958



one statistically significant polymorphism associated with Al

tolerance differences. The complete coding sequences for the

ZmASL, SAHH and ME genes were characterized in the 27 DL to

look for other regions of interest such as non synonymous sites,

alternative splicing, and protein structure modifications. ALMT2

was not sequenced in the 27 DL subset due to constraints caused

by abundant paralogs within the ZmALMT family. Individual sites

in these genes explain only about 2% of the phenotypic variance in

the association panel, but confer 13%–20% increase in NRG.

Al tolerance gene: ZmASL
ZmASL, which is highly similar to the Al-activated citrate

transporter from sorghum, is described in Figure 3. Figure 3A

shows the gene organization for ZmASL, including exons, introns

and nonsynonymous sites, based on the genomic sequence of the

27 DL. Total length of ZmASL sequenced in the 27 DL was about

6 kb, including 11 exons, both 59 and 39 UTRs and an upstream

region containing a 300 bp MITE insertion. The common

polymorphisms (frequencies $10%), which are responsible for

12 amino acid substitutions, are shown. The 43 rare amino acid

substitutions, insertions or deletions (,10% frequency) are not

shown. Many of the rare polymorphisms are found in only one of

the 27 DL (CML247 was responsible for 21 sites).

Two minimally overlapping regions of this gene were sequenced

in the association panel, covering a total of ,1.7 kb (Figure 3B).

These regions represent the first three exons and part of the fourth,

and were selected as they were highly polymorphic for both

synonymous and nonsynonymous sites, including 7 of the 12

common amino acid substitutions. Based on this sequence the

remaining 5 amino acid substitutions were inferred from haplotype

structure. The MITE insertion in the 59 UTR was also scored in

the panel. Altered gene expression in the AltSB gene is associated

with the number of MITE insertions in the regulatory region of

that gene [20]. However, the MITE found in ZmASL was not

associated with NRG.

We detected 11 sites that were significantly associated with

NRG under Al stress in the MLM models, as shown in Figure 3B.

All of the significant sites occur in introns. A 120 bp indel (site

#47) in the second intron showed the highest statistical

significance and was in high LD with several of the other

significant sites. A total of three independent sites (R2,0.2) were

significantly associated with NRG in the region sequenced

(Figure 3C). Each significant site in the Al stress statistical models

explains between 1.5 and 2.7% of the total phenotypic variance

observed in the association panel. However, the most significant

site has an effect estimate that increases NRG 16% over the two

days of Al stress. The 120 bp indel (site #47) was used for the

linkage analysis in the B736CML247 F2 population, where it was

correlated with a 15% increase in NRG. The superior allele found

in B73 appeared to be fully dominant to the inferior allele found in

CML247 (Figure 2).

Figure 3D shows the predicted transmembrane protein

structure of this gene containing 10 putative transmembrane

domains [46]. The approximate locations of the 12 common

amino acid substitutions on the protein are shown. However, none

of these polymorphic sites were significantly associated with NRG

under Al stress.

Al tolerance gene: SAHH
The complete predicted coding sequence for SAHH was

sequenced in the 27 DL. This 2.5 kb region includes three exons

and the 39 UTR (Figure 4A). Only one amino acid substitution

was observed in the 27 DL gene sequences and is encoded by a

triallelic SNP (#5). The region sequenced in the association panel

spanned most of the first exon, including this amino acid

substitution (Figure 4B). We observed 6 SNPs and no indels in

this portion of the first exon. Two nonsynonymous SNPs (#1 and

#2), in high LD (R2$0.8), were significant for NRG under the

Q+K+C model (Figures 4B & 4C). The triallelic SNP (#5) was

significant at the p,0.05 level, and leads to either a synonymous

(Glu for Glu) or conservative (Asp for Glu) amino acid substitution.

The triallelic SNP was in moderate LD with associated SNP #1

and in little or no LD with SNP #2. The two highly significant

sites (#1/#2 and #5) explain between 1.8 and 2.1% of the

phenotypic variation and confer up to a 13% increase in NRG

under Al stress.

Instead of utilizing one of the associated SNPs, an indel

polymorphism identified in the first intron during whole gene

sequencing was used for the linkage analysis. The choice of the

indel provided us a simple PCR based assay for genotyping and

took advantage of the difference in genetic resolution between

association mapping and linkage mapping. Far fewer recombina-

tion events were captured in the F2 population than in the

association panel, thus an indel that was not scored in the

complete association panel was equally useful for linkage analysis.

This indel was correlated with a 13% increase in NRG in the

B736CML247 F2 population (Figure 2), the same relative increase

as we attributed to SAHH by association mapping. The inferior

allele of SAHH found in CML247 was fully dominant to the

superior allele from B73 (Figure 2).

Al tolerance gene: ME
The complete predicted gene sequence for ME, including both

59 and 39 UTRs and a farther 59 region with two large insertions

was sequenced in the 27 DL (approximately 5 kb; Figure 5A). Like

SAHH, we saw very little nucleotide diversity in the ME sequences –

only one amino acid substitution was seen in more than one line,

located in the last exon. Three rare amino acid substitutions were

seen in one line. The 59 UTR, the first exon, and most of the first

Figure 2. Linkage mapping validation of candidate Al tolerance
genes. Six candidate Al tolerance genes were evaluated using three F2

linkage populations: B736CML247, B736CML333, and B736NC350.
Mean Net Root Growth values for each allelic state are reported,
abbreviated as B73 for the B73 homozygous class, Het for the
heterozygous class, and the numerical portion of the non-B73 parent
name for the other homozygous class; error bars reflect standard error.
Student’s t-test was used to evaluate differences between allelic classes
within each F2; differences significant at p,0.05 are indicated with
letter codes.
doi:10.1371/journal.pone.0009958.g002
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intron were sequenced in the association panel (Figure 5B). Three

sites (#4, #7, and #11) were associated with NRG under Al stress,

two in high LD were found in the second intron and one

independent site in the first exon (Figure 5C). The most significant

independent site (#4) explains 1.4% of the variance in the

association panel, which translates to an 18.4% increase in NRG

under Al stress. We also examined the far upstream region in the

association panel, which contained two large indels, but no

significant associations were found.

Site #1, an indel in the first intron, was used for the linkage

analysis of the B736CML333 F2 population. The superior B73

allele of ME was correlated with a 21% increase in NRG, similar

to the effect seen in the association mapping. The heterozygous

class was intermediate in phenotypic effect, unlike that seen with

ZmASL or SAHH, suggesting that the mode of action was additive

rather than dominant.

Al tolerance gene: ALMT2
We evaluated seven members of the ZmALMT gene family by

association analysis. Only ZmALMT2 (ALMT2) gave a significant

result (Figure 6). The gene model shown in Figure 6A is based on

B73 sequence information only because of sequencing constraints

due to paralogs within the ZmALMT family. Two SNPs in this

gene (#2 and #12) were associated with NRG under the Q+K

model (Figure 6B). These SNPs were independent of each other

(R2,0.2), although LD was moderate to extensive between most

of the SNPs found at this gene (Figure 6C). The most significant

SNP explains 2.7% of the variation in the panel and confers a

20.2% increase in root growth.

Site #11, an indel that was not associated with Al tolerance, was

used for the linkage analysis in the B736NC350 F2 population.

Like ZmASL and SAHH, the superior allele found in B73 was fully

dominant to the allele found in the other parent. However, unlike

ZmASL and SAHH, the enhancement in NRG correlated with

ALMT2 was somewhat smaller (15%) in the linkage population

than expected from the association population (20.2%).

Discussion

We found four new genes that may contribute to Al tolerance in

maize by integrating several approaches. Candidate genes were

selected based on comparative genomics and gene expression

analysis, which we evaluated with association and linkage mapping.

Two of these genes, ZmALMT2 and ZmASL, are very similar to Al-

activated organic transporters that play crucial roles in determining

Al tolerance in other species [20,39–43]. Whether these new maize

genes are also membrane transporters has yet to be determined. ME

and SAHH are involved in several central metabolism reactions and

speculations on their contribution to Al tolerance can be made

based on previous studies [47,48]. The low heritability and complex

nature of Al stress tolerance makes it challenging for both genetic

improvement and genetic dissection. This complexity highlights the

value for molecular markers for use in breeding programs for Al

Table 3. Evaluation of linkage mapping results by ANOVA.

Factor DF SS F P

ALMT2 (dom) 1 1241.43 6.73 0.0106

Error 125 19482.91

Model Total 126 20531.35 Adjusted r2 = 0.043

Factor DF SS F P

ME (add) 2 2721.62 3.29 0.0403

Error 127 52484.35

Model Total 129 55205.97 Adjusted r2 = 0.034

Factor DF SS F P

SAHH (dom) 1 1903.55 8.58 0.0040

Error 129 28631.73

Model Total 130 30535.28 Adjusted r2 = 0.055

Factor DF SS F P

ZmASL (dom) 1 2037.51 8.44 0.0044

Error 124 29951.96

Model Total 125 31989.47 Adjusted r2 = 0.056

Factor DF SS F P

SAHH (dom) 1 1445.72 6.94 0.0097

ZmASL (dom) 1 1586.91 7.62 0.0068

Error 106 22085.66

Model Total 108 25684.81 8.57 0.0004

Adjusted r2 = 0.123

GLM analysis was used to evaluate whether SNP markers within candidate Al tolerance genes explained significance variance for Al tolerance observed in F2

populations. Gene action was modeled as either additive (‘‘add’’) or dominant (‘‘dom’’) based on allelic means. The variance explained by each significant SNP is
reported. As both SAHH and ZmASL were significantly associated with Al tolerance for the B736CML247 population, a summary model is reported. DF: Degrees of
Freedom; SS: Sum of Squares; F: F ratio; P: P value.
doi:10.1371/journal.pone.0009958.t003
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tolerance. To maximize their efficacy, molecular markers should be

closely linked to major tolerance loci, so that markers are highly

concordant with the desired genotypes. Given the limited amount of

DNA sequence obtained for association mapping within many of

the genes we investigated, we cannot positively identify these

particular polymorphisms as causative without further investigation.

However, they are most likely in LD with causative sites or

contribute to an allelic series controlling Al tolerance, and therefore

will be highly useful as markers for selection of Al tolerance

materials. We demonstrated that using polymorphisms identified

during gene sequencing as markers for linkage analysis allowed us to

confirm the identification for four of the six putative Al tolerance

genes. We utilized sites that were both significantly associated with

Al tolerance differences in the association panel and sites not

significantly associated, taking advantage of the difference in genetic

resolution between association and linkage mapping. It was

important to use linkage mapping to test the genes identified from

association mapping, as we predicted a high rate for false discovery

based on empirically calculating an FDR. Each of the Al tolerance

loci produced similar phenotypic effects in both the association

panel and F2 populations (13–20% increases in NRG). While none

of these new Al tolerance genes represent major effect QTL,

combining multiple small QTL can make a significant impact to

enhance the desired trait. In the B736CML247 F2 population,

combining the elite alleles of ZmASL and SAHH enhanced net root

growth by 30% (Tables 3 and S4).

ZmASL (Zea mays AltSB like) is a maize gene homologous to AltSB,

the major Al tolerance gene from sorghum and is a member of the

Multidrug And Toxic Compound Extrusion (MATE) family of

transporters [20]. Both proteins are predicted to contain 10

putative transmembrane domains. It is unknown whether the

ZmASL gene mediates Al-activated root citrate efflux, as is the role

of AltSB in sorghum. Although many sites in ZmASL were

associated with NRG under Al stress, none were amino acid

substitutions. The significant sites we detected may be in LD with

regulatory elements of the gene, as is the case in AltSB, where

polymorphisms in the promoter help to determine the level of gene

expression [20]. ZmASL contained the most significant indepen-

dent sites of any gene tested, but also contained extensive LD

among many of the other significant sites. Fortunately, future

experiments to evaluate the relationship of ZmASL with Al

tolerance will be relatively straightforward given the presumed

gene function.

SAHH, S-adenosyl-L-homocysteine hydrolase, is an enzyme that

removes the feedback inhibitor of SAM (S-adenosylmethionine)

mediated methylation in any organism [47]. Any enzymatic

process that requires high rates of SAM-mediated methylation will

also require high SAHH activity, including DNA/RNA modifi-

cation, nucleic acid metabolism, and synthesis of cell wall

constituents [49]. SAHH has a high degree of sequence

conservation among eukaryotes [49]. In plants, SAHH is a

cytokinin binding protein in plants, induced by auxin and

cytokinin, and has been associated with salt-stress response in

spinach and sugar beets and viral resistance in Arabidopsis

[47,50]. The isoform of maize SAHH we examined was previously

found to be highly expressed in root tips under Al stress [38]. The

Figure 3. Characterization of ZmASL. (a) Predicted gene structure for the ZmASL locus is shown, with exons as black boxes, introns as thin lines,
and UTRs as open boxes. The approximate location of 12 amino acid substitutions or additions that occur at greater than 10% frequency among
alleles are shown with vertical lines above the exons, based on complete ZmASL sequencing performed in the 27 DL subset. (b) A focus region of
ZmASL was sequenced in the association panel. The polymorphisms that were identified as significant by the association analyses are shown – SNPs
as vertical lines, indels as triangles – and are referred to by number. The conserved MATE domain is highlighted in exons 3 and 4. (c) Linkage
disequilibrium plot for the eleven significant polymorphisms. High linkage disequilibrium exists between nine of the eleven associated
polymorphisms. (d) An estimate for the transmembrane structure of ZmASL, where open circles indicate the approximate locations for the 12 amino
acid substitution/insertions detected within the gene.
doi:10.1371/journal.pone.0009958.g003
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connection of SAHH to Al tolerance could come through any of

several mechanisms due to the broad range of processes the

enzyme is involved in. However, given recent reports on the

correlation pectin methylation in cell walls with Al tolerance and

Al exclusion, it is certainly possible the SAHH contributes to Al

tolerance differences via cell wall modification [22,51].

NADP-ME (ME) catalyzes the conversion of malate to pyruvate.

The maize ME examined in this study was the cytosolic rather

than plastidic isoform of the enzyme. Maize Cyt-ME is highly

similar to Cyt-ME found other in C3 and C4 plant species. This

isoform was found to be expressed in the embryo and emerging

roots, with expression responsive to hypoxia and drought [48].

High malate and other organic acid concentrations are optimal for

activity of the cytosolic isoform and not inhibitory as is the case in

plastidic isoforms of NADP-ME [48]. There is strong evidence

that Al-activated release of malate underlies wheat Al tolerance

[9,17,39]. Malate appears to chelate and detoxify Al in the apical

rhizosphere or the apoplastic space. ME may help regulate malate

concentration in the cytosol, which could connect to Al tolerance

either through OA efflux or internal detoxification of Al via Al-OA

chelation.

ME was unusual among the genes we examined as the results

from linkage and association studies were opposite in direction,

while still both highly significant. In the association mapping, three

significant sites were identified – a site in the first exon (SNP #4),

which was in linkage equilibrium with all other sites, and two sites

in the second intron (SNP #7 and SNP #11), which were in high

linkage disequilibrium with all of nearby the SNPs (Figure 5c).

Based on these sites, we predicted that the B73 allele would be

inferior to the CML333 allele. However, in the linkage mapping

B73 was superior to CML333 (Figure 2). One possible explanation

is that an allelic series exists at ME that was not observed in the

polymorphic sites studied in the association panel. However, an

allelic series could be detected in the larger linkage blocks of the

segregating population. We see evidence of allelic series in several

other candidate genes studies in maize, such as su1 and LcyE, that

also exhibit these inconsistencies between association and linkage

mapping [52].

ALMT2 is related to transport proteins that have been found to

contribute to Al tolerance in Triticum aestivum, Arabidopsis thaliana,

and Brassica napus, and are either activated or show enhanced

malate efflux in response to external Al3+ [18,39,53–56]. It is

proposed that binding of Al3+ to the transporter induces a

conformational change, opening the anion channel [55,56].

However, not all ALMT family proteins are Al-activated or

important for Al tolerance processes. AtALMT9 encodes a vacuolar

malate transporter, instead of being localized to the plasma

membrane like AtALMT1 [18]. Unlike AtALMT1, AtALMT9 is

completely unresponsive to Al treatment [56]. The first ZmALMT

family member to be characterized, ZmALMT1, transports

inorganic anions and not malate, and is not activated by

exogenous Al3+ [54]. Based on its transport properties and

expression, ZmALMT1 was determined not to be involved in maize

Figure 4. Characterization of SAHH. (a) Predicted gene structure for
the SAHH locus is shown, with exons as black boxes, introns as thin
lines, and UTRs as open boxes. A single amino acid substitution was
detected from complete gene sequencing in the 27 DL subset and is
indicated by the vertical line in the first exon. (b) A focus region of SAHH
was sequenced in the association panel. Six SNPs were detected in the
association panel and are referred to by number. Polymorphisms 1, 2
and 5 were identified as significantly associated with aluminum
tolerance differences and are shown in black; non-significant sites are
shown in gray. Site #5 corresponds to the triallelic SNP that causes the
single amino acid substitution detected. (c) Linkage disequilibrium plot
for all polymorphisms detected in the focus region at SAHH. High
linkage disequilibrium exists between sites 1 and 2, while relatively low
linkage disequilibrium exists through the rest of the gene.
doi:10.1371/journal.pone.0009958.g004

Figure 5. Characterization of ME. (a) Predicted gene structure for
the ME locus is shown, with exons as black boxes, introns as thin lines,
and UTRs as open boxes. Two indels and an SNP were detected in
sequencing the complete gene in 27 DL subset. (b) A focus region of
ME was sequenced in the association panel. Four indels and eight SNPs
were detected; three SNPs were significantly associated with aluminum
tolerance and are shown in black. (c) Linkage disequilibrium plot for all
polymorphisms detected within the focus region at ME. No linkage
disequilibrium exists within the 59 end of the focus region, while
moderate linkage disequilibrium exists among several of the 39 end
sites.
doi:10.1371/journal.pone.0009958.g005
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Al tolerance. This is consistent with the results from the association

analysis, as ZmALMT1 was not associated with NRG under Al

stress. Only ZmALMT2 was found to be significant for Al tolerance

of the seven ZmALMT genes that we evaluated by association

analysis. Future work on ZmALMT2 will include a biophysical

characterization of the protein to verify that it does encode an Al-

activated OA transporter.

In summary, we used association mapping to evaluate twenty-

one candidate Al tolerance genes. Linkage mapping was used to

test six putative Al tolerance genes found from association

mapping; this was especially important given the high predicted

FDR for the association mapping. Linkage mapping supported

four of the six genes as true Al tolerance genes. These four genes,

ZmASL, ZmALMT2, ME and SAHH, are excellent candidates for

future laboratory and field-based studies on Al tolerance in maize.

Although the most significant polymorphisms explain less than 3%

of the variation seen in the association panel, our best marker can

increase NRG up to 20%. If this increased root growth transfers to

field trials, integration of these markers could substantially

improve maize root growth and overall maize yield under Al

toxic conditions.

Materials and Methods

Germplasm
The maize association population has been previously described

[31,34]. Linkage mapping experiments were conducted with three

independent F2 populations derived from B73 and one of three

other inbred lines from the maize association population (CML247,

CML333, NC350). Non-B73 parents were selected on the basis of

genotype information for the candidate Al tolerance genes.

Phenotypic analysis
Maize seeds were germinated in either autoclaved sand or on filter

paper, moistened with deionized water, for 3–5 d at 28uC in

continuous darkness. Seedlings were rinsed and placed into sample

cups suspended in 8L vessels containing a nutrient solution without

Al3+ at pH 4.0, for 1 d, for acclimation to hydroponic conditions [37].

When plants were placed into hydroponic culture, secondary roots

were removed to promote measurement of primary seminal root

growth only. Tubs were aerated and plant grown under controlled

environmental conditions (26uC day/24uC night, 16 h/8 h photope-

riod). After 24 hrs of acclimation, initial root growth (IRG)

measurements were taken using rulers with millimeter precision and

solutions were replaced with Magnavaca nutrient solution containing

{27 mM Al3+} at pH 4.0 (Al stress treatments) or Magnavaca nutrient

solution containing no Al3+ at pH 4.0 (control treatments), for 2 d.

After 2 d of Al stress final root growth (FRG) measurements were

taken. Net root growth (NRG) was calculated as FRG – IRG.

Five replicate experiments were performed for Al stress treatments,

while three replicates were performed for the control treatment. In

each experiment, 3–4 individuals for each of the 282 inbred varieties

in the association panel were phenotyped in each replicate

experiment. Least squares means (LSmean) for both traits were

calculated in SAS version 9.1 for Windows (SAS Institute Inc., Cary,

NC, USA) and used as the phenotypic values in all models (Table S1).

F2 linkage populations were phenotyped in a similar manner,

with {27 mM Al3+} at pH 4.0, with the modification that 200 F2

individuals were evaluated for each cross plus parental checks

(n = 10). Leaf tissue was collected for DNA extraction and

genotypic analysis after FRG measurements. Measurements of

NRG under control and stress treatments are found in Table S4.

Genotypes and candidate genes
All DNA was isolated using a standard CTAB extraction

method [57]. DNA sequence analysis was performed using the

BigDyeH Terminator Cycle Sequencing kit according to manu-

facturer’s instructions (Applied Biosystems, Foster City, CA, USA)

and resolved on an ABI3730 Capillary Sequencer at the Cornell

University Life Sciences Core Laboratory Center. Twenty-one

candidate genes were successfully amplified from the 27 DL subset

of the association panel, using 2 or more 600 bp amplicons. The

amplicon with highest nucleotide diversity was selected for

sequencing in the full association panel; all DNA sequences have

been submitted to GenBank as entries GF102441 through

GF107318 (4,878 sequences). Sequences were assembled using

Biolign 4.0.7 [58]. These genes are named in Table 1; informative

polymorphisms are listed in Table S2.

F2 populations were genotyped only for the loci that were

expected to segregate in each cross. Molecular markers were

developed from sequence analysis of each locus and evaluated

using standard PCR methods on agarose gels for indels or by

fluorescently labeled primers for SNPs (Table S5). Marker data

was collected and organized using Genemapper software V4.0

(Applied Biosystems, Foster City, CA, USA).

Figure 6. Characterization of ZmALMT2. (a) Predicted gene
structure for the ZmALMT2 locus is shown, with exons as black boxes,
introns as thin lines, and UTRs as open boxes. For ease of presentation,
polymorphisms detected in the 27 DL complete gene sequencing are
not shown. (b) A focus region of ZmALMT2 was sequenced in the
association panel. Four indels and thirteen SNPs were detected; two
SNPs were significantly associated with aluminum tolerance and are
shown in black (#2, #12). (c) Linkage disequilibrium plot for all
polymorphisms detected within the focus region at ZmALMT2. Site 2 is
associated with aluminum tolerance differences but is in linkage
equilibrium with all other sites, while site 12 has moderate linkage
disequilibrium with many sites within the focus region.
doi:10.1371/journal.pone.0009958.g006
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Primers were designed based on reference sequences obtained

from the Maize Assembled Genomic Island (MAGI) Database

[45]. Genes of interest were placed on the physical-genetic map of

maize using the BLAST tool implemented by the Maize Genome

Sequencing Project [42]. Gene architecture predictions were made

using the FGenesH tool as implemented by Softberry [46].

Statistical tests
TASSEL 1.9.6 was used to evaluate linkage disequilibrium

(LD), extract polymorphic sites, calculate narrow sense heritability,

and perform General and Mixed Linear Models (GLM, MLM)

with incorporation of trait data, population structure (Q) and

kinship matrix (K) [59]. All other statistical analyses were done

using SAS version 9.1. A t-test was used to analyze differences

between NRG in the association panel under control and Al stress.

Association mapping
The MLM approach and estimation of the kinship matrix (K)

has been previously described [31]. Population structure estimates

(Q) have been previously described [34]. The complete results

from MLM appear as Table S3.

The mixed model used, for vector of phenotypes, y, is:

y~XBzZmze

where all fixed effects are modeled in the XB term, including

genotypes and Q. Random effects are modeled in the Zm term,

including the matrix of kinship coeffiecients, K, and vector of polygene

background effects. e is a vector of residual effects. This model is

referred to as the Q+K model. Addition of Control NRG as a fixed

effect covariate in the model is referred to as the Q+K+C model.

Polymorphic sites tested, SNPs and indels, that occurred $10%

were extracted from aligned sequence data. A total of 331 sites

were across 21 genes were used (Table S2). Sites for the AUX1

locus were reduced to only those not in complete LD (R2 = 1) due

to an excessive (73) number of sites in LD. Lines with quality

scores less than 60% were discarded.

FDR
In order to account for expected false positives present due to

multiple testing, a False Discovery Rate (FDR) was calculated

using 1095 SNPs that occur randomly across the maize genome

[60]. FDR0:01 was calculated as:

FDR0:01~1{ X{Yð Þ=Y½ �

Where X is the proportion of sig sites from the candidate genes #

the significance value specified (P,0.01). Y is the proportion of sig

sites from the 1095 random SNPs # the significance value

specified. Significant sites were calculated from GLM or MLM

using NRG LSmeans as the trait value.

Heritability
Marker based narrow sense heritability (h2) was calculated in

TASSEL using the kinship matrix (K) as a parent-offspring

regression. Broad sense heritability (H2) was calculated in SAS as:

H2~VG=VP

where VG is the total genotype variance and VP is the total

phenotypic variance.

Supporting Information

Table S1 Net seminal root growth data. Least Squares means

were calculated for net root growth (mm 2d-1) for the association

panel in the Al-stress condition (‘‘Lmeans-Al treatment’’, based on

5 replicate experiments) and control condition (‘‘Lsmean-control’’,

based on 3 replicate experiments).

Found at: doi:10.1371/journal.pone.0009958.s001 (0.03 MB

PDF)

Table S2 Sequence polymorphisms utilized for association

analysis. Polymorphic sites (SNPs and indels) were identified in

each of the 21 candidate Al tolerance genes across the 282

member association panel. SNPs are coded as nucleotides

(ACGT), indels are coded as numbers (e.g., 0 vs. 2), while missing

data appear as N.

Found at: doi:10.1371/journal.pone.0009958.s002 (0.61 MB

PDF)

Table S3 Mixed Linear Model (MLM) based association

analysis. MLM analysis was used to evaluate the importance for

each polymorphic site in every candidate Al tolerance gene for

NRG. Al-stress and control growth conditions were evaluated

separately. All results are reported here.

Found at: doi:10.1371/journal.pone.0009958.s003 (0.18 MB

PDF)

Table S4 Validation of association mapping via linkage

mapping. Association mapping results were validated using linkage

mapping of F2 populations segregating for the candidate Al

tolerance genes. This table reports phenotypic and genotypic

information for the linkage experiments.

Found at: doi:10.1371/journal.pone.0009958.s004 (0.05 MB

PDF)

Table S5 PCR primers utilized for linkage mapping.

Found at: doi:10.1371/journal.pone.0009958.s005 (0.02 MB

PDF)
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