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Abstract

Arrow worms (Phylum Chaetognatha) are abundant planktonic organisms and important predators in many food webs; yet,
the classification and evolutionary relationships among chaetognath species remain poorly understood. A seemingly simple
body plan is underlain by subtle variation in morphological details, obscuring the affinities of species within the phylum.
Many species achieve near global distributions, spanning the same latitudinal bands in all ocean basins, while others
present disjunct ranges, in some cases with the same species apparently found at both poles. To better understand how
these complex evolutionary and geographic variables are reflected in the species makeup of chaetognaths, we analyze DNA
barcodes of the mitochondrial cytochrome oxidase c subunit I (COI) gene, from 52 specimens of 14 species of chaetognaths
collected mainly from the Atlantic Ocean. Barcoding analysis was highly successful at discriminating described species of
chaetognaths across the phylum, and revealed little geographical structure. This barcode analysis reveals hitherto unseen
genetic variation among species of arrow worms, and provides insight into some species relationships of this enigmatic
group.

Citation: Jennings RM, Bucklin A, Pierrot-Bults A (2010) Barcoding of Arrow Worms (Phylum Chaetognatha) from Three Oceans: Genetic Diversity and Evolution
within an Enigmatic Phylum. PLoS ONE 5(4): e9949. doi:10.1371/journal.pone.0009949

Editor: Steve Vollmer, Northeastern University, United States of America

Received September 8, 2009; Accepted December 3, 2009; Published April 1, 2010

Copyright: � 2010 Jennings et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was partially funded by NOAA’s Office of Ocean Exploration (Award No. NA050AR4601079). Funding to APB was provided by MAR-ECO
(www.mar-eco.no). Samples collected by Ksenia Kosobokova and kindly contributed by her were supported by the Russian Foundation for Basic Research (Award
No. 06-05-65187). The authors gratefully acknowledge the support of the Alfred P. Sloan Foundation. This study is a contribution from the Census of Marine
Zooplankton (CMarZ, www.CMarZ.org), an ocean realm field project of the Census of Marine Life (www.coml.org). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rob.jennings@umb.edu

Introduction

Arrow worms (Phylum Chaetognatha) comprise over 120

species, all of which inhabit marine environments and exhibit

hermaphroditic reproduction. Although there are fewer species in

this phylum than in many others, chaetognaths can be numerically

abundant in many pelagic environments [1], and their grasping

hooks, rows of strong teeth, and transparent bodies make them

excellent predators in many marine food webs.

Despite knowledge of chaetognaths extending back to at least

the eighteenth century (the first description was by Slabber in

1778), taxonomic affinities of the phylum remain enigmatic.

Although fossils are known as far back as the early Cambrian [2],

the generally poor preservation of chaetognaths has frustrated

attempts to reconstruct their evolutionary history. Chaetognaths

appear to have a relatively simple, conserved body plan, with few

complex internal structures. However, variation in morphological

characters—e.g. position of lateral fins, morphology of tail fins,

organization of teeth and grasping hooks—is often a matter of

degree rather than of sharp contrast, making classification difficult

[3]. Indeed, the seemingly simple morphology of arrow worms

belies an underlying mix of features synapomorphic to chaeto-

gnaths and features shared with other phyla, complicating

placement at even the most basic levels of metazoan organization.

Reflective of this complexity, taxonomists have variably placed

chaetognaths as basal members of protostomes or deuterostomes

[4–6] or even outside the coelomate metazoans [7]. Although

molecular phylogenetic analyses tend to support placement within

the protostomes [6,8–10], alternative arrangements are still

advanced.

Although fewer studies have focused on the relationships among

the species and proposed families within the Chaetognatha, they

too reflect a history of revision. After Tokioka’s reorganization of

the early chaetognath classification [11], morphological taxonomy

has advanced a succession of alternative schemes [12]. For

instance, the genus Sagitta, which contains some 60 species, has

also been considered a family [13]; while this relative placement

reflects the Linnaean classification system and is therefore

somewhat arbitrary, it does highlight the current uncertainly in

timing and driving forces of speciation in Chaetognatha.

Morphological identification of arrow worms requires significant

training and expertise, and delineating species (that is, identifying

monophyletic taxa) has often been difficult, even for experienced

taxonomists.

Biogeographical data further complicate our understanding of

species structure in chaetognaths. Although many species exhibit

large ranges, encompassing similar latitudinal bands in all major

oceans [14], chaetognaths can also be accurate indicators of
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regional water masses and depth layers [15]. Species such as Sagitta

setosa often exhibit disjunct distributions [12,16], which raise

questions as to whether the morphological variation seen between

populations has a genetic basis. Finally, species and/or groups of

related species exhibit patterns of distribution that may reflect their

history of evolution and speciation. For instance, the cold-water

species Sagitta maxima exhibits submergence (i.e. a shift into deeper

waters) in subtropical and tropical zones. More intriguing are the

similar distributions of two groups of chaetognaths, each

containing three species (S. marri, S. zetesios, S. planctonis, and S.

gazellae, S. maxima, S. lyra). The first species in each triplet is found

in Antarctic waters, the second shows a bipolar distribution with

submergence towards the equator, and the third is subtropical

[15,17]. It is not known whether this latitudinal series of

distributions reflects the speciation history of the triplets either

northwards or southwards, or whether it is an ecological grouping

only.

The complex morphological and geographical associations of

chaetognaths present a situation in which DNA barcoding [18]

can offer significant insight. Analysis of the patterns of DNA

sequence diversity at the mitochondrial cytochrome oxidase c

subunit I (COI) gene, when combined with known morphological

associations of established species, results in a fuller understanding

not only of the cohesion of well-known taxa, but also the range of

variation contained within them. Barcoding using COI has been

effective in revealing previously unknown patterns of genetic

diversity in terrestrial systems (e.g. [19–21]) and marine systems

(e.g. fish [22], chitons [23], and crustaceans [24]). While nuclear

rRNA genes are frequently used in similar investigations, their

resolution is typically taxonomically deeper than the species level

crucial to species discrimination with COI. Further, the ribosomal

genes copies in chaetognaths appear to be split into two highly

divergent ‘‘classes’’ [3;25] whose paralog vs. pseudogene status

remains unclear. This possibly non-homogeneous duplication of

nuclear ribosomal genes complicates their use in genetic analyses.

This study presents DNA barcodes for 52 specimens of 14 species

of chaetognaths collected from the Atlantic and Southern Oceans.

These collections are part of an ongoing barcoding effort of the

Census of Marine Zooplankton (CMarZ) and the Mid-Atlantic

Ridge Ecology group (MAR-ECO), two field projects of the

Census of Marine Life (CoML).

Materials and Methods

Chaetognaths sequenced in this project were collected on six

cruises (Figure 1). A cruise collected zooplankton from the waters

west of the Antarctic Peninsula on board the R/V N.B. Palmer in

2002 (NBP0202). Four cruises sampled waters in the Atlantic: the

R/V G.O. Sars to the northern Mid-Atlantic Ridge (MAR) in

summer 2004 (SARS_2004110), the R/V R.H. Brown in April

2006 (RHB0603) to the Sargasso Sea (Northwest Atlantic), the R/

V Delaware II in November 2006 (DL0616) to the Mid-Atlantic

Bight (MAB), and the FS Polarstern along the eastern boundary of

the Atlantic (Canary Islands to South Africa) in November 2007

(PS-ANT-XXIV/1). Finally, the FS Polarstern collected zooplank-

ton from the Arctic Ocean north of Europe in summer 2007 (PS-

ARK-XXII/2).

For some specimens, DNA extraction, PCR amplification, and

sequencing took place during the cruise; other specimens were

analyzed at the University of Connecticut. Procedures and

equipment were the same for all specimens. Vouchered material

was preserved in acetone (MAR and Southern Ocean cruises) or

95% ethanol (Northwest Atlantic, MAB, Eastern Atlantic, and

Arctic cruises). The voucher consisted of at least one additional

individual taken from the same net tow, or as necessary, a minimal

amount of excised tissue of an individual specimen was removed

for DNA extraction and the remainder retained as the voucher. All

vouchers are therefore paragenophores (sensu [26]). Photographs

were taken of specimens before dissection when possible. Vouchers

and images are maintained by CMarZ at the University of

Connecticut, USA. Collection information and species identifica-

tions are summarized in Table 1.

For all preserved, identified specimens, DNA analysis proceeded

as follows. Up to 25 mm3 of tissue from single arrow worms was

dissected using sterile techniques and DNA was extracted with the

DNEasy DNA Extraction Kit (Qiagen). PCR amplification of the

COI barcode region employed primers LCO-1490 (59-GGTCAA-

CAAATCATAAAGATATTGG-39) and HCO-2198 (59-TAA-

ACTTCAGGGTGACCAAAAAATCA-39) from [27], in 50 mL

PCRs consisting of 1x GoTaq Flexi buffer (Promega, Madison, WI

USA), 2.5 mM MgCl2, 2 pmol dNTPs, 1.2 pmol of each primer,

approximately 50 ng extracted DNA template, and 1U of Taq

polymerase (Promega). The PCR protocol was as follows: initial

denaturation, 95uC for 5 min.; 35 cycles of (95uC for 30 sec., 50uC
for 45 sec., 72uC for 1 min); final extension, 72uC for 5 min.

Products were purified using the QIAquick PCR Purification Kit

(Qiagen, Valencia, CA USA). Sequencing reactions were per-

formed using BigDye Terminators v3.1, purified via ethanol

precipitation, and run on an ABI 3130 Automated Sequencer.

Forward and reverse sequences for each individual were

assembled in Sequencher (GeneCodes, Inc., Ann Arbor, MI

USA) and manually edited. All sequences were compared to the

GenBank database using BLAST [28], and to a database of all

zooplankton barcodes obtained in the laboratory (Bucklin et al.

unpublished). Edited DNA sequences were exported into BioEdit

and translated to inferred amino acid sequences to verify that they

translated correctly. Once verified, the COI sequences were

aligned as amino acids using the CLUSTAL algorithm [29] in

BioEdit, and returned to DNA format. This alignment was

manually edited for consistency and to remove primer sequences.

The final dataset contained sequences for 52 specimens of 14

species of chaetognaths. For reference, three COI sequences of

Sagitta bedoti from [16] were added from GenBank. Sequences

produced in this project were deposited in the BARCODE section

Figure 1. Map showing locations of cruises and material
collected in this study.
doi:10.1371/journal.pone.0009949.g001

Chaetognath Genetic Diversity

PLoS ONE | www.plosone.org 2 April 2010 | Volume 5 | Issue 4 | e9949



Table 1. Species identity and collection information for barcoded chaetognaths.

Species Voucher no.
Geographic
location Cruise Collection date Station Latitude Longitude

GenBank Acc.
No.

Eukrohnia
bathyantarctica Ch03.1.1 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368374

E. bathyantarctica Ch03.1.2 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368375

E. bathyantarctica Ch03.1.6 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368376

E. bathyantarctica Ch03.1.7 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368377

E. bathyantarctica Ch03.1.8 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368378

E. bathyantarctica Ch03.1.9 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368379

E. bathyantarctica Ch03.1.10 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368380

E. bathyantarctica Ch12.1.1 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368381

E. bathyantarctica Ch12.1.2 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368382

E. bathyantarctica Ch12.1.3 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368383

E. fowleri Ch02.1.1 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368384

E. fowleri Ch02.1.2 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368385

E. fowleri Ch02.1.3 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368386

E. fowleri Ch02.3.1 NE Atlantic PS-ANT-XXIV/1 8-Nov-2007 2 11.68 N 20.42 W GQ368387

E. hamata Ch19.7.1 SE Atlantic PS-ANT-XXIV/1 20-Nov-2007 7 23.24 S 8.24 E GQ368388

E. hamata Ch19.8.1 SE Atlantic PS-ANT-XXIV/1 21-Nov-2007 8 25.60 S 9.74 E GQ368389

E. hamata Ch19.9.3 SE Atlantic PS-ANT-XXIV/1 17-Nov-2007 6 13.42 S 0.65 E GQ368390

E. macroneura Ch19.6.1 NE Atlantic PS-ANT-XXIV/1 11-Nov-2007 3 3.51 N 14.00 W GQ368391

E. macroneura Ch19.6.2 NE Atlantic PS-ANT-XXIV/1 11-Nov-2007 3 3.51 N 14.00 W GQ368392

E. macroneura Ch19.6.3 NE Atlantic PS-ANT-XXIV/1 11-Nov-2007 3 3.51 N 14.00 W GQ368393

Heterokrohnia mirabilis Ch30.1.2 SE Atlantic PS-ANT-XXIV/1 17-Nov-2007 6 13.16 S 0.32 W GQ368394

Heterokrohnia sp. Ch26.1.1 Arctic PS-ARK-XXII/2 8-Aug-2007 260 84.49 N 36.14 E FJ602474

Sagitta bipunctata Ch22.1.1 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368396

S. bipunctata Ch22.1.2 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368397

S. bipunctata Ch22.2.1 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368398

S. enflata Ch15.1.1 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368399

S. enflata Ch15.1.2 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368400

S. enflata Ch15.2.1 MAB DL0616 6-Nov-2006 2 39.14 N 72.97 W GQ368401

S. helenae Ch16.1.1 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368402

S. helenae Ch16.2.1 NW Atlantic RHB0603 25-Apr-2006 5 14.04 N 54.89 W GQ368403

S. helenae Ch16.3.1 NW Atlantic RHB0603 25-Apr-2006 5 14.04 N 54.89 W GQ368404

S. lyra Ch07.1.1 Northern MAR Sars_2004110 1-Jul-2004 36 41.48 N 28.42 W GQ368405

S. lyra Ch07.1.2 Northern MAR Sars_2004110 1-Jul-2004 36 41.48 N 28.42 W GQ368406

S. lyra Ch07.1.5 Northern MAR Sars_2004110 1-Jul-2004 36 41.48 N 28.42 W GQ368407

S. lyra Ch07.1.6 Northern MAR Sars_2004110 1-Jul-2004 36 41.48 N 28.42 W GQ368408

S. lyra Ch07.5.3 NE Atlantic PS-ANT-XXIV/1 5-Nov-2007 1 24.68 N 20.75 W GQ368409

S. lyra Ch07.5.2 NE Atlantic PS-ANT-XXIV/1 5-Nov-2007 1 24.68 N 20.75 W GQ368410

S. lyra Ch07.5.1 NE Atlantic PS-ANT-XXIV/1 5-Nov-2007 1 24.68 N 20.75 W GQ368411

S. marri Ch18.1.1 Southern Ocean NBP0202 9-May-2002 89 68.81 S 76.98 W GQ368412

S. marri Ch18.1.2 Southern Ocean NBP0202 9-May-2002 89 68.81 S 76.98 W GQ368413

S. marri Ch18.1.3 Southern Ocean NBP0202 9-May-2002 89 68.81 S 76.98 W GQ368414

S. planctonis Ch10.1.1 Northern MAR Sars_2004110 28-Jun-2004 30 42.95 N 29.30 W GQ368415

S. planctonis Ch10.1.2 Northern MAR Sars_2004110 28-Jun-2004 30 42.95 N 29.30 W GQ368416

S. planctonis Ch10.1.3 Northern MAR Sars_2004110 28-Jun-2004 30 42.95 N 29.30 W GQ368417

S. sibogae Ch21.1.1 NW Atlantic RHB0603 25-Apr-2006 5 14.04 N 54.89 W GQ368418

S. sibogae Ch21.1.2 NW Atlantic RHB0603 25-Apr-2006 5 14.04 N 54.89 W GQ368419

S. sibogae Ch21.1.3 NW Atlantic RHB0603 25-Apr-2006 5 14.04 N 54.89 W GQ368420

S. sibogae Ch21.2.1 NW Atlantic RHB0603 25-Apr-2006 5 14.00 N 55.00 W GQ368421

S. zetesios Ch11.1.1 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368422
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of GenBank along with georeferenced metadata (Accession

Numbers GQ368374-GQ368425).

To investigate the levels of genetic variation within and

between chaetognath species, pairwise Kimura 2-parameter

distances (K2P; [30]) were computed in MEGA 4 [31], with

gap positions ignored on a pairwise basis. These distances were

hierarchically tabulated within each species, and between species

within each genus. Because the sequence dataset contained only

two genera from the same family (Eukrohnia and Heterokrohnia),

comparisons between genera within the family were not

tabulated.

To investigate the evolutionary history of COI sequences in

chaetognaths, a model of DNA sequence evolution was chosen

using MrModeltest v2 [32] under Akaike’s Information Criterion

(AIC). The general time-reversible model (GST) was selected, with

an estimated proportion of DNA sites invariant (I), and mutation

rates among sites following a gamma distribution (G). This

GTR+I+G model was then used to generate a Bayesian and a

maximum likelihood (ML) gene tree. The Bayesian tree was

obtained with MrBayes 3.1.2 [33], with the search conducted

100,000 iterations at a time, continuing until the average standard

deviation of split frequencies approached its asymptote (roughly

0.01 after 400,000 generations). The collection of trees produced

at this point was pruned heuristically by viewing the output of

likelihood scores in MrBayes, and only trees near the optimum

likelihood score were retained using the appropriate burn-in

criterion. The final sample contained 2000 trees, on which

posterior probabilities (PP) were calculated. To construct the ML

tree, the hill-climbing algorithm of [34] was performed online via

the PHYML web server [35], using the default options, the chosen

GTR+I+G model, and a starting tree made by neighbor joining.

For consistency with MrBayes, in which the form of the molecular

model is specified but parameters are estimated, only the model

form was specified in PHYML. Support for nodes in the tree was

assessed using the approximate likelihood ratio test (aLRT, [36]) as

implemented in PHYML.

Species Voucher no.
Geographic
location Cruise Collection date Station Latitude Longitude

GenBank Acc.
No.

S. zetesios Ch11.1.2 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368423

S. zetesios Ch11.1.3 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368424

S. zetesios Ch11.2.1 Northern MAR Sars_2004110 13-Jun-2004 6 57.15 N 31.10 W GQ368425

doi:10.1371/journal.pone.0009949.t001

Table 1. Cont.

Figure 2. Hierarchical histograms of pairwise Kimura 2-Parameter (K2P) distances between specimens. Vertical lines show mean
pairwise distance at each level. Asterisks mark outlier values discussed in the Results. A, K2P distances within species. B, K2P distances between
species within each genus.
doi:10.1371/journal.pone.0009949.g002
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Figure 3. Gene tree for COI, showing topology and branch lengths from Bayesian analysis. Pairs of numbers in parentheses are support
values, given as (Bayesian posterior probabilities, approximate Likelihood Ratio Test support), with asterisks indicating maximum support of (1.00,
1.00), and blanks indicating topologies not recovered in that analysis. Scale bar denotes distance along branches. Underlined sequences were
obtained from GenBank. Symbols following species names depict sampling location.
doi:10.1371/journal.pone.0009949.g003
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Results

Hierarchical comparison of K2P distances at different taxonomic

levels revealed disjunct distributions in sequence similarity within vs.

between species (Figure 2A,B). The average proportion of difference

in sequences within species was 0.014660.0193 (mean6SD),

whereas mean distance between species within a genus was over

an order of magnitude larger, 0.34560.100. The only overlap

between these distributions results from comparisons of Eukrohnia

hamata and E. bathyantarctica (K2P distances of 0.06–0.08).

The optimal gene trees produced by Bayesian and ML searches

showed nearly identical topology, in which the tip branches within

species were short, and species were separated by much longer

branches (Figure 3). Sequences clustered strongly by species in all

cases. Although the nodes separating Sagitta spp. from all others

(Heterokrohnia and Eukrohnia spp.) were well supported in the

Bayesian analysis (both PP = 1.00), they were not well supported

by ML (71% and ,50%). Most other internal nodes were

moderately supported by both analyses, or strongly supported by

only the Bayesian analysis.

Discussion

Barcode analysis of chaetognaths was extremely successful in

diagnosing established species based on COI gene sequence, in

that sequences clustered by species in all cases. Given the difficulty

in diagnosing species from morphological features, especially in

ethanol-preserved material, the high accuracy of barcode analysis

presents a very useful tool to aid identification of known species.

The comparatively short branch (and small K2P distances)

between E. hamata and E. bathyantarctica may mean these are a

young species pair, or that regional variants of a single species have

been mistaken for separate species.

The average K2P distance within species for chaetognaths,

0.0145, was on the high end of values computed for other taxa:

recent barcoding work has reported intraspecific mean K2P

distances of 0.00460 (decapods, [24]), 0.00740 (gammarid

amphipods, [24]), 0.0100–0.0200 (13,000 species pairs, [37]),

and 0.00390 (fish, [22]). The average distance between the species

within each genus for the present dataset, 0.345, was considerably

larger than for these same taxa (0.170, 0.0.250, 0.110, and 0.099

respectively), and reflects the high diversity of Sagitta. Although not

directly comparable to the K2P distances reported here,

uncorrected p-distances of 6.3062.74% (mean6SD) within Sagitta

setosa, 2.0860.95% within S. bedoti, and maximum-likelihood

corrected distances of 77.763.45% between the two species have

been reported [38]. These comparisons all indicate that most

chaetognath species seem to have diverged long ago, and have

undergone comparatively less divergence since. The disjunct

distributions of K2P distances imply that barcode analysis can also

alert taxonomists to genetically distinct lineages that warrant

further morphological examination.

Although all barcodes for a given species in this dataset tended to

be from the same locality, the genetic variation seen within species

showed little association with geography. Most species (e.g. S.

bipunctata, S. helenae, E. hamata) exhibited at least one barcode

separated from the others by a longer branch, even though all were

from the same location. In S. lyra, there was a weak clustering of two

clades, but there was no separation between the central Atlantic (i.e.

MAR) and the Northeast Atlantic. The presence of significant

genetic diversity without geographic structure could imply repro-

ductive mixing across the portion of the range represented in these

specimens, or insufficient time for lineage sorting in isolated

populations. More thorough barcoding of species throughout their

ranges will be required to address the issue of phylogeography.

Although the COI barcodes did not resolve the branching order

of the ‘‘paired triplet’’ species, preliminary analysis suggests that

nearly complete sequences of the nuclear large ribosomal subunit

(28S) will have the power to address this question (Jennings et al.

unpublished data). Existing partial Class I sequences [39] contain

insufficient variation to obtain robust branching order; however, if

the preliminary patterns from full Class I 28S can be confirmed by

more complete sequencing, they should shed light on this

interesting evolutionary history.

On the whole, the chaetognath barcodes indicate a complex

history of speciation and evolution. The lack of correlation between

location and genetic similarity underscores this complexity, and the

potential for genetic mixing over large distances in chaetognaths. At

least for the species in the present analysis, COI barcode analysis

was a highly successful and accurate tool for species confirmation, in

that all species barcoded to date displayed readily distinguishable

COI sequences, with lower divergence within species. Given the

difficulty in identifying chaetognaths, particularly from suboptimally

preserved material, barcoding of uncertain specimens and compar-

ison to known specimens should greatly assist taxonomists in

morphological identifications. More complete barcoding of species

across their ranges promises to further elucidate the patterns of

genetic diversity of this enigmatic group.
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