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Abstract

Background: Gene clustering of periodic transcriptional profiles provides an opportunity to shed light on a variety of
biological processes, but this technique relies critically upon the robust modeling of longitudinal covariance structure over
time.

Methodology: We propose a statistical method for functional clustering of periodic gene expression by modeling the
covariance matrix of serial measurements through a general autoregressive moving-average process of order (p,q), the so-
called ARMA(p,q). We derive a sophisticated EM algorithm to estimate the proportions of each gene cluster, the Fourier
series parameters that define gene-specific differences in periodic expression trajectories, and the ARMA parameters that
model the covariance structure within a mixture model framework. The orders p and q of the ARMA process that provide the
best fit are identified by model selection criteria.

Conclusions: Through simulated data we show that whenever it is necessary, employment of sophisticated covariance
structures such as ARMA is crucial in order to obtain unbiased estimates of the mean structure parameters and increased
precision of estimation. The methods were implemented on recently published time-course gene expression data in yeast
and the procedure was shown to effectively identify interesting periodic clusters in the dataset. The new approach will
provide a powerful tool for understanding biological functions on a genomic scale.
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Introduction

DNA microarray technologies are widely used to detect and

understand genome-wide gene expression regulation and function.

Microarray experiments typically collect expression data on

thousands of genes and the high dimensionality of the data impose

statistical challenges. The statistical issues become even more

pronounced when transitioning from static microarray data to

temporal microarray experiments where the gene expression levels

are traced over a period of time. Examples of temporal microarray

experiments include studies of the cell cycles in yeast [1] and the

circadian cycles in mice [2]. It is well known that a lot of biological

processes are characterized by periodic rhythms as a result of

nonlinear cellular regulation, such as the aforementioned circadian

rhythms in mice, cell division [3], and complex cell cycles in some

organisms [4,5]. The temporal microarray experiments are useful

in understanding the periodicity and regulation of behavioral and

physiological rhythms in organisms, and through clustering gene

expression profiles based on their periodic patterns, it is possible to

associate genes with physiological functions of interest. Functional

principal component analysis and mixture models have become

popular dimension reduction tools in microarray studies to cluster

genes of similar temporal patterns [6–12]. These methods model

the time-dependent gene expression profiles based on nonpara-

metric approaches. The proposed model models the expression

profiles by a Fourier series which can be considerably more

powerful in the presence of truly periodic signals while remaining

robust to non-periodic signals. This is illustrated in the real data

analysis in the Real Data Application section below.

There has been a long history of using parsimonious

mathematical functions, e.g. the Fourier series, to describe periodic

biological processes [13,14]. Recent application of the Fourier

series approximation lies in the areas of identification of patterns of

biological rhythmicity during the neonatal period [15], pharma-

codynamics [16] and detection of periodic gene expression in

various organisms [1,17–19]. Kim et al. [20] integrated the

Fourier series approximation into a mixture model approach to

functional clustering of gene expression on the basis of their

periodic patterns, which makes it possible to test biologically

meaningful characteristics of expression profiles such as the

differences in gene expression trajectories, curve features, and

the duration of biological rhythms.
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Although the approach proposed by Kim et al. [20] efficiently

enhances the model power by assuming the first-order

autoregressive (AR(1)) covariance structure for the time-

dependent gene expression data, such approximation may not

always be adequate in real practice. The autoregressive moving-

average model, which is usually referred to as ARMA(p,q), has

been commonly used in time series analysis and is viewed as a

higher order and thus more flexible class of covariance

structures than AR(1) [21–23]. It is generated from an

autoregressive (AR) process of order p and a moving average

(MA) process of order q; the AR(1) model is a special case of the

ARMA(p,q) model with p~1 and q~0. In this article, we

extend the approach of Kim et al. [20] by using the more

flexible ARMA(p,q) covariance structure for the gene expression

profiles.

Unlike AR(1), the ARMA covariance matrix generally does not

have closed form solutions for its inverse and determinant, which

imposes challenges in parameter estimation and likelihood

function evaluation. We use a recursive method [24] and a

numerical differentiation approach [25] to evaluate the likelihood

function and estimate the covariance parameters in the

ARMA(p,q) model. However, the computational burden and

complexity increase dramatically compared to the closed form

model of Kim et al. (2008), though on a modern computer these

calculations still remain very reasonable.

The rest of the article is organized as follows. The model and

the inference procedure are described in Section 2. Section 3

includes simulation studies to investigate the improvement in

estimation accuracy and efficiency comparing the ARMA (p,q)

with AR(1). Discussions and further remarks are provided in the

last section.

Methods

Mixture Model
We consider a finite mixture model for clustering the gene

expression profiles of n genes. For a detailed discussion of the

finite mixture models, a suggested reference is [26]. We assume

the genes are measured at equally spaced time points t1, . . . ,tM ,

where tM is the longest possible observation time. The individual

genes may have fewer than M measurements, and for simplicity,

we assume there is no missing data in between two observed

measurements. Let the vector yi~(yi(t1), . . . ,yi(tmi
)) collect the

expression data for gene i over the mi time points, where miƒM.

We assume there are J expression patterns in the n genes, which

indicates that there are J components in the mixture model and

each gene arises from one and only one of the J possible

components. We further assume that yi is a realization of a

mixture of J multivariate normal distributions with the density

function specified as

yi*fi(yi; v,mi,Si)~
XJ

j~1

vj fij(yi; mij ,Si) ð1Þ

where v~(v1, . . . ,vJ ) is a vector of non-negative proportions

for the J patterns that sum to unity and fij(yi; mij ,Si) denotes the

density function for the j-th gene expression pattern, a

multivariate normal with mean vector mij~(mij(t1), . . . ,mij(tmi
))

and the common mi|mi covariance matrix Si. Let

mi~(mi1, . . . ,miJ ) contain the pattern-specific mean vectors for

gene i.

The Fourier series can be used to approximate time-dependent

expression if the genes are periodically regulated (Spellman et al.

1998). It decomposes the periodic expression level into a sum of

the orthogonal sinusoidal terms. The general form of the Fourier

signal is

F (t)~a0z
X?
k~1

ak cos
2pkt

t

� �
zbk sin

2pkt

t

� �� �
: ð2Þ

The coefficients ak and bk determine the times at which the

expression level achieves maximums and minimums, a0 is the

average expression level of the gene, and t specifies the periodicity

of the regulation. The gene expression value over time can be

approximated by partial sum of the Fourier series decomposition

where the sum in (2) only contains K terms. We denote this

Fourier series approximation by FK (t); specifically,

FK (t)~a0z
XK

k~1

ak cos
2pkt

t

� �
zbk sin

2pkt

t

� �� �
:

For pattern j, the mean expression value of gene i at time t‘,
‘~1, . . . ,mi, is mij(t‘)~FK (t‘;Hmj

), where Hmj
~fa0j ,a1j , . . . ,

aKj ,b1j , . . . ,bKj ,tjg denotes the vector of Fourier parameters of

the first K orders. To put the mean structure into the normality

framework specified in (1), we assume that for gene i, if it belongs

to pattern j, the observed data are FK (t‘;Hmj
)zeij(‘) for

‘~1, . . . ,mi, where the random errors are components of a

multivariate normal distribution; i.e.,

eij~(eij(1), . . . ,eij(mi))*N(0,Si):

A common and convenient method to model the covariance

structure of Si is to use the first-order autoregressive model

(AR(1)). Although the AR(1) covariance matrix has computational

advantages through having closed form expressions of its inverse

and determinant, it lacks flexibility being parameterized by only

two parameters (typically denoted by s2 and r). In order to

accommodate more robust covariance structures, we adopt a

flexible approach using the autoregressive moving-average pro-

cess, ARMA(p,q) [23]. The zero-mean random error eij is

generated according to the following process

eij(t)~gtz
Xp

k~1

Qkeij(t{k)z
Xq

k~1

hkgt{k

where Q1, . . . ,Qp and h1, . . . ,hq are unknown parameters, and

fgtg is a sequence of independent and identically distributed (iid)

normal random variables with zero mean and variance s2. Certain

restrictions are imposed on the parameters of the ARMA model to

insure estimability; further details can be found in [24] and [27].

The ARMA(p,q) model parameters are listed in Hv~fQ1, . . . ,

Qp,h1, . . . ,hq,s2g.
The total number of parameters to be estimated with J clusters,

an ARMA(p,q) covariance structure, and a Fourier series of degree

K comes to pzqz1z2J(Kz1).

Likelihood and Algorithm
Denote the entire set of unknown parameters as

H~(v1, . . . ,vj ,Hm1
, . . . ,HmJ

,Hv) denote the set of unknown

parameters in the mixture model. In the absence of knowledge

Functional Clustering
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on the membership of the expression pattern for the genes, the

likelihood function based on the mixture model (1) is

L(HDy)~P
n

i~1

XJ

j~1

vj fij(yi; mij ,Si)

" #
:

The log-likelihood function is non-linear in H which imposes

difficulty in estimating the unknown parameters. Here we use

the EM algorithm to obtain the maximum likelihood estimate

of H. Let zij be a latent variable, defined as 1 if gene i arises

from the j-th pattern, and write zi~(zi1
, . . . ,ziJ

). Then

z1, . . . ,zn are i:i:d: multinomial random variables with prob-

abilities (v1, . . . ,vJ ). The complete data log-likelihood is

Table 1. Simulated averages and standard errors of parameter estimates using the ARMA(2,2) model when the true covariance
structure is ARMA(2,2) (No. simulations = 200).

Pattern

1 2 3

Proportion

v=v̂v 0.300/0.301(0.022) 0.500/0.497(0.027) 0.200/0.202(0.022)

Mean vector

a0=âa0 2.000/1.999(0.234) 2.050/2.032(0.183) 2.100/2.121(0.312)

a1=âa1 0.500/0.495(0.074) 20.400/20.393(0.060) 0.600/0.606(0.115)

b1=b̂b1
20.800/20.803(0.062) 0.700/0.697(0.063) 20.700/20.713(0.105)

a2=âa2 20.500/20.497(0.035) 20.600/20.601(0.031) 20.500/20.501(0.054)

b2=b̂b2
1.000/1.004(0.025) 1.100/1.099(0.026) 1.000/1.000(0.040)

T=T̂T 120.000/120.020(0.190) 135.000/134.992(0.197) 140.000/140.037(0.426)

Covariance

Q1=Q̂Q1 1.300/1.300(0.016)

Q2=Q̂Q2 20.400/20.401(0.015)

h1=ĥh1
0.700/0.700(0.017)

h2=ĥh2
0.120/0.118(0.011)

s2=ŝs2 0.700/0.698(0.010)

doi:10.1371/journal.pone.0009894.t001

Table 2. Simulated averages and standard errors of parameter estimates using the ARMA(2,1) model when the true covariance
structure is ARMA(2,2) (No. simulations = 200).

Pattern

1 2 3

Proportion

v=v̂v 0.300/0.301(0.022) 0.500/0.496(0.028) 0.200/0.202(0.022)

Mean vector

a0=âa0 2.000/1.995(0.234) 2.050/2.031(0.175) 2.100/2.112(0.317)

a1=âa1 0.500/0.496(0.072) 20.400/20.394(0.060) 0.600/0.600(0.109)

b1=b̂b1
20.800/20.804(0.060) 0.700/0.696(0.064) 20.700/20.711(0.107)

a2=âa2 20.500/20.497(0.035) 20.600/20.600(0.031) 20.500/20.501(0.053)

b2=b̂b2
1.000/1.004(0.025) 1.100/1.099(0.026) 1.000/1.002(0.040)

t=t̂t 120.000/120.020(0.195) 135.000/134.987(0.194) 140.000/140.037(0.415)

Covariance

Q1=Q̂Q1 1.300/1.397(0.007)

Q2=Q̂Q2 20.400/20.488(0.005)

h1=ĥh1
0.700/0.585(0.009)

h2=ĥh2
0.120/-

s2=ŝs2 0.700/0.701(0.010)

doi:10.1371/journal.pone.0009894.t002
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thus

log Lc(HDy)~
Xn

i~1

XJ

j~1

zij log vj fij yi; mij ,Si

� �h i
: ð3Þ

In the E-step of the algorithm, the posterior expectation of zij , i.e.,

the posterior probability that gene i arises from the j-th pattern, is

evaluated given the current estimate of H and the data. In the M-

step, H is updated from the expectation of complete data log-

likelihood in which zij is replaced by its posterior expectation from

the E-step. The algorithm proceeds by iterating between the two

steps until convergence. The details of the EM algorithm are given

in the Supporting Information (Text S1).

Table 3. Simulated averages and standard errors of parameter estimates using the ARMA(1,1) model when the true covariance
structure is ARMA(2,2) (No. simulations = 200).

Pattern

1 2 3

Proportion

v=v̂v 0.300/0.301(0.022) 0.500/0.491(0.029) 0.200/0.207(0.025)

Mean vector

a0=âa0 2.000/1.997(0.244) 2.050/2.059(0.185) 2.100/2.023(0.311)

a1=âa1 0.500/0.494(0.073) 20.400/20.430(0.067) 0.600/0.664(0.122)

b1=b̂b1
20.800/20.803(0.062) 0.700/0.734(0.069) 20.700/20.769(0.104)

a2=âa2 20.500/20.498(0.036) 20.600/20.595(0.032) 20.500/20.491(0.053)

b2=b̂b2
1.000/1.004(0.025) 1.100/1.098(0.027) 1.000/0.997(0.040)

T=T̂T 120.000/120.018(0.196) 135.000/135.067(0.196) 140.000/139.808(0.482)

Covariance

Q1=Q̂Q1 1.300/0.927(0.002)

Q2=Q̂Q2 20.400/-

h1=ĥh1
0.700/0.803(0.006)

h2=ĥh2
0.120/-

s2=ŝs2 0.700/0.839(0.014)

doi:10.1371/journal.pone.0009894.t003

Table 4. Simulated averages and standard errors of parameter estimates using the ARMA(1,0) model when the true covariance
structure is ARMA(2,2) (No. simulations = 200).

Pattern

1 2 3

Proportion

v=v̂v 0.300/0.301(0.022) 0.500/0.443(0.092) 0.200/0.256(0.091)

Mean vector

a0=âa0 2.000/2.014(0.247) 2.050/2.112(0.191) 2.100/1.925(0.283)

a1=âa1 0.500/0.484(0.097) 20.400/20.333(0.414) 0.600/0.547(0.406)

b1=b̂b1
20.800/20.796(0.112) 0.700/0.591(0.521) 20.700/20.564(0.514)

a2=âa2 20.500/20.494(0.073) 20.600/20.572(0.056) 20.500/20.494(0.069)

b2=b̂b2
1.000/0.991(0.088) 1.100/1.088(0.052) 1.000/1.006(0.055)

T=T̂T 120.000/119.838(5.409) 135.000/135.718(1.487) 140.000/138.907(1.552)

Covariance

Q1=Q̂Q1 1.300/0.952(0.002)

Q2=Q̂Q2 20.400/-

h1=ĥh1
0.700/-

h2=ĥh2
0.120/-

s2=ŝs2 0.700/1.732(0.057)

doi:10.1371/journal.pone.0009894.t004
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Model Selection
Our mixture model assumes that the number of components in

the mixture model (J ) and the order of p and q in the ARMA

covariance structure in Si are known before estimation of the

parameters. In practice, however, the model that provides the best

fit to the data in terms of J, p, and q can be identified using the

Akaike information criterion (AIC) [28] and the Bayesian

information criterion (BIC) [29], which are defined as follows:

AIC(J,p,q)~{2 log Lc(ĤH(J,p,q)Dy)z2N(J,p,q)

BIC(J,p,q)~{2 log Lc(ĤH(J,p,q)Dy)zlog(n)N(J,p,q)

where ĤH(J,p,q) is the maximum likelihood estimate of H and it is

indexed by J and (p,q), and N(J,p,q) is the number of parameters

in the mixture model determined by J and (p,q). The selected

model has the smallest AIC and BIC.

Under the framework of maximum likelihood estimation, it is

possible that the likelihood increases when more parameters are

added into the model, which could lead to overfitting. Both AIC

Table 5. Simulated averages and standard errors of parameter estimates using the ARMA(2,2) model when the true covariance
structure is ARMA(1,0) (No. simulations = 200).

Pattern

1 2 3

Proportion

v=v̂v 0.300/0.294(0.060) 0.500/0.490(0.098) 0.200/0.216(0.111)

Mean vector

a0=âa0 0.500/0.515(0.123) 0.400/0.390(0.088) 0.600/0.600(0.304)

a1=âa1 20.500/0.503(0.082) 0.300/0.311(0.056) 0.200/0.189(0.168)

b1=b̂b1
0.400/0.395(0.094) 20.200/20.202(0.064) 0.200/0.201(0.230)

a2=âa2 0.100/0.095(0.035) 0.150/0.148(0.032) 0.050/0.063(0.117)

b2=b̂b2
0.050/0.052(0.040) 0.070/0.071(0.045) 0.100/0.086(0.113)

t=t̂t 120.000/119.953(1.619) 135.000/134.901(1.658) 150.000/151.137(12.234)

Covariance

Q1=Q̂Q1 0.800/0.797(0.008)

Q2=Q̂Q2 0/20.001 (0.001)

h1=ĥh1
0/0.003 (0.013)

h2=ĥh2
0/20.001 (0.002)

s2=ŝs2 1.000/0.996(0.016)

doi:10.1371/journal.pone.0009894.t005

Figure 1. In the first simulation study, AIC and BIC values calculated using a simulated dataset whose true covariance structure is
ARMA (1,1) to identify the optimal covariance structure to be used.
doi:10.1371/journal.pone.0009894.g001
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and BIC resolve this problem by including a penalty term for the

number of parameters, but BIC imposes a stronger penalty than

AIC, and as a result, it tends to select models with smaller number

of parameters than those chosen by AIC method.

The dimension of our model parameters can be viewed as

growing in two directions, one determined by J and the other by

(p,q). A one unit increase in J gives arise to addition of 2Kz2
parameters, which is always larger than a one unit increase in pzq,

we propose a three-step procedure to select the best model. First, we

fit an ARMA covariance structure with relatively low orders (p,q) to

Si, i.e., ARMA(1,0) or ARMA(1,1), and calculate AIC or BIC

values by varying J starting from 1. The model with the smallest

AIC or BIC is identified. We denote the corresponding J as Js. We

then fit the mixture model with Js components, but this time vary

(p,q) to find the best combination (ps,qs). In the third step, we go

back to step 1 and refit the model with ARMA(ps,qs) and select J
again. The resulting model with the smallest AIC or BIC is our final

choice. Alternative to the three-step procedure, if the amount of

computation is not a limiting factor, one could simply calculate the

AIC or BIC values for all models under consideration and select the

model that minimizes the criterion of choice.

Hypothesis Tests
The existence of at least two different transcriptional expression

profile patterns over the n genes under study can be tested by

Figure 2. Simulations were performed using time-course expression data with 40 time points and 100 genes per cluster simulated
from eight mean curves graphed here.
doi:10.1371/journal.pone.0009894.g002
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formulating the following hypothesis:

H0 : Hmj
:Hm, j~1, . . . ,J

H1 : At least one of the equalities above does not hold
ð4Þ

where Hm is the vector of the Fourier series parameters when gene

expression pattern-specific differences do not exist for the given

data. The likelihood ratio test statistic can be calculated under the

null and alternative hypotheses; that is,

Lr~{2 log L ĤHH0
Dy

� �
{log L ĤHDy

� �h i

where ĤHH0
and ĤH stand for the MLEs of the parameters under the

null hypothesis and the alternative, respectively.

Since there is no closed-from distribution for Lr, the critical

value for claiming the existence of at least two different expression

patterns is determined by a parametric bootstrap method. We

simulate n gene expression profiles at the observed time points

under the multivariate normal model indicated by the null

hypothesis. The true values of the parameters in the simulation are

taken to be the MLE’s under the null hypothesis, i.e., ĤHH0
. For

each simulated dataset, the likelihood ratio test statistic Lr is

calculated by fitting the models under the null and the alternative

hypotheses. This procedure is repeated for a large number of

times, say 1000, and the 95th percentile of the empirical

distribution of Lr is then regarded as the critical value of the test

(4).

Results

Simulation Results
The performance of the proposed mixture model in terms of the

precision and efficiency of the parameter estimates and the model

selection for the number of components have been extensively

studied in [20], where the AR(1) covariance structure was

considered for Si. Kim et al. show that the mixture model and

the EM algorithm can provide reasonably precise estimates of all

parameters and AIC and BIC are able to select the right number

of components J in the model. The model was also compared with

the random-effect mixture model proposed by [11] and biased

parameter estimates were observed for Ng et al.’s method when

the gene-expression profiles follow Fourier series approximations.

In this article, we focus on the influence of the assumed

covariance structure on the estimation of the proportion

parameter v and the mean structure parameters Hmj
,

j~1, . . . ,J . We generated 400 genes from three distinct expression

patterns, and the expression of each gene was measured at 25

equally spaced time points. The mean of expression values was

Figure 3. Estimated mean curves estimated from the simulated data with parameters K~2 (top) and K~3 (bottom).
doi:10.1371/journal.pone.0009894.g003

Functional Clustering
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simulated from a second-order Fourier series. In the first set of

simulations, the true covariance structure for the time-dependent

expression was ARMA(2,2), but the data were analyzed using

ARMA(2,2), ARMA(2,1), ARMA(1,1) and ARMA(1,0), as shown

in Tables 1, 2, 3, and 4, respectively. When the assumed

covariance structure is the correct one (Table 1), the approach

produces relatively accurate estimates for all parameters, but less

sufficiently sophisticated covariance structures could lead to large

bias and loss of efficiency in estimation of v and Hmj
, j~1, . . . ,J

(Tables 2, 3 and 4). We further simulated gene expression profiles

under the covariance structure ARMA(1,0), and obtained sound

parameter estimates when the data were analyzed using

ARMA(2,2) (Table 5). And finally, using a simulated dataset with

the true covariance ARMA(1,1), we show that the order p and q in

the ARMA covariance structure can be correctly determined by

AIC and BIC values (Figure 1).

Further simulations were performed to investigate the effects of

K on the estimation. Indeed there is a balance between choosing a

sufficiently large K so as to accurately the model periodic mean

curve without selecting too large of a K where the model would be

overfit. Indeed, as described above, the AIC and BIC can assist in

selecting the order K , but together with selecting p, q, and J,

computations can be somewhat burdensome. In practice, K~2 or

3 should nicely model fairly intricate periodic expressions. To

further test the effectiveness of the methods, we performed a

second set of simulations and compared the results of using K~2
with K~3 and measured their performance with the adjusted

Rand index.

Eight time-course expression profiles were simulated with the

mean expression profiles graphed in Figure 2. In total, 800 genes

consisting of 100 genes per cluster were simulated with 40 equally

spaced time points. Stationary noise generated from an AR(2)

model and standard deviation approximately equal to .3 was

added to the simulated data. Function clustering with AR(2)

covariance structure was performed, and the resulting estimated

mean curves were graphed in Figure 3 with K~2 (top graph) and

K~3 (bottom graph). From the mean curves, we see that seven of

Table 6. Effects of classification threshold on cluster sizes for
the three cluster estimation on simulated noise.

threshold #1 #2 #3

.95 0 0 0

.90 0 0 125

.80 0 0 1804

.70 0 0 2774

.60 0 0 2952

.50 0 0 2952

� � � � � � � � � � � �
.20 130 21 2955

.10 1168 1065 2955

doi:10.1371/journal.pone.0009894.t006

Figure 4. Functional clustering was applied to stationary noise following an AR(2) covariance structure. AIC and BIC selected three
mean curves and the illustrated mean profiles are small compared with the variation of the data as drawn in the background.
doi:10.1371/journal.pone.0009894.g004
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the eight clusters were correctly identified, and with K~3, all

eight mean curves were correctly identified. The simulation

performance is further quantified by the adjusted Rand Index as

implemented in mclust R package [30]. For estimation with K~2,

the adjusted Rand index is .825 (the larger the better), and it is

.964 for estimation with K~3.

Another set of simulations were performed to identify the types

of clusters that would be estimated on data generated without any

signals, that is, data generated from pure noise. Stationary noise

following an AR(2) process was simulated and the model was used

to identify periodic clusters. Here, the AIC and BIC selected three

clusters, but the mean functions for the three clusters are all nearly

zero compared to the standard deviation of the noise (approx-

imately .3). This is illustrated in Figure 4 where all gene expression

profiles are drawn in the background and mean curves, assuming

three clusters, are graphed in black. The small amplitudes of the

mean curves suggest the three clusters are in fact simply clustering

the noise. The weak clustering is further illustrated in Table 6, by

varying thresholds between 10% and 99% to investigate its effect

on the resulting cluster sizes. Two clusters had very weak

clustering and the third cluster essentially clustered the entire

dataset.

Figure 5. In real data application, AIC and BIC values for different ARMA structures are calculated over varying number of cluster
sizes (J). The ARMA model with smallest AIC/BIC turned out to be the AR(2) model.
doi:10.1371/journal.pone.0009894.g005
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Real Data Application
This methodology is applied to time time course gene

expression data published in [31]. For their research, a total of 8

time-course experiments were performed with expression data

collected at 18 to 22 times on 15-minute intervals. We analyzed

data from one time-course experiment where the original and

processed data is accessible from ArrayExpress with accession

number E-MEXP-54. Approximately 3000 genes over 21 time

measurements were considered for application of our methods.

To keep the model relatively parsimonious, a single covariance

structure was used to model the collection of genes, i.e. Si:S, and

with the following models: ARMA(1,0), ARMA(2,0), and

ARMA(1,1). Additionally, allowing for a robust periodic fit but

with keeping number of parameters reduced, Fourier series of

order two was fit to all of the clusters. The initial values of the

parameters in the EM algorithm were randomly selected from

reasonable ranges as suggested by the expression profiles. A so-

called absorption cluster was also included to soak up the less

informative genes with no signal in their time-course profiles; this

cluster was initiated in the EM algorithm with zero amplitude.

The AIC and BIC values for varying number of clusters across the

three covariance structures are graphed in Figure 5. The

minimum AIC and BIC values under each covariance structure

with corresponding number of clusters are reported in Table 7.

The overall smallest AIC and BIC was obtained with the

ARMA(2,0), or just simply AR(2), covariance structure identifying

9 distinct clusters that includes the absorption cluster. The

estimated ARMA parameters are Q̂Q1~:5154, Q̂Q2~:0805, and

ŝs2~:0224.

Genes are classified to the cluster if they have an estimated

probability of 90% or greater of belonging to the cluster. The

mean functions for the identified nine distinct clusters are depicted

in Figure 6 together with expression profiles of the genes that are

classified to the cluster. In this figure, we see the clustering

approach is very effective at identifying tightly coupled clusters,

even when genes within the cluster don’t elegantly follow a

periodic structure as seen in clusters 3 and 8. The threshold of

90% is somewhat arbitrarily chosen, and we consider varying

thresholds between 10% and 99% to investigate its effect on the

resulting cluster sizes. The results are tabulated in Table 8.

Clusters 3, 4, 5, 6, 8 remain fairly stable in that they only consist of

strongly classified genes, whereas the other clusters have a mix of

strongly classified genes and weakly classified genes. Under the

90% threshold, the absorption cluster (the cluster with small

variation in expression) soaked up approximately 72% of the genes

(2142 genes), and 17% of the genes (501 genes) did not have a

dominating cluster defined by the 90% or greater estimated

probability threshold. Many genes and their periodic expressions

were shown to be effectively clustered by this model.

The analysis of the real data set did suggest some interesting

clusters, and we performed a gene ontology (GO) analysis on the

tight clusters (clusters 3, 4, 5, 6, and 8) along with clusters 1 and 2.

Basic GO organization consisting of three major categories –

‘‘biological process’’, ‘‘cellular component’’, and ‘‘molecular

function’’ – is considered in addition to a more specific GO

classification. Figure 7 depicts the seven clusters, together with all

clusters combined, as pie charts broken down by basic GO

organization. To identify significant and highly present GO

categories, the most prevalent GO within each cluster was

measured for overrepresentation by a standard hypergeometric

test. Just below each pie chart title, the most prevalent GO

category is listed along with the number of times it appears in the

network (labeled as count) and the estimated p-value that is yielded

from the hypergeometric test.

The most striking result is seen in cluster 4 where each of the ten

genes in the network is categorized with GO:0003677, which

represents ‘‘DNA binding’’ under the molecular function ontology.

Other significant GO categories in cluster 4 include GO:0005634

(count = 9, p = .0021, ‘‘nucleus’’, cellular component) and

GO:0006334 (count = 8, p = 3.49e-08, ‘‘nucleosome assembly’’,

biological process). The other interesting result is GO:0016021 in

cluster 3 (count = 5, p = .0142, ‘‘integral to membrane’’, cellular

component). The names of the genes in clusters 3 and 4 along with

their original aliases are provided in Table 9. No significant GO

categories were detected in the other clusters. This may be due to a

limited number of genes observed in these clusters.

The simulations and real data analyses were performed on a

quad-core i7 920 PC overclocked to 4GHz running the Ubuntu

Karmic Koala operating system. The timing of the computations

varied from several minutes to several hours. AIC and BIC

calculation were the most time consuming and multiple models

were estimated to determine the best fitting model. The software

used to perform these analyses and create the graphs has been

made publicly available with further details provided in the

following section.

R Software Package
A new R package, geneARMA [32] that is available on the

Comprehensive R Archive Network (CRAN) and licensed under

the general public license GPLv3, implements the methods in this

paper. This software package provides tools for simulation,

estimation, and graphing of the proposed methods in this paper.

The estimation and graphics prepared in the real data application

of this manuscript were prepared with the geneARMA package.

Discussion

The proposed mixture model for functional clustering of gene

expression profiles provides a flexible framework for estimating the

number of mixing components, the periodic means of each

component, and the variance-covariance structures. Our approach

is useful in comparing the mean expression profiles across different

periodic patterns, making it possible to further address the

fundamental issues about the interplay between gene expression

and biological rhythms. Compared to the existing statistical

approaches for temporal gene expression data, our approach has

the advantage of fitting a flexible covariance structure into a

routine that incorporates mathematical equations for periodic

gene expression profiles thereby making the estimation of the

mean expression curve more robust to complex covariance

phenomena arising in real practice.

We use the Fourier series to model periodicity of the gene

expression profiles such as observed in circadian rhythms and cell

Table 7. Minimum AIC and BIC values, as well as the
corresponding optimal number of clusters, over varying
number of clusters for the ARMA(1,0), ARMA(1,1), and
ARMA(2,0) covariance structures.

Covariance Structure AIC BIC # of clusters

ARMA(1,0) 272200.16 271798.74 11

ARMA(1,1) 272379.89 271972.49 11

ARMA(2,0) 274119.34 273783.83 9

doi:10.1371/journal.pone.0009894.t007
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Figure 6. Mean curves for each of the 9 clusters identified are individually graphed together with time-course gene expression
profiles of genes classified to the cluster. A gene is classified to the cluster if it has greater than a 90% probability of belonging to the cluster.
doi:10.1371/journal.pone.0009894.g006
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cycles. The coefficients in the Fourier series provide biologically

meaningful interpretations and enables testing of several curve

features across different clusters. The gene expression | time

interaction over a period of time can be tested by evaluating the

equality of the slopes
d

dt
mj(t) of mean expression profiles among

the gene groups.

There is always a balance to be made in the complexity of a

model given the amount of data under consideration. Short time

course expression profiles typically do not have sufficient data

display a periodic signal, and one would typically not use a mixture

of sinusoidal signals to estimate the mean curves. Alternative

approaches for short time series have been proposed such as [9].

The simulation studies discussed in the Section 3 suggest that

the proposed procedure is able to produce sound parameter

estimates and increased power compared to the AR(1) model

when the true intercorrelation structure of the time-dependent

expression data is of a higher order. However, the ARMA

covariance structure requires that the gene expression is evaluated

at equally spaced times points, which makes it inapplicable when

the data are collected irregularly or at gene specific time intervals.

Moreover, accurate estimation and classification of gene expres-

sion profiles are in need of reasonable approximation of the

assumed covariance model to the truth. The simulations also

indicate that any parametric methods could be non-robust and

produce misleading results when deviation from the true

covariance exists. Under these considerations, semi-parametric

approaches arise as a promising alternative to the ARMA

assumption in the current model [33]. In addition, dimension

reduction methods could be integrated into our mixture model to

increase the tractability of high dimensional data as the genes are

measured over a long time course [34] [35].

Since we usually would not expect periodic expression to exactly

follow an ARMA process, the real data analysis was useful to see

the effectiveness of the methods in practice. Both the AIC and BIC

Table 8. The effects of classification threshold on cluster sizes.

threshold #1 #2 #3 #4 #5 #6 #7 #8 #9

.99 11 12 9 10 18 6 86 2 1678

.95 14 20 9 10 19 6 173 2 2010

.90 19 27 10 10 21 6 217 2 2142

.80 25 36 10 10 21 6 275 2 2258

.70 28 41 10 10 22 6 303 2 2333

.60 30 46 10 10 22 6 357 2 2384

.50 31 47 10 10 22 6 395 2 2416

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
.10 40 97 10 10 22 6 668 2 2600

doi:10.1371/journal.pone.0009894.t008

Figure 7. GO analysis of seven clusters identified in the real data analysis. Pie charts depict the distribution of biological process (3bp2),
cellular component (3cc2), and molecular function (3mf2) in each of the clusters. The most prevalent GO category is indicated below the title with
number of times it is present and a p-value computed from a hypergeometric test. The GO listed categories include (GO:0005634, ‘‘nucleus’’;
GO:0016021, ‘‘integral to membrane’’; GO:0003677, ‘‘DNA binding’’; GO:0005829, ‘‘cytosol’’).
doi:10.1371/journal.pone.0009894.g007
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selected the AR(2) covariance structure suggesting the flexibility in

the ARMA parameters provides a improved fit over the more

simplistic AR(1) covariance structure. The graphical views of the

model fit impressively demonstrate the utility of the proposed

method to real datasets.

Supporting Information
Details of the EM Algorithm are provided as supporting

information (Text S1).

Supporting Information

Text S1 Supporting information EM algorithm.

Found at: doi:10.1371/journal.pone.0009894.s001 (0.15 MB

PDF)
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31. Rustici G, Mata J, Kivinen K, Lió P, Penkett C, et al. (2004) Periodic gene
expression program of the fission yeast cell cycle. Nature genetics 36: 809–817.

32. McMurry T, Berg A (2009) geneARMA: Simulate, model, and display data from
a time-course microarray experiment with periodic gene expression. URL

http://CRAN.R-project.org/package = geneARMA. R package version 1.0.
33. Fan J, Huang T, Li R (2007) Analysis of longitudinal data with semiparametric

estimation of covariance function. Journal of the American Statistical

Association 102: 632.
34. Fan J, Lv J (2008) Sure independence screening for ultra-high dimensional

feature space. Journal of the Royal Statistical Society, Series B.
35. Fan J, Fan Y, Lv J (2008) High dimensional covariance matrix estimation using a

factor model. Journal of Econometrics 147: 186–197.

Table 9. The names of the genes and their original aliases in
clusters 3 and 4.

Cluster 3 Cluster 4

Gene name Sanger alias Gene name Sanger alias

hhf1 R:A-SNGR-8:5476 hsp16 R:A-SNGR-8:2957

hhf3 R:A-SNGR-8:5202 SPAPB24D3.07C R:A-SNGR-8:4962

hht1 R:A-SNGR-8:5318 SPBC1347.13C R:A-SNGR-8:4371

hht2 R:A-SNGR-8:5698 SPBC1348.13 R:A-SNGR-8:2466

hht3 R:A-SNGR-8:5012 SPCC285.05 R:A-SNGR-8:400

hta1 R:A-SNGR-8:916 P07657 (SPMIT.01) R:A-SNGR-8:4115

hta2 R:A-SNGR-8:4308 P05511 (SPMIT.06) R:A-SNGR-8:4627

htb1 R:A-SNGR-8:1510 P21535 (SPMIT.07) R:A-SNGR-8:5907

sap1 R:A-SNGR-8:5023 P21536 (SPMIT.09) R:A-SNGR-8:3091

SPAC19B12.06c R:A-SNGR-8:786 P21537 (SPMIT.10) R:A-SNGR-8:2067
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