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Abstract

Early mathematical representations of infectious disease dynamics assumed a single, large, homogeneously mixing
population. Over the past decade there has been growing interest in models consisting of multiple smaller subpopulations
(households, workplaces, schools, communities), with the natural assumption of strong homogeneous mixing within each
subpopulation, and weaker transmission between subpopulations. Here we consider a model of SIRS (susceptible-
infectious-recovered-susceptible) infection dynamics in a very large (assumed infinite) population of households, with the
simplifying assumption that each household is of the same size (although all methods may be extended to a population
with a heterogeneous distribution of household sizes). For this households model we present efficient methods for studying
several quantities of epidemiological interest: (i) the threshold for invasion; (ii) the early growth rate; (iii) the household
offspring distribution; (iv) the endemic prevalence of infection; and (v) the transient dynamics of the process. We utilize
these methods to explore a wide region of parameter space appropriate for human infectious diseases. We then extend
these results to consider the effects of more realistic gamma-distributed infectious periods. We discuss how all these results
differ from standard homogeneous-mixing models and assess the implications for the invasion, transmission and
persistence of infection. The computational efficiency of the methodology presented here will hopefully aid in the
parameterisation of structured models and in the evaluation of appropriate responses for future disease outbreaks.
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Introduction

The earliest models proposed for infectious disease dynamics

assumed that the population afflicted by the pathogen was large

and homogeneously mixed such that deterministic equations with

simple frequency-dependent transmission were appropriate [1–3].

These models were subsequently extended in three major

directions: taking into account the discrete nature of populations

and the stochastic nature of transmission and recovery [4–6];

taking into account heterogeneity between individuals in terms of

differential mixing [7]; and accounting for spatial structure and the

often localized transmission of infection (a variety of approaches

are summarised in [3, Chapter 7]). This latter extension has taken

several different forms but can be predominately dichotomized

into those based upon explicit contact networks that determine the

possible opportunities for transmission between individuals [8–17]

and those models that stratify the population into sub-populations

(for example households), with, typically, homogeneous mixing

within the subpopulations and weaker mixing between them [18–

25] (although there exist exceptions, including those that bridge

this divide; see for example [26–28]). The former network models

are most appropriate for situations where there exists explicit

knowledge of contact structure heterogeneity such as for sexually

transmitted diseases [13], the air transport network for SARS [29]

and for livestock movements in Britain [30,31]. The latter

structured or metapopulation models reflect the relatively strong

opportunity for transmission between individuals within a

household compared to transmission to other individuals in the

population. These households models can therefore be conceptu-

alised as a combination of a network model (for the strong within

household transmission) and a homogeneous mixing model (for

the weaker transmission to the general population).

Household structured models offer an attractive trade-off

between fine-scale detail and computational feasibility, and for

this reason they increasingly form the basis of studies in disease

management. For example, it has been known for some time that

household structure influences the critical threshold for invasion

and vaccination [20,32], and more recently ideas from formal

modelling have been used to answer increasingly applied questions:

these range from parameter estimation [33] to evaluation of an

appropriate response to an influenza pandemic [34,35].

Here we consider a pathogen for which individuals develop

transient immunity following infection, with the immunity waning

resulting in the individual eventually returning to full-susceptibility to

the disease: the SIRS (susceptible-infected-recovered-susceptible)

model. We model the spread of such a pathogen amongst

individuals occupying a very large (assumed infinite) set of

households. The infection dynamics within each household is

captured by a Markov chain representation, accounting for the

stochastic effects due to the small number of individuals within each

household. We assume that transmission between households results

from (effective) contacts between individuals in the population

occurring at a fixed rate. Models of this form have been studied

widely recently [21–24,36,37], although the particular characteristic
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of waning immunity has received relatively less attention [24,38].

We then extend this model to additionally incorporate more realistic

distributions for the infectious period; this is achieved by using the

classical approach of breaking the infectious class into a number of

new classes while preserving the total average time in these new

classes (see, for example, [39] and [40]).

In this paper we investigate a range of epidemiologically

important quantities over a large region of parameter space; as

such we present and utilise efficient methods for evaluating these

quantities. Some of the methods we adopt have been described

elsewhere, and alternative methods exist for evaluating several of

the quantities. In particular the classic work on households models

such as [21] often includes more general features than we consider

here; however as a consequence of this generality, many of the

results are not as readily amenable to rapid numerical evaluation.

Here we present results and numerical methods appropriate for

studying our model, and closely related ones, in a unified and

accessible form, hence allowing their direct application to

epidemiological problems. For this very reason we provide

MATLAB code to evaluate the quantities considered (see

Supporting Information File S2); MATLAB provides an ideal

language and framework for the manipulation of the transition

matrices that are associated with the Markov chain approach

adopted here.

Five epidemiologically important quantities are evaluated: (i) the

threshold for invasion, R?, which is the household basic

reproduction number [21], which measures the average number

of secondary households infected from a single infected household

in a totally susceptible population and therefore determines if a

pathogen may successfully invade (R?w1); (ii) the early growth

rate, r, (also called the Malthusian parameter [21]), which is the

quantity generally measured for statistical inference in the early

stages of an emerging infection; (iii) the household offspring

distribution, defined as the distribution of secondary households

infected from an epidemic seeded with a single infectious

individual – the expectation of this random variable is R?; (iv)

the endemic prevalence of infection J� amongst the community of

households; and (v) the distribution of transient dynamics of the

process. This latter calculation not only provides an opportunity to

investigate the impact of the models structure in detail, but

provides an alternative method to assess the accuracy of the many

quantities listed above.

In the next section we introduce the basic model of within- and

between-household transmission, before detailing the methodology

adopted, and illustrate several of the techniques with respect to a

model for households of size one (equivalent to the classical

homogeneously-mixing SIR model). We then proceed to apply this

methodology to our structured households models to investigate

the impact of household size, within- and between-household

transmission rates, rate of waning immunity, and infectious period

distribution on dynamics. We conclude by discussing the general

implications of our results.

Methods

The household dynamics are described by three basic processes:

transmission of infection between an infectious and susceptible

individual within the household, recovery of infected individuals,

and loss of immunity (Table 1). Recovery of an infected individual

and loss of immunity for a recovered individual are both assumed

to occur independently of the states of other individuals within the

household with constant probabilistic rates c and m, respectively.

Transmission within the household is assumed to be frequency

dependent with transmission parameter b; note that the (N{1)
term in the denominator is to ensure frequency dependent contact

with all other members of the household. In situations where we

need to consider the transient or long-term dynamics it becomes

important to allow infection to enter the household from the

external population. This is captured by an external force of

infection e to all susceptible individuals within the household.

Finally, we assume a between-household transmission rate a, such

that each infectious individual within the household generates

secondary cases at rate a. Clearly, for self-consistent dynamics we

insist that e~aJ(t), where J(t) is the proportion of infectious

individuals in the population.

The first four quantities of interest (R?, r, distribution of

secondary households, and the prevalence of infection) can all be

efficiently evaluated by solving systems of linear equations (for

example, using the backslash operator\in MATLAB). In particu-

lar, these quantities are based upon the expectation, or

distribution, of a path integral of a Markov chain [41–43]; we

therefore present the necessary aspects of this theory, for the most

part taken from Pollett and Stefanov [42].

Expectation and distribution of path integrals for Markov
chains

Let (X (t),t§0) be a continuous-time Markov chain taking

values on a finite subset of the non-negative integers S~A|C,

where C is a set of transient states and A is a set of absorbing

states, so the chain is absorbed almost-surely in finite time. (For

our household dynamics, when e~0, A refers to when the entire

household is susceptible and C is the set of all other (transient)

states for a household). Now consider a function f (:) : S?½0,?)
with f (k)~0 for k[A; f (j) may be thought of as a per-unit reward

when in state j[C or for the households model can be naturally

used to count the number of infected individuals in a given

household configuration. Now, consider the path integral

C~

ð?
0

f X (t)ð Þdt:

This path integral is the total reward over the life of the process,

and as such is a random variable. We now present systems of

linear equations for evaluating the expected value and Laplace-

Stieltjes transform of the distribution of C.

Table 1. Classical within-household SIRS model of epidemic dynamics.

Event Transition Rate

Internal Infection (S,I)?(S{1,Iz1) q((S,I),(S{1,Iz1))~bSI=(N{1)

Recovery (S,I)?(S,I{1) q((S,I),(S,I{1))~cI

Waning Immunity (S,I)?(Sz1,I) q((S,I),(Sz1,I))~m(N{S{I)

External Infection (S,I)?(S{1,Iz1) q((S,I),(S{1,Iz1))~eS

doi:10.1371/journal.pone.0009666.t001

Household Disease Dynamics
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The behaviour of the continuous-time Markov chain can be

defined by fixed transition rates between states which we formulate

into a matrix Q~(q(i,j), i,j[S), with q(i,j) representing the rate of

transition from state i to state j, for j=i, and q(i,i)~{q(i), where

q(i)~
P

j=i q(i,j) (v?), is the total rate at which the process

leaves state i.

The expected value of C conditional on starting the process in

state i, namely E C D X (0)~i½ �~ei, may be determined by the

solution of the system of linear equations (Proposition 2 [42]):

X
j[C

q(i,j)ejzf (i)~0, i[C: ð1Þ

Furthermore, letting yi(s)~E e{sC D X (0)~i
� �

(the Laplace-

Stieltjes transform of the distribution of C) and noting yi(s)~1
for i[A, we have [42, Proposition 1]: For each sw0, yi(s) is the

solution of the system of linear equations:

X
j[S

q(i,j)yj(s)~sf (i)yi(s), i[C: ð2Þ

Using these two sets of linear equations it is possible to efficiently

evaluate a number of quantities concerning the early dynamics of

infection within structured households models.

Households of size one
To illustrate the power of this methodology, we consider the

dynamics of households of size one with SIR dynamics for which

many of the key epidemiological quantities are already known. (This

can also be realised by setting the within-household transmission rate,

b, to zero, but the computation is more complex.) Assuming that the

number of households is infinite, then an initial infectious individual

creates a new infectious household (individual) at rate a over the

course of their infectious lifetime, and moves from the infected to

recovered state at rate c. The Markov process for within-household

dynamics can be formulated by letting X (t)~1 if the individual is

infectious, and X (t)~0 if it has recovered; we therefore have

q(1,0)~c (and thus q(1,1)~{c).

We are naturally interested in onward transmission from this

household, which means that we wish to consider f (X (t))~aX (t).
Then, from (1), the expected number of secondary households

infected by this infectious individual over its lifetime, R? (in this

case equivalent to R0) is the solution e1 to: {ce1~{a. Hence

R?~e1~a=c as expected from fundamental results for the SIR

model.

Now, for future use, consider the distribution of the path

integral. We have from (2): c{cy1(s)~say1(s), and thus

y1(s)~c=(sazc), and upon inverting this Laplace transform we

find that C is exponentially distributed with mean a=c – that is, C
has a probability density function rC(l)~(c=a)exp({lc=a).
Whilst we will not be interested in this distribution directly per se,

it does allow us to evaluate the full (discrete) distribution of

secondary infections: the offspring distribution is Poisson with

random mean, and the probability density function of the mean is

rC(l) [18,44]. Thus, the probability mass function of secondary

infections, g(m) (the probability that an infected individual

generates m secondary cases), for any integer m is given by

g(m)~

ð?
0

rC(l)
e{llm

m!
dl

~
1

m!
E e{sCCm
� �

s~1
:

We note here that we may substitute rC(l) and integrate to obtain

g(m)~
amc

(azc)mz1
,

which is the geometric distribution with parameter a=(azc), as

expected from the basic dynamics. However, by noting the close

resemblance to the Laplace-Stieltjes transform introduced earlier,

we develop an alternative procedure which is in general more

efficient. Consideration of the expectation component gives

E e{sCCm
� �

~({1)m dm

dsm
E e{sC
� �

~({1)m dm

dsm
y(s):

Hence, g(0) may be determined as the solution of the system of

linear equations (2), as g(0)~y1(1). Then, differentiating the

system (2), we have

X
j[C

q(i,j)ym
j (s)~mf (i)ym{1

i (s)zsf (i)ym
i (s), i[C, ð3Þ

where ym
i (s) denotes the mth derivative of yi(s), allowing us to

recursively evaluate the distribution of secondary infections from

g(m)~({1)m ym
1 (1)

m!

(we may stop the recursive evaluation once the cumulative

probability mass is close to 1). For the case of households of size

one, we readily arrive at the geometric distribution with parameter

a=(azc), as evaluated earlier by direct integration.

Finally, we consider the early growth rate r of the epidemic

(equivalent to the Malthusian parameter of the branching process

approximation of Ball et al. [21]), defined as the solution to the

equation

E

ð?
0

aX (t)e{rtdt

� �
~1:

We note that this is again the expectation of a path integral, but

with exponential discounting at rate r(w0); as presented in Norris

[41], and easily seen, this is equivalent to the path integral of the

original process modified so that from each state i[C we add a rate

r of jumping to the absorbing set A. Thus, for households of size

one: {(czr)e1~{a, and upon solving e1~1 for r we determine

r~a{c, a well-known result from the literature.

A population of households
We now turn our attention to evaluating each of the desired

quantities for households of arbitrary, but homogeneous, size.

Populations of mixed household sizes are achievable through the

same basic methodology, but the ensuing behaviour is more

difficult to visualise and the relationships to the distribution of

household sizes is naturally more complex. When dealing with

household dynamics we initially consider a Markov chain model of

an epidemic occurring within the initially infected household,

effectively setting e~0, and determine the subsequent dynamics by

considering the rate at which subsequent households become

infected – mirroring the mechanisms used for households of size

one. For simplicity, from now on we rescale time such that the

Household Disease Dynamics
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recovery rate c~1; effectively our new unit of time is the average

infectious period.

(i) Household basic reproduction number, R?. The

household basic reproduction number R� is calculated as the

expected number of secondary households infected by the primary

household, which naturally scales with the amount of infection

within the primary household. We define I(X (t)) as the function

of the underlying household Markov chain that gives the number

of infected individuals within the household at time t. The

household basic reproduction number is then given by

R�~E

ð?
0

aI(X (t))dt

� �
,

where X (0) refers to a household with a single infection and the

remaining members susceptible [21,24,36]. This is calculated as

described above, solving the system of linear equations (1).

Evaluating R� with a~1 gives us the critical value

ac~1=R?(a~1), at which R�~1 and is therefore the invasion

threshold.

(ii) Early growth rate. The early growth rate r obeys

E

ð?
0

aI(X (t))e{rtdt

� �
~1:

This can be derived either from consideration of the branching

process approximations [21], or a survivor model [33], and can be

evaluated using exponential discounting as outlined above [41].

Since r[½{1,R�{1� [45] (here we only consider epidemics which

invade, and thus rw0) and the expectation monotonically

decreases with r, a unique solution exists and can be found

numerically using, for example, interval bisection or MATLAB’s

fzero routine.

(iii) Household offspring distribution. The household

offspring distribution during the early stages of the epidemic is

again Poisson with random mean:

g mð Þ~
ð?

0

rL(l)
e{llm

m!
dl

~
({1)m

m!
ym

IC(1),

ð4Þ

for integer m and where rL(l) is the probability density function of

the stochastic variable

L~

ð?
0

aI(X (t))dt,

y(s)~y0(s) is the Laplace transform of the distribution of L, and

ym(s) is the m-th derivative of this transform with respect to s. As

with the two above quantities, we are interested in the entry

corresponding to the initial condition (IC) I~1,S~N{1. We can

calculate the offspring distribution (4) by solving systems of linear

equations (2,3), as outlined earlier for the case of households of size

one.

(iv) Endemic prevalence. To evaluate the endemic

prevalence, we could evaluate the full transient dynamics of the

process, as explained in the next section, and evaluate the endemic

prevalence via convergence to equilibrium of these dynamics.

However, it is possible to develop a more efficient procedure,

which does not rely on numerically solving the differential

equations.

We exploit the fact that at equilibrium the rate of import of

infection into a household, e, must be equal to the rate of export of

infection aJ�. Throughout this paper, we use J~I=N to represent

the proportion of individuals infected. Thus, our starting point for

determining the endemic proportion of infection J� in the

population is by considering the dynamics within a single

household, given by our within-household Markov chain model

detailed in Table 1, with constant (and not yet self-consistent)

external force of infection ew0. Using an eigenvalue-vector

routine, for example the MATLAB function eig, we find the

eigenvector corresponding to the zero eigenvalue; normalised to

sum to 1, this eigenvalue pe~Xe(?) is the stationary (equilibrium)

distribution of the within-household epidemic with import at rate

e. We then search for the e such that e~aI(Xe(?))=N, which can

be done with considerable efficiency given that I(Xe(?)) increases

monotonically with e. The endemic prevalence J�~I(Xe(?))=N.

(v) Transient dynamics. To model the full dynamics of the

system we need to both include the external rate of infection e and

to allow it to dynamically vary in a self-consistent manner [46]. Let

H(t) be the vector of proportions of households in each possible

disease configuration at time t; its dynamics are described by the

coupled ODEs:

dH

dt
~HQfe~aI(H(t))=Ng ð5Þ

where Q is the household transition matrix together with the

dynamically varying external force of infection. We note that this

equation may also be motivated by using results of Kurtz [47],

considering the proportion of household types in the limit as the

number of households tends to infinity. Due to the fact that e varies

during the transient dynamics methodologies based on taking the

exponential of matrices [48] are not applicable. The full dynamical

system (5) is therefore solved numerically using standard Runge-

Kutta methods, for example as implemented in MATLAB’s ode45.

Additional realism. As noted earlier, we also consider the

effect of gamma-distributed infectious periods on several of the

above quantities. This is achieved by using the commonly-termed

method of stages: the infectious class is decomposed into several sub-

classes, with an identical rate of transition between these classes

chosen to retain the same expected infectious period. Such an

approach maintains the Markov property of the underlying model

and thus the applicability of the methodology outlined above (see

for example [39] and [40]).

When comparing results of gamma-distributed to the traditional

exponentially-distributed periods, we consider two cases: i) in the

first we hold the transmission rate parameter b constant; ii) whilst

in the second we hold the probability of (initial) transmission, p,

constant. The latter is evaluated as follows: Consider a household

with one individual initially infected and all other members

susceptible to infection, with transmission rate b, mean infectious

period 1, and gamma-distributed recovery time of order M
(referring to dividing the infectious period into M sub-classes,

M~1 is exponentially distributed and the limit M?? gives a

constant time to recovery). The probability that the initial infective

infects at least one other individual before recovering is

p(b,M)~
(bzM)M{MM

(bzM)M
:

Note, p(b,1)~b=(bz1) and p(b,?)~1{e{b. We consider

holding p constant (via changing b, to b’) as we change M

because this is similar to holding constant the secondary attack rate

Household Disease Dynamics
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(we discuss this further in the Supporting Information File S1), a

quantity that is often measured during statistical analysis of

household data [49].

Results

Figure 1 shows the critical level of between-household

transmission, ac, required to sustain an epidemic (Plot 1A); the

early growth rate r (Plot 1B); the offspring distribution (Plot 1C);

the endemic prevalence proportion J� (Plot 1D); and the transient

dynamics of infection (Plot 1E; see 1F and 1G also), all for the case

of exponentially distributed infectious period (M~1). The precise

parameter values are provided in the Figure caption; other rate

parameter values are presented in the Supporting Information File

S1.

Examining the critical level of between-household transmission

(Plot 1A) indicates that two factors contribute to the success of an

infection. For large household sizes, the main determinant of

epidemic success is whether within-household transmission

(governed by b) can produce an epidemic within the household

– if it can, then the final size within households is relatively large

and so relatively small levels of between-household transmission,

a, can sustain an epidemic. For smaller households of size N~2
and N~3, this is not seen, and appreciable between- and within-

household transmission is always necessary to sustain an

epidemic.

The endemic prevalence of infection (when between-household

transmission rate a~1; Plot 1D) is again predominately deter-

mined by within-household transmission, b, for larger households,

with household size, N, only having a major impact when it is

below size 4. However, unlike the critical level of transmission (Plot

1A) and early growth rate (Plot 1C), varying the rate of waning

immunity, m, has a significant effect in terms of absolute

prevalence J�N, which reduces as the rate of loss of immunity m

Figure 1. Epidemiological quantities as defined in the main text for the exponential (M~1) infectious period distribution. (A) Critical
transmission ac , with rate of waning immunity m~1. (B) Early growth rate r, with rate of waning immunity m~1 and between-household transmission
parameter a~1. (C) Offspring distribution, with within-household transmission rate parameter b~6, house size N~10 and between-household
transmission parameter a~1. (D) Endemic infection J� , with rate of waning immunity m~1 and between-household transmission parameter a~1. (E)
Transient dynamics, with within-household transmission rate parameter b~6, house size N~10, rate of waning immunity m~1 and between-
household transmission parameter a~1. (F) As in E at peak prevalence. (G) As in E at endemic prevalence.
doi:10.1371/journal.pone.0009666.g001
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is reduced, and vanishes in the absence of waning immunity

(m~0); see Supporting Information File S1.

The early growth rate r (with between-household transmission

a~1; Plot 1B) varies with both within-household transmission, b,

and household size, N, and is only weakly affected by waning

immunity, m (see Supporting Information File S1). We observe that

the critical between-household transmission rate (Plot 1A) and the

endemic prevalence of infection (Plot 1D) show far greater

saturation with both household size, N , and within household

transmission rate, b, compared to the early growth rate (Plot 1B).

This is because the critical transmission rate, ac, and the endemic

prevalence of infection, J�, depend on the number of cases

produced over one generation (which rapidly saturates as

susceptibles within the household get infected), whereas the early

growth rate, r, depends on the instantaneous transmission rate

from infected individuals (which is less influenced by households

reaching saturation).

The offspring distribution (Plot 1C) shows a significant

probability that a newly infected household will fail to infect any

further households; often because the infection fails to spread

within the household. This failure probability is relatively

unaffected by the waning immunity rate, m; whereas increasing

m leads to an increased probability of generating very large

numbers of secondary cases. The bimodality of these distributions

is a qualitative difference from distributions considered in detail at

the individual level [50,51] and therefore can be expected to lead

to very different stochastic invasion and persistence properties.

The complete model dynamics at a given parameter set (Plot 1E)

demonstrates that our methods for calculating early growth (green

line) and the endemic state (blue line) are sound, and also that the

Figure 2. Epidemiological quantities as defined in the main text for the gamma (Mw1) infectious period distribution, compared to
the exponential (M~1) results, where within household transmission rate parameter, b, is held constant. (A) Critical transmission
difference Dac, with rate of waning immunity m~1; M~2. (B) Early growth rate difference Dr, with rate of waning immunity m~1 and between-
household transmission parameter a~1; M~2. (C) Offspring distribution difference, with within-household transmission rate parameter b~6, house
size N~10 and between-household transmission parameter a~1; M~2. (D) Endemic infection difference DJ� , with rate of waning immunity m~1
and between-household transmission parameter a~1; M~2. (E) Transient dynamics, with within-household transmission rate parameter b~6,
house size N~10, rate of waning immunity m~1 and between-household transmission parameter a~1; M~3; exponential (M~1) results are
shown as a thin red line for comparison. (F) As in E at peak prevalence. (G) As in E at endemic prevalence.
doi:10.1371/journal.pone.0009666.g002

Household Disease Dynamics

PLoS ONE | www.plosone.org 6 March 2010 | Volume 5 | Issue 3 | e9666



proportion of households with a given prevalence assumes a

unimodal distribution around the mean, with significant variance.

Figures 2 and 3 essentially repeat the evaluation of each of the

epidemiologically relevant quantities for the case of gamma

distributed infectious period of order Mw1, with b and p held

constant, respectively. In panels (A), (B), (C) and (D) the change in

the quantity (respectively, ac, r, probability of offspring number,

and J�) with respect to the assumption of an exponential infectious

period has been presented; likewise, in (E), the mean prevalence

curve and, in (F) and (G), the full distribution of prevalence, under

the assumption of an exponential infectious period have been

superimposed for reference.

With respect to the critical transmission rate, ac, the early growth

rate, r, and the endemic prevalence of infection, J�, it can be seen

that both the magnitude and direction of change can differ

depending upon whether the transmission parameter b or the

probability of transmission, p, is held constant. With respect to these

quantities, holding p constant generally results in more significant

changes. Furthermore, in general, a higher level of between-

household transmission, a, is required to sustain an epidemic, and

thus the endemic prevalence of infection, J�, with a~1 is generally

reduced. The early growth rate increases if b is held constant (Plot

2B) and generally decreases if p is held constant (Plot 3B).

With respect to the offspring distributions (C), once again the

incorporation of gamma-distributed infectious period, and choice of

what is held constant between epidemics, has a significant impact. In

both cases the probability of no secondary households infected

decreases, and by a substantial margin in the case of b held constant.

In the b constant case the probability of a small number of

secondary infections also decreases, whilst in the p constant case this

Figure 3. Epidemiological quantities as defined in the main text for the gamma (Mw1) infectious period distribution, compared to
the exponential (M~1) results, where probability of transmission, p, is held constant. (A) Critical transmission difference Dac , with rate of
waning immunity m~1; M~2. (B) Early growth rate difference Dr, with rate of waning immunity m~1 and between-household transmission
parameter a~1; M~2. (C) Offspring distribution difference, with within-household transmission rate parameter b’&3:29 (b~6), house size N~10
and between-household transmission parameter a~1; M~2. (D) Endemic infection difference DJ� , with rate of waning immunity m~1 and
between-household transmission parameter a~1; M~2. (E) Transient dynamics, with within-household transmission rate parameter b’&2:74 (b~6),
house size N~10, rate of waning immunity m~1 and between-household transmission parameter a~1; M~3; exponential (M~1) results are
shown as a thin red line for comparison. (F) As in E at peak prevalence. (G) As in E at endemic prevalence.
doi:10.1371/journal.pone.0009666.g003
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is not seen. In both cases there is a decrease in the tail of the

distribution, corresponding to reduced probability of a large number

of secondary infections, and the major increase in probability mass

occurs in the vicinity of the second peak of the exponential offspring

distribution case. Despite these changes, for this parameter set, the

bimodal feature of these distributions remains.

Finally, we consider the influence of gamma-distributed infectious

period, and what is held constant, by studying the full dynamics of

infection. Holding b constant (Plot 2E) results in an earlier epidemic

with a larger peak infection when compared to the exponential case,

whilst holding p constant (Plot 3E) results in an epidemic with

similar, but slightly reduced, peak incidence but slower take-off and

hence delayed peak. Also interestingly, the incorporation of gamma-

distributed infectious period results in a slight oscillatory approach to

endemicity, with mean infection dropping below the endemic

prevalence following the peak, and slightly overshooting the endemic

level again before converging to equilibrium.

Discussion

In this paper, we have focused on appropriate numerical methods

for efficient calculation of epidemiologically relevant quantities in

households models obeying an SIRS disease paradigm. Solutions of

the kind we have found provide a useful bridge between formal

work [36] and individual-based simulation [24], allowing us to study

the effects of finite size, stochasticity, and infectious and recovered

period distributions at the household level while still in the infinite-

size limit at the population level. This has allowed us to quantify

some basic behaviours of household structured dynamics; for

example the impacts of varying within-household and between-

household transmission rates and the role of waning immunity.

In essence the behaviour of the households model can be

explained by two different processes. Firstly, compared to purely

individual-based transmission (at rate a) the action of within-

household transmission (at rate b) is to amplify the infection; so

households act as amplifiers for the general transmission process.

Secondly, the clustered network structure within a household leads to

rapid depletion of the locally susceptible population and hence

saturation of amplification effect (and other household properties) as

the within-household transmission rate increases. Using our methods,

a full sweep of parameter space (as provided in Supporting

Information File S1) requires only a few seconds of desktop processor

time and so comprehensive sensitivity analysis around a region of

parameter space relevant to a given applied problem is also readily

obtained. In addition, such methods are able to rapidly calculate

likelihood values for any given observations, leading to efficient

methods of parameter estimation from household-structured data.

Our results additionally provide one of the first explicit studies

of the impact of gamma-distributed infectious periods on dynamics

at the household level. Biologically significant effects arise from

this change in infectious period distribution, with both the

magnitude and direction of these effects varying depending on

which parameters are held constant when comparing models. This

link between which quantities are observed and therefore which

model parameters are held constant, is likely to have significant

impact during the early stages of a disease outbreak in determining

an appropriate response.

The methodology used to consider gamma-distributed infec-

tious periods can be straightforwardly extended to include latent

and prodromal stages of infection. For homogeneously mixed

models, the most common such addition is an ‘exposed’ class

through which infected individuals pass before becoming fully

infectious, leading to the standard SEIR model. This does not alter

threshold and final size behaviour compared to the SIR model, but

can cause a highly significant reduction of the early growth rate

and modification of other features of the transient dynamics,

which we would also expect to see in household models.

We also believe that the epidemiological consequences of the

shape of the household offspring distribution warrant further

consideration, as has been done for individual-level offspring

distributions [50,51]. The ability to construct this distribution

through the solution of sets of linear equations offers the possibility

of deriving such a distribution, and therefore a greater under-

standing of stochastic invasion and persistence, for a range of more

complex disease natural histories.

Methodologically, we hope that the reduction of many problems

in household epidemic theory to solving a set of linear equations

through the theory of path integrals for Markov chains will be of

significant use, and have made MATLAB code available to

encourage this in the Supporting Information File S2. It is important

to note that the consideration of distributions of household sizes is

simply done within our framework, but is not included in this work

since its main impact is known, from theoretical work, to be on

control strategy rather than dynamics. While it could be argued that

the methodologies presented here simply allow us to produce the

same results more quickly than by using direct integration,

numerically efficient algorithms can open up problems to analysis

that are currently unsolvable. One example of this would be to

consider epidemiological dynamics of sub-populations much larger

than households, either ecologically-motivated or as a simplification

of large-scale structured models of human and animal disease.

Supporting Information

File S1 Calculation of disease dynamics in a population of

households. In this Supporting Information File S1, we include

additional technical discussion, and supplementary figures.

Found at: doi:10.1371/journal.pone.0009666.s001 (0.08 MB

PDF)

File S2 Calculation of disease dynamics in a population of

households. In this Supporting Information File S2 we provide

MATLAB code.

Found at: doi:10.1371/journal.pone.0009666.s002 (0.01 MB ZIP)
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