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Abstract

Background: College and university students experience substantial morbidity from influenza and influenza-like illness, and
they can benefit substantially from vaccination. Public health authorities encourage vaccination not only before the
influenza season but also into and even throughout the influenza season. We conducted the present study to assess the
impact of various vaccination strategies including delayed (i.e., in-season) vaccination on influenza outbreaks on a college
campus.

Methods/Findings: We used a Susceptible R Infected R Recovered (SIR) framework for our mathematical models to
simulate influenza epidemics in a closed, college campus. We included both students and faculty/staff in the model and
derived values for the model parameters from the published literature. The values for key model parameters were varied to
assess the impact on the outbreak of various pre-season and delayed vaccination rates; one-way sensitivity analyses were
conducted to test the sensitivity of the model outputs to changes in selected parameter values. In the base case, with a pre-
season vaccination rate of 20%, no delayed vaccination, and 1 student index case, the total attack rate (total percent
infected, TAR) was 45%. With higher pre-season vaccination rates TARs were lower. Even if vaccinations were given 30 days
after outbreak onset, TARs were still lower than the TAR of 69% in the absence of vaccination. Varying the proportions of
vaccinations given pre-season versus delayed until after the onset of the outbreak gave intermediate TAR values. Base case
outputs were sensitive to changes in infectious contact rates and infectious periods and a holiday/break schedule.

Conclusion: Delayed vaccination and holidays/breaks can be important adjunctive measures to complement traditional pre-
season influenza vaccination for controlling and preventing influenza in a closed college campus.
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Introduction

Influenza is a major cause of morbidity and mortality and each

year causes tens of millions of illnesses, hundreds of thousands of

excess hospitalizations, and tens of thousands of excess deaths in

the US. [1] Vaccination remains the mainstay of efforts to prevent

and control influenza, and in the US current recommendations for

the use of influenza vaccines encourage all people to receive

vaccination. About L of the population is also included in specific

high priority groups. [2]

While not included among the high priority groups for

vaccination, college and university students may be at increased

risk for influenza and influenza-like illnesses (ILIs). Outbreaks on

campuses with high attack rates have been described. [3] [4] [5]

[6] Furthermore, students experience substantial morbidity from

influenza and ILIs. On average they experience up to 8 days or

more of illness along with increased rates of health care use, school

absenteeism, and impaired academic performance for each ILI.

[7] [8] According to national survey data from the American

College Health Association, colds/flu/sore throat is the second

leading cause of impediments to academic performance. [9]

Influenza vaccination has been associated with significant

reductions in ILI as well as ILI-associated impaired school

performance and health care utilization, [10] and many college

and university student health service programs have implemented

influenza vaccination programs for their students and faculty.

Influenza vaccination programs, including those on college and

university campuses, traditionally have been organized around vaccine

delivery in October and November, strategies consistent with many

years’ advice addressing the timing of vaccination programs from

national authorities. However, the Centers for Disease Control and

Prevention and others are now calling on providers to expand
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vaccination efforts into and even throughout the entire influenza

season. [2] [11] [12]This strategy is urged in order to take advantage of

opportunities to vaccinate people who might otherwise fail to receive

their vaccine and to ensure demand for vaccine that might not become

available until December or January. Because influenza virus activity–

while it often begins in November or December–may not peak until

February or March, such a strategy is reasonable. In fact, since

1976.80% of influenza seasons have peaked in January or later with

.60% peaking in February or later. [2]

For optimal protection, however, people should be vaccinated

before the onset of influenza activity to ensure sufficient time to

develop a protective immune response to vaccination. Extending

the vaccination period may therefore result in increased numbers

of persons vaccinated after the epidemic has started. How this

might affect the overall attack rates and the time course of seasonal

influenza outbreaks within closed populations such as college

campuses has not been well described.

We conducted the present study to model seasonal influenza

outbreaks in a closed, college campus setting and to explore the

impact of various vaccination scenarios, including vaccination

extending into the influenza season, as well as the impact of a

holiday/break schedule on these influenza outbreaks.

Methods

To construct our influenza outbreak model, we adapted selected

characteristics of St. Olaf College in Northfield, Minnesota, a

residential liberal arts college that has previously participated in a

study of the burden of influenza-like illness among college and

university students. On the college campus there are about 3000

students and 450 faculty and staff during the academic year. The

school is a residential school, and students are required to live in

college-owned residential facilities including one of the 10 on-

campus co-educational dormitories or in one of the 18 campus

houses for upper class students. The dormitories have shared

bathrooms, and the college has a single, common cafeteria which

facilitates mingling of students and limits the ability of students to

withdraw from the community even when they are ill.

Mathematical Models
For this study, we constructed mathematical models based on the

Susceptible-Infectious-Recovered (SIR) framework for epidemio-

logical systems in which the host population is categorized

according to infection status. [13] People can move through the

various states from susceptible to infectious to recovered. The model

assumes that once infected a person is infectious, and that once

recovered the person is immune for the rest of that influenza season.

The basic SIR model can be described by 3 differential equations:

dS=dt~ {bIS

dI=dt ~ bSI { cI

dR=dt ~ cI

Where S = susceptible, I = infected, R = recovered, b =

infectious contact rate, c = recovery rate, and 1=c = infectious

period.

In constructing our models, we stratified the population using

several key assumptions. We assumed higher rates of social mixing

and therefore higher infectious contact rates among students than

among faculty/staff, that vaccination would prevent infection in

most vaccinated persons and would attenuate illness among the

rest if they became infected, and that infected persons who are

asymptomatic have a shorter infectious period and lower infectious

contact rate than persons with symptomatic illness. These key

assumptions were used to stratify the susceptibles by faculty/staff

vs student and by vaccination status. Likewise, among infected

persons we stratified by faculty/staff vs student, by vaccination

status, and by whether the person was symptomatic vs asymp-

tomatic. The basic structure of the models that we used is shown in

figure 1. As can be seen, the basic model has 13 different states (4

susceptible states, 8 infected states, and 1 recovered state).

Infectious Contact Rates
The key variables for the models are the infectious contact rates and

infectious periods for each of the population compartments. Infectious

contact rates are a function of social mixing patterns and transmission

probabilities given a social contact (ie infectious contract rate = #
daily contacts * transmission probability given a contact). In a study of a

convenience sample of students and staff from two British universities,

participants reported about 17 contacts per day. [14] In a study of

undergraduate students from the University of Warwick, the students

reported about 26 contacts per day during the week and 19 per day on

weekends. [15] In another study from two Belgian universities (83.6%

of subjects were students) participants reported 18.1 contacts per day

during the week and 12.3 on the weekend. [16] For our study we

assumed that students would have about 17 social contacts per day.

Daily transmission probabilities between infected and susceptible

household contacts have been estimated to be 0.025 to 0.087. [17] For

our study we assumed a transmission probability of 0.03 given a

contact between an infected, unvaccinated person and a susceptible,

unvaccinated person. Thus, for an unvaccinated student who becomes

ill with symptomatic influenza, we used an infectious contact rate of 0.5

per day (ie 17 contacts per day * 0.03 infections per contact).

Infectious contact rates may be lower among older adults such

as faculty than among the students. The social mixing patterns in a

population-based study from Belgium suggested that adults 60 and

older had about half of the daily or weekly social contacts as

persons 13 to 19 years of age. [18][19] In another study, secondary

attack rates within households with an adult index case were about

62% of those where the index case was a school-aged child. [20]

For our study we assumed that the infectious contact rate for the

faculty/staff would be 60% of that for the students.

Infectious Periods
A recent review of human influenza virus challenge studies found

that viral shedding increased sharply between 12 and 24 hours after

viral inoculation and tended to peak on the second day after

challenge. The average duration of viral shedding was nearly 5 days,

although longer durations of shedding were not rare. [21] Because

of the sharp increase in viral shedding within the first 24 hours after

infection, we assumed that there was no latent period for our model.

We also assumed that the duration of infectiousness was 5 days

among unvaccinated persons who became ill, with the same

duration for both faculty/staff and students.

Symptomatic and Asymptomatic Infection
The review of influenza challenge studies also found that upper

respiratory symptoms occurred in 58.8% of subjects whereas any

symptom occurred in 66.7% of subjects. [21] Other modeling studies

have assumed that 50% to 70% of persons will become symptomatic.

[21] For our study we assumed that 65% of infected persons would

become symptomatic.

Influenza on College Campuses
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The relationship between symptoms and infectiousness has not

been well established, although there is some evidence that the

presence of symptoms is positively correlated with higher viral

shedding titers in experimental human influenza infection. [21]

Higher viral shedding titers would therefore be expected to correlate

with higher infectious contact rates. We also assumed for the base

case that symptomatic people did not withdraw from the community

because students living on a residential campus have very limited

options for withdrawal. They share dormitory rooms with room-

mates, use common bathrooms, and eat in a single cafeteria that

facilitates mingling between community members. Therefore, for our

study we assumed that persons with asymptomatic infection would

have half the infectious contact rate of symptomatic persons.

The mean time after infection to the onset of symptoms in

influenza virus challenge studies was found to be 1.7 days. [21] In

community models of the spread of influenza, the asymptomatic or

latent period was estimated to be 1.9 days. [22] For our study we

assumed that the total duration of shedding among asymptomatic

persons would be limited to 1.9 days.

Vaccine Efficacy
During years with a good virus-vaccine strain match, influenza

vaccination has an efficacy of about 80% for preventing influenza

illness in healthy adults under age 65. [23] For our study we

assumed that vaccination would reduce the likelihood of infection

by 80%.

Even when vaccination does not prevent infection, it may

nevertheless result in milder illness. [24] For the 20% of persons

for whom vaccination did not prevent infection in our study (ie

vaccine failures), we assumed that vaccination would still attenuate

the effects of infection by reducing the duration of infectiousness

by about 1 day to 4 days for symptomatic persons and to 1 day for

asymptomatic persons.

Model Scenarios
In the base case, we assumed that the campus community was a

closed community, that a single symptomatic student introduced

influenza onto the campus, that 20% of the population was

vaccinated prior to the onset of the influenza season, and that no

vaccine was given after the onset of the outbreak. Other scenarios

were constructed with varying levels of pre-season (ie vaccination

before the onset of the influenza outbreak) and delayed, or in-

season, vaccination (ie vaccination after the onset of the influenza

outbreak). For the delayed vaccination scenarios, we assumed that

vaccinations occurred either 30 or 42 days after the onset of the

outbreak.

Additional sensitivity analyses explored the sensitivity of the

base case scenario to changes in the values of key model

Figure 1. Structure of SIR model. Shown are the various population compartments as people move through the Susceptible R Infected R
Recovered states. Yellow denotes susceptible, green infected and blue recovered.
doi:10.1371/journal.pone.0009548.g001
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parameters including the number of index cases, duration of

infectious periods, and infectious contact rates. Other sensitivity

analyses explored the impact of varying vaccination rates

according to faculty vs student status. We also modeled the

impact the school’s typical holiday break schedule on the influenza

outbreak. For this scenario we incorporated three school holidays

occurring on days 22–26, 51–62, and 89–96 of the outbreak. For

the school holiday scenario, we assumed a pre-season vaccination

rate of 20% and no delayed vaccination with a single infected,

unvaccinated student as the index case. For each break we

assumed that all persons who were infected at the beginning of the

break would recover before returning to campus because the

shortest break was 5 days, the length of the infectious period used

in the model. We also assumed that 5 infected and symptomatic

unvaccinated students would return from each break, thereby

reintroducing influenza into the community. All other parameters

were the same as for the base case.

For the base case and each of the sensitivity analysis scenarios,

we used deterministic models with fixed parameter values to

estimate the epidemic curves, time to the peak day of the outbreak,

and total attack rate (ie total percent infected, TAR) during the

outbreak. To estimate uncertainty around the deterministic model

outputs, for the base case we also constructed a stochastic

parameters model. For this model we used the same 13 states and

differential equations as in the deterministic model. At each time

step (set at 0.1 days) the model randomly sampled one value from

a probability distribution for each of the 17 parameters (eight b’s,

eight c ’s and one W [proportion of infected people who are

symptomatic]).which were assumed to have a normal distribution

with the mean used in the deterministic models and a standard

deviation of 20%. 1000 simulations for 200 day periods were

performed.

Deterministic models may provide misleading results for small

populations in part because they do not account for the discrete

nature of populations and the impact that chance events can have

on model outputs. We therefore also constructed another, discrete

population stochastic model – a continuous-time Markov chain

model [25] in which individuals transition through the various

Table 1. Key infection parameter values.*

Infectious period, days (1/c)
Infectious contact rate (No. infected contacts per day of
infectiousness) (b)

Unvaccinated students

Symptomatic illness 5 0.5

Asymptomatic infection 1.9 0.25

Unvaccinated faculty

Symptomatic illness 5 0.3

Asymptomatic infection 1.9 0.15

Vaccinated students

Symptomatic illness 4 0.5

Asymptomatic infection 1 0.25

Vaccinated faculty

Symptomatic illness 4 0.3

Asymptomatic infection 1 0.15

*For the models we assumed that vaccine efficacy was 80% for preventing illness, that 65% of infected persons were symptomatic, that asymptomatic persons would
be about half as infectious as symptomatic persons with a shorter infectious period, and that faculty would be less infectious than students. We also assumed that the
infectious period duration would be reduced among vaccine failures. See the methods section for additional details and references supporting these assumptions for
the models’ parameter values.
doi:10.1371/journal.pone.0009548.t001

Figure 2. Impact of different pre-season vaccination rates on
seasonal influenza outbreak curves. In these scenarios all vaccine
was administered pre-season.
doi:10.1371/journal.pone.0009548.g002
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possible S-I-R states at randomly assigned times based on

conditional probabilities that a given state change will occur. Model

parameters were based on the base case assumptions used in the

deterministic models. The outputs from this stochastic model after

1000 simulations were therefore used to validate the outputs from

the deterministic models. All analyses were conducted using Maple

10 software (Maplesoft, Ontario, Canada). Key base case parameter

values are summarized in table 1. Details of the 13 differential

equations used in the deterministic models as well as the general

equations used to calculate the transition probabilities, conditional

probabilities, and inter event times for the discrete population

stochastic model are provided in appendix S1.

Results

Base Case Analyses
In the base case, with a 20% pre-season vaccination rate, the

deterministic model predicted a TAR of 45%, an outbreak peak

on day 68, and a total outbreak period of 157 days. The range for

the TAR from the stochastic parameters model was 40% to 51%

and the range for the outbreak peak from 52 days to 92 days.

Results from the discrete population stochastic model showed that

the likelihood of the outbreak propagating within the closed

population was 40% with a single infected person as the index case

and 88% with 5 infected persons. The modal TAR value given an

outbreak was 45%.

Senstivity Analyses–Varying Pre-Season and In-Season
Vaccination Rates

With a 0% vaccination rate, the TAR was 69%, with a peak at

day 47 and a total outbreak duration of 116 days. In contrast, with

a total pre-season vaccination rate of 40%, only 13% of the study

population would become infected with the outbreak peak being

delayed to 137 days and the total duration of the outbreak

extending beyond 200 days. At a 60% vaccination rate ,1%

became infected suggesting that there was no outbreak. (figure 2)

The impact of shifting the timing of vaccination to day 30 or 42

after the onset of the outbreak for portions of the population is

summarized in table 2. As a larger portion of the total numbers of

vaccinations were delayed until after the onset of the outbreak, and

as the length of the delay in vaccination increased, then the TARs

increased with the outbreak also peaking earlier. Given a total

Table 2. Impact of varying pre-season, delayed, and total vaccination rates on influenza outbreaks.*

Total % Vacc
Pre- Season
Vacc, %

Delayed
Vacc, %

In-Season
Delay (days)

Total Attack
Rate, %

Peak Day of
Outbreak

Outbreak
Duration (days)

0% 0% 0% 0 69% 47 116

20% 20% 0% 0 45% 68 157

10% 10% 30 46% 57 144

42 47% 52 135

0% 20% 30 47% 45 128

42 52% 40 110

40% 40% 0% 0 13% 137 .200

20% 20% 30 18% 65 .200

42 21% 49 167

30% 10% 30 16% 99 .200

42 17% 85 .200

10% 30% 30 21% 42 160

42 29% 40 122

0% 40% 30 26% 25 124

42 40% 39 94

60% 60% 0% 0 ,1% 29 21

30% 30% 30 2% 27 77

42 4% 39 98

40% 20% 30 1% 27 57

42 1% 39 75

50% 10% 30 ,1%% 27 32

42 ,1% 39 43

20% 40% 30 5% 28 103

42 10% 40 110

10% 50% 30 8% 27 109

42 19% 39 92

0% 60% 30 14% 27 87

42 34% 39 79

*Vacc denotes vaccination. Delayed vaccination occurred after the onset of the outbreak Total vaccination rates = pre-season + delayed. Outbreak duration was
defined as the time from the initial infectious contact to the time when there was ,1 infectious person in the population.
doi:10.1371/journal.pone.0009548.t002
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vaccination rate of 40%, the impact of different proportions of

vaccinations being given either pre-season or delayed on the shape

of the outbreak curve is illustrated in figure 3.

The addition of delayed vaccination to whatever pre-season

vaccination rate is achieved, however, provided additional benefit

in further reducing the total numbers of people who will become

infected. (figure 4) For example, with a 20% pre-season

vaccination rate and no delayed vaccination, the total percent

who will become infected is 45%. But with an additional 20% of

the population being vaccinated with either a 30 or 42 day delay,

the total percentage infected will be reduced to ,25%.

Even if there was no pre-season vaccination, delayed vaccination

was still of benefit. For example, with no pre-season vaccination and

with 20%, 40% or 60% vaccination rates achieved with a 30 day in-

season delay, the TAR decreases from 69% with no vaccination at

all to 47%, 26%, and 14% respectively (figure 4).

Additional Sensitivity Analyses
The results of our sensitivity analyses are summarized in table 3.

As previously noted, when compared to the base case scenario, as

pre-season vaccination rates increased for the population, the

outbreak peak was delayed and the total percent infected

decreased. The time to the peak of the outbreak and TARs were

sensitive to the infectious contact rate and duration of the

infectious period. The time to outbreak peak–but not the TAR–

was also sensitive to the number of index cases. The model was

relatively insensitive to changes in assumptions about the duration

of the infectious period and infectious contact rate infections

among vaccine failures. The model was also relatively insensitive

to proportionately higher vaccination rates among the faculty

versus students.

School Break Scenario
The school break scenario incorporated three holiday breaks

into the base case scenario (see methods section). Despite the fact

that this scenario assumed that, at the end of each break, 5 infected

and symptomatic students reintroduced influenza into the

community, the TAR was reduced from 45% in the base case

without the breaks to only 20% with the breaks.

Discussion

In this study we have shown how influenza outbreaks in a closed

college campus population can be affected by achieving various

Figure 3. Influenza outbreak curves with varying pre-season and delayed vaccination rates. For all scenarios the total vaccination rate
was 40%. Shown are examples with delayed (ie in-season) vaccination occurring 30 days (3a) or 42 days (3b) after the onset of the outbreak. Pre-
season vaccination rates = 40% minus delayed vaccination rate.
doi:10.1371/journal.pone.0009548.g003
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levels of pre-season, in-season, and total vaccination rates. While

optimal control of outbreaks occurs when vaccine is delivered before

the onset of the influenza season, we have shown that the addition of

delayed vaccination, occurring after the onset of the outbreak, to

pre-season vaccination can also be of substantial benefit in reducing

total attack rates. Our findings strongly support current recom-

mendations that encourage the expansion of vaccination efforts

beyond the traditional October & November window.

The benefits of delayed, in-season vaccination for populations

have been described in modeling studies with regard to the control

of pandemic influenza when a good portion of vaccine will not be

available until after the onset of the pandemic. [26] [27] [28]

These studies have shown that delayed availability of vaccine

along with other mitigation measures can still contribute

substantially to the control of the pandemic. Our study highlights

how in-season vaccination should also help to control seasonal

influenza–especially in closed settings such as college campuses.

Social distancing strategies such as school closures may also

reduce attack rates and help to control influenza outbreaks. In a

model based on many years of influenza surveillance data from

France, the investigators found that school holidays were

associated with reductions of 18%–21% in seasonal influenza

illness cases among school children. [29] In another study of

elementary school children in Israel, a nationwide temporary

closure of elementary schools due to a labor-management dispute

resulted in a substantial reduction in respiratory illness rates and

healthcare visits among the students. [30] In our study, we also

found that school breaks/holidays could have a significant impact

on attack rates on the campus. Compared to the base case without

breaks or holidays, the introduction of the three school breaks into

the model scenario reduced the overall attack rate by about 25%,

from 45% to 20%. Our models were not designed to explore how

the timing and number of breaks might be optimized for outbreak

control, however, and these questions warrant further exploration.

Other mitigation strategies such as isolation, hand hygiene and

the use of face masks have been also been proposed for preventing

influenza transmission. [26] [28] Clinical trials confirm that such

measures may reduce influenza within households, [31] [32] and

results from a clinical trial among university students demonstrated

a 35% to 51% reduction in the rate of ILI among students who

used face masks and enhanced hand hygiene. [33] The findings

from our model are consistent with these reports. A 10% reduction

in infectious contact rates, for example, reduced the TAR from

45% to 34% whereas a 25% reduction in infectious contact rates

reduced the TAR to 5%. These findings highlight the possible

benefits of effectively implementing these kinds of mitigation

strategies.

The potential impact of herd immunity on the nature of

seasonal influenza outbreaks has long been recognized, [34]

with a number of recent studies focusing especially on the

community-wide [35] and household [36] benefits associated

with high vaccination rates of children. In our closed campus

models we also demonstrated the potential for herd immunity

to benefit the entire campus community. In fact, with a pre-

season vaccination rate of about 50%, the influenza outbreaks

were not sustained. A practical implication of this finding is

that an increase in vaccination rates of only 20% to 30% above

current levels might be sufficient to substantially improve the

control of influenza outbreaks in closed college campus

communities.

Our study findings are based on mathematical models, and they

should be interpreted with caution. To enhance the validity of our

findings, we derived parameter estimates from the published

literature and conducted sensitivity analyses to demonstrate how

our results might be affected by changes in the parameter values.

We did use deterministic models for most of our analyses which

may provide misleading results when analyzing small populations.

However, the TAR results from our discrete population stochastic

Figure 4. Impact of adding delayed (i.e., in-season) vaccination to pre-season vaccination on total attack rates during influenza
outbreaks. Shown are total attack rates for varying levels of pre-season vaccination and delayed (ie in-season) vaccination. In-season vaccination
was assumed to occur either 30 or 42 delays after the onset of the outbreak. Total vaccination rates can be calculated by taking the sum of the
indicated pre-season rate and delayed vaccination rate.
doi:10.1371/journal.pone.0009548.g004
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model were in good agreement with our deterministic model

results. Good agreement between deterministic and discrete

population models with population sizes of 800 or more has

previously been reported. [37] Our study population was 3450.

Other aspects of our results also lend credibility to our findings.

The basic reproductive number for our model was 1.7 for the fully

susceptible population. This is consistent with the 1.7 to 2.1 range

of basic reproductive numbers recently estimated for seasonal

influenza epidemics in temperate regions. [38] In addition, the

total attack rates observed in our models are biologically plausible.

For example, in our scenario that included the school holiday/

break schedule, the model estimated that 20% of the students

would become infected during the outbreak corresponding with a

13% clinical influenza rate (65% of 20% being symptomatic). This

modeled clinical attack rate is consistent with the 9% to 20%

influenza illness rates reported among college and university

students in other studies. (10) Given the above, we believe that our

findings are likely valid and robust.

Conclusion
Influenza is a major cause of morbidity on college and university

campuses, and vaccination is the primary means available for

preventing and controlling influenza outbreaks in these settings.

Delayed vaccination occurring after the onset of the outbreak and

Table 3. Sensitivity analyses exploring the impact of changing selected parameter values on the model results.*

Peak Day Total Attack Rate, % Outbreak Duration (days)

Total vaccination rates (all vaccine pre-season)

0% 47 69% 116

20% (base case) 68 45% 157

40% 137 13% .200

60% – ,1% –

Ratio of Faculty to Student Vaccination Rates**

Base case (both at 20%) 68 45% 157

Faculty 30%, student 20% 70 44% 159

Faculty 40%, student 20% 71 43% 162

No. Index cases

1 symptomatic student (base case) 68 45% 157

10 symptomatic students 41 46% 128

20 symptomatic students 33 47% 117

1 symptomatic faculty 74 45% 163

Infectious Contact Rates (b)

Base case 68 45% 157

+10% from base case 55 54% 143

+25% from base case 42 63% 107

210% from base case 92 34% .200

225% from base case 187 5% .200

Infectious Contact Rates (b)***

Base case (asymptomatic = 0.5x symptomatic) 68 45% 157

210% for symptomatic, no change asymptomatic 89 35% 196

225% for symptomatic, no change for asymptomatic 160 14% .200

Infectious Period (1/c)

Base case 68 45% 157

+10% from base case 60 54% 143

+25% from base case 53 63% 133

210% from base case 83 34% 182

225% from base case 140 7% .20

Attenuation of infection among vaccine failures

Base case (infectious period reduced by about 1 day, infectious contact
rates same as for unvaccinated persons among vaccine failures)

68 45% 157

Infectious contact rates & infectious periods reduced by 50% among
vaccine failures

73 42% 148

*See table 1 for base case parameter values.
**National data suggest that adults .25 years of age tend to have higher vaccination rates than persons 18 to 25 years of age.[see Centers for Disease Control and
Prevention, Behavioral Risk Factor Surveillance System data for influenza vaccination for 2005: http://www.cdc.gov/brfss].
***These scenarios were constructed to explore the impact of withdrawal of symptomatic persons with resulting decreases in infectious contact rates on TARs.
doi:10.1371/journal.pone.0009548.t003
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other mitigation strategies such as holidays/breaks and interven-

tions to reduce infectious contact rates can augment the

effectiveness of traditional pre-season vaccination activities for

the prevention and control of influenza in these settings.

Supporting Information

Appendix S1 This appendix provides a detailed description of

the equations used in the deterministic models and the discrete

population continuous time Markov chain model.

Found at: doi:10.1371/journal.pone.0009548.s001 (0.08 MB

DOC)
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