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Abstract

Background: We have previously shown that the transcription factor c-Fos is also capable of associating to endoplasmic
reticulum membranes (ER) and activating phospholipid synthesis. Herein we examined phospholipid synthesis status in brain
tumors from human patients and from NPcis mice, an animal model of the human disease Neurofibromatosis Type 1 (NF1).

Principal Findings: In human samples, c-Fos expression was at the limit of detection in non-pathological specimens, but
was abundantly expressed associated to ER membranes in tumor cells. This was also observed in CNS of adult tumor-
bearing NPcis mice but not in NPcis fos(2/2) KO mice. A glioblastoma multiforme and a malignant PNS tumor from a NF1
patient (MPNST) showed a 2- and 4- fold c-Fos-dependent phospholipid synthesis activation, respectively. MPNST samples
also showed increased cell proliferation rates and abundant c-Fos expression.

Conclusions: Results highlight a role of cytoplasmic c-Fos as an activator of phospholipid synthesis in events demanding
high rates of membrane biogenesis as occurs for the exacerbated growth of tumors cells. They also disclose this protein as a
potential target for controlling tumor growth in the nervous system.
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Introduction

The expression of c-Fos is tightly regulated responding rapidly

and transiently to a plethora of stimuli [1–3]. c-Fos heterodimerizes

with proteins of the jun family to form some of the many AP-1

transcription factors that regulate the expression of target genes such

as those involved in the initiation of DNA synthesis as a response to

growth factors [1,4]. However, understanding the participation of

AP-1 in complex processes such as those of multi-step tumorigenesis

has not yet been completely achieved.

We have shown that, in addition to its nuclear activity, c-Fos

associates to membranes of the endoplasmic reticulum (ER), the

main site of phospholipid production, and activates their synthesis.

This has been observed in light stimulated retina ganglion and

photoreceptor cells in vivo [5,6], in NIH 3T3 cells induced to re-

enter growth [7] and in PC12 cells induced to differentiate [8,9].

In actively growing and proliferating T98G cells, a human

glioblastoma multiforme-derived cell line, it is observed abundant

ER-associated c-Fos expression and c-Fos-dependent phospholipid

synthesis activation, both of which are reversibly inhibited upon

phosphorylation of c-Fos tyrosine residues [10]. Phosphorylation

of c-Fos tyrosine residues was also observed in NIH 3T3 fibroblasts

[10]. We hypothesized from these results that in cells committed to

grow and/or proliferate, activation of lipid synthesis by c-Fos is

crucial for enabling the endomembrane system to supply the

massive demands of membrane to sustain these processes.

In the search for experimental paradigms including the complex

environment in which in vivo tumor development occurs, herein

we examined the status of cytoplasmic c-Fos expression and

phospholipid synthesis activation in malignant human brain

tumors, in the NPcis mouse -an animal model of the human

disease Neurofibromatosis Type I- and also in NPcis mice KO for

c-Fos. Results show that high rates of proliferation are tightly

coupled to an elevated expression of ER-associated c-Fos together

with activated rates of phospholipid synthesis.

Results

Malignant Human Brain Tumors Show Abundant
Cytoplasmic c-Fos and Activated Phospholipid Synthesis

Since previous results in T98G cells indicate an association of

cytoplasmic c-Fos expression with tumor cell proliferation and
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growth [10], this was examined in an array of 156 human brain

tumors and 17 non-pathological tissue samples. Representative

samples in Fig. 1A show abundant cytoplasmic c-Fos expression in

all tumor specimens examined that included glioblastoma multi-

forme (GM) (n = 101), medulloblastomas (n = 15), ependymomas

(n = 7) and astrocytomas (n = 33). c-Fos/ER co-localization was

also found in all specimens whereas only 25% of them were

positive for nuclear c-Fos (Fig. 1B). By contrast, the examination of

17 human non-pathological brain specimens showed c-Fos and the

ER marker calnexin near their detection limit (Fig. 1A, 4th row).

c-Fos content and phospholipid synthesis activation were also

examined in total homogenate (TH) and in microsomal fraction

(MF) prepared from a non-fixed human GM and in a paired non-

pathological sample (excised during surgery for tumor extirpation).

Phospholipid synthesis capacity was determined in vitro in TH, in

MF and in 1M-KCl-stripped MF prepared from these paired

specimens. Phospholipid synthesis was activated only in the c-Fos-

containing fractions prepared from the GM (TH and MF) but

disappeared after stripping MF of associated proteins with KCl

(Fig. 2). The decrease in phospholipid synthesis in KCl-stripped

tumor MF was restored to initial levels by adding c-Fos to the

assay medium. Phospholipid synthesis activation was also observed

in the non-pathological MF upon c-Fos addition. WB examination

showed abundant c-Fos expression in the GM in comparison with

the non-pathological specimen which was at its detection limit

(inset, Fig. 2). Similar results were obtained with 12 additional

non-fixed human malignant brain tumors that included: GM

(n = 9), medulloblastomas (n = 1) and astrocytomas (n = 3) (not

shown).

The low immunolabeling observed for calnexin in non-

pathological samples is in accordance with previous observations

in which the content and concentration of ER membrane markers

were found to correlate with the proliferative status of brain tissue:

at early developmental stages, actively growing and dividing cells

demand elevated rates of membrane biogenesis and show

abundant expression of ER resident proteins and a significantly

higher content of ER membranes which decreases as development

proceeds. In mouse brain, c-Fos expression shows a similar pattern

during development: it is high and co-localizes with the ER

markers in the embryo whereas in the adult, immunostaining of

both is practically undetectable ([11] and Fig. S1).

Deregulation of the ER homeostasis has been correlated with

cancer in many instances [12]. Having found herein that the

expression of both c-Fos and ER markers are significantly higher

in tumor samples as compared to non-pathological tissue and that

c-Fos is associated to the ER in all cases gives support to the need

of ER-associated c-Fos for the progression of CNS tumors.

NPcis Mice Tumors Show High Levels of c-Fos Expression
Given the results described above, the relevance of cytoplasmic

c-Fos for tumor growth was validated in vivo in the animal model of

the human syndrome Neurofibromatosis Type I (NF1), the NPcis

mouse, which allows the follow-up of tumor progression with

respect to c-Fos expression.

Patients suffering of NF1 are born with one mutated allele of the

nf1 gene which encodes for neurofibromin, a member of the Ras-

GAP family that is particularly expressed in the CNS and PNS. As

this mutated allele is non-functional, the subsequent inactivation of

the remaining functional allele on a given cell type is sufficient to

promote tumor formation [13,14]. The primary clinical feature of

NF1 is the development of benign peripheral nerve sheath tumors

termed neurofibromas [15], which are composed primarily of

neoplastic Schwann cells and non-neoplastic stromal cells. Dermal

neurofibromas are benign and associated with a single nerve

whereas diffuse neurofibromas involve many fascicles and are

susceptible to become malignant, in which case they are denomi-

nated Malignant Peripheral Nerve Sheath Tumors (MPNST’s) [16].

Between 15% and 50% of NF1 patients develop some type of

glioma, although they are often indolent in nature [17].

NPcis mice bare, on a C57BL/6J background, a disrupted allele

of both the trp53 and the nf1 tumor suppressor genes that are

located on chromosome 11 at 7 cM of distance from each other.

Consequently, both genes usually segregate together. Loss of

heterozygosis determines the spontaneous development of CNS

and PNS tumors with a penetrance close to 100% by the age of 6-

7 months [18]. The histological pattern of the CNS tumors

resembles that of GM whereas the PNS tumors show the

histological characteristics of human MPNST’s [19,20]. These

animals have been proposed as a good model to study secondary

glioblastomas that in humans progress from lower grades of

astrocytomas involving loss of TP53 [18].

c-Fos expression was examined in CNS and PNS tumors from

6-month-old NPcis mice with clear signs of PNS tumor burden

and compared to littermate C57BL/6J wild type (WT) animals. As

expected, high levels of c-Fos were observed in brain cortex from

NPcis animals (Fig. 3A, left panel) contrasting with the lack of

expression in the same area of their WT littermates (Fig. 3A, right

panel). PNS tumor samples also clearly show abundant c-Fos and

the proliferation marker PCNA immunostaining with a histology

resembling Schwann cells (Fig. 3B). Schwann cells are thought to

be the initiation site of peripheral tumor malignancy in the course

of disease development [21,22]. As expected, c-Fos immunostain-

ing was found colocalizing with the ER marker calnexin in these

PNS tumors (Fig. 3C).

Adult NPcis Brain Show High Levels of c-Fos Expression
as Compared to WT Animals

To correlate c-Fos expression levels with abnormal proliferation

in adult NPcis brain, the content of c-Fos, determined by WB, in

brain TH from NPcis mice was compared with that from their

C57BL/6J WT littermates at the indicated times after birth (Fig. 4).

As expected, at 1 month of age, detectable levels of c-Fos were

found both in NPcis and WT brain samples which, in the latter

case, decreased with age [23,24]. By contrast, in the NPcis samples

both at 2 and 3 months of age, c-Fos content remained at the levels

found at 1 month or even tended to increase. These high levels of

c-Fos expression observed in the NPcis animals at ages in which in

WT mice proliferation has ceased and c-Fos expression declined,

point to the persistence of a proliferative condition of the NPcis

brain even prior to noticeable PNS tumor manifestation.

In Vivo Blocking of c-Fos Expression Blocks Cell
Proliferation

We next studied the dependence of proliferation in the CNS on

c-Fos expression. For this, 4-month-old tumor bearing-NPcis

animals were treated with a c-Fos mRNA antisense oligonucleo-

tide (ASO), the corresponding sense (or scrambled) oligo (SO) or

vehicle infused intra-cranially by means of a subcutaneously

implanted osmotic pump which was connected to a cannula

inserted in the caudate putamen (CP) to constantly deliver

treatment solution during 28 days. The area of CP to which the

pumps dispensed the treatment solution was delimited by loading

pumps with 0.5% w/v methylene blue and infusing as in the

experimental animals.

Fig. 5A shows the expression levels of c-Fos and of the

proliferation marker PCNA in CP determined by WB. The first

2 lanes correspond to the same NPcis animal in which the left

c-Fos Supports Tumor Growth
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Figure 1. Human brain tumors show abundant c-Fos expression co-localizing with the ER marker calnexin. (A) Expression of c-Fos, the
ER marker calnexin, and the nuclear marker of proliferating cells PCNA in human brain tumor specimens (n = 156) and non-pathological samples
(n = 17). Representative samples of astrocytoma (1st row), GM (2nd row), medulloblastoma (3rd row) and human brain non-pathological samples (4th
row) from a tissue array immunostained for c-Fos (red) and calnexin (green); 3rd column is the merge of the previous two columns. Yellow color
evidences c-Fos/ER co-localization sites. (B) Immunostaining for c-Fos (red), PCNA (green) and the merged image of both is shown for an astrocytoma
(1st row), a GM (2nd row) and a medulloblastoma (3rd row). Arrows: proliferating cells with nuclear c-Fos; arrowheads: cells showing predominantly
peri-nuclear c-Fos. Bar: 20 mm. Fourth column in A and B is a 206magnification of the boxed area in the 3rd column.
doi:10.1371/journal.pone.0009544.g001
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hemisphere did not receive c-Fos ASO (NPcis-ASO) whereas the

right hemisphere did (NPcis+ASO); the 3rd and 4th lanes

correspond to CP from NPcis animals treated with sense oligo

(NPcis+SO) or vehicle (NPcis+vehicle) respectively, whereas the

5th lane shows CP from a non-treated NPcis mouse. These results

once again highlight the need of c-Fos expression for proliferation

as specifically blocking it also blocks cell proliferation of tumor

cells as indicated by PCNA expression (compare the 2nd lane with

all other ones of Fig. 5A).

In Vivo Blocking of c-Fos Expression Abrogates
Phospholipid Synthesis Activation without Affecting AP1
Content

The transcriptional AP-1 activity of c-Fos has been exhaustively

examined and its importance in cell proliferation well documented

[1]. Consequently, it was deemed of importance to determine the

relevance of both activities of c-Fos in supporting proliferation and

growth of tumors: its participation in the formation of AP-1

transcription factors and its phospholipid synthesis activation

capacity. To address this point, both AP-1 content and

phospholipid synthesis capacity were examined in vitro in CP

excised from 7-month-old tumor bearing-NPcis animals expressing

high amounts of c-Fos (non-treated NPcis or treated with SO

intra-cranially during 28 days as in Fig. 5A) or having low/null

content of c-Fos (treated intra-cranially with ASO or C57BL/6J fos

KO mice), and in untreated C57BL/6J WT animals.

Fig. 5B shows the phospholipid synthesis capacity in CP from

non-treated NPcis mice (NPcis), or from NPcis mice treated as in

Fig. 5A with SO (NPcis+SO) or ASO (NPcis+ASO) dispensed into

the right hemisphere; NPcis-ASO corresponds to the non-treated

left hemisphere of the ASO-treated animals. Clearly, blocking the

expression of c-Fos with ASO abrogates phospholipid synthesis

activation to similar rates as those found in WT animals (C57BL/

6J WT) whereas SO has no effect. For comparative purposes, the

phospholipid synthesis capacity of CP from C57BL/6J fos KO

mice was also determined (Fig. 5B, last column) and found similar

to that of WT mice (Fig. 5B, 5th column) which, as shown in Fig. 4,

contain undetectable levels of c-Fos.

Next, we determined if blocking c-Fos expression affects the

bulk content of AP-1 transcription factor dimers by electrophoresis

mobility shift assays (EMSA) performed with nuclear extracts

prepared from the brain samples used in Fig. 5B. Interestingly, no

significant differences were observed in the AP-1 content of any of

the different experimental conditions examined, that is, in those

containing abundant c-Fos (lanes 1, 3 and 4) or those lacking

appreciable amounts of c-Fos as is the case of the NPcis+ASO

mice (lane 2), C57BL/6J WT or fos KO mice (lanes 7 and

8)(Fig. 5C). It is interesting to note that the results shown in the

first two lanes of Fig. 5C (NPcis-ASO and NPcis+ASO)

correspond to the left and right hemispheres of the same NPcis

animals that were treated with ASO only in the right one and, as

shown in Fig. 5B, differ significantly in their capacity to activate

phospholipid synthesis that is tightly correlated to their c-Fos

content but not in their AP-1 content as shown in Fig. 5C.

That the total levels of AP-1 result roughly constant irrespective

of the presence or absence of c-Fos (including that in the fos KO

mice) points to the presence of other, c-Fos-devoid, AP-1 dimers.

Taken together, these results highlight the capacity of c-Fos to

activate phospholipid synthesis as relevant to sustain proliferation

and growth of adult brain tumor cells.

NPcis fos (2/2) Mice Show No PNS Tumors
To further examine the importance of c-Fos expression for the

generation of PNS tumors in NPcis mice, NPcis mice with

germline disruptions on both c-Fos alleles were obtained (see

Materials and Methods) and PNS tumor incidence examined.

C57BL/6J fos(2/2) mice, although viable, die at approximately 7

months of age, are infertile and growth-retarded respect to their

WT littermates [25,26]. NPcis, fos(2/2) animals displayed these

phenotypes, whereas NPcis, fos(+/2) were found indistinguishable

from their NPcis, fos(+/+) counterpart mice.

Peripheral tumor incidence was determined in NPcis, fos(2/2)

mice at the time of their death and compared to their NPcis,

fos(+/+) or (+/2) littermates. Table 1 shows that PNS tumor

formation was not observed in any of the NPcis, fos(2/2) mice

born from independent mothers whereas the NPcis, fos(+/+) or

fos(+/2) animals developed neurofibromas with an incidence

similar to that observed previously [18] at the ages considered in

each case (mean incidence of 71.4% animals with tumor burden at

the age of 4–5 months contrasting with 0% incidence in their

NPcis, fos(2/2) littermates). So, no PNS tumor development

could be observed when c-Fos expression is intrinsically impeded

by interrupting its gene in the NPcis mice whereas no differences

were observed in tumor formation penetrance between the NPcis

fos(+/+) and fos(2/+) mice.

c-Fos Expression in a Human PNS Tumor
We next examined the presence of c-Fos in a MPNST excised

from a human NF1 patient and in normal tissue excised adjacent

to this tumor. The histological features of each sample are depicted

on Figure 6A in which the presence of malignant-neoplastic cells

are clearly observed in the transformed tissue respect to the non

transformed one. Both c-Fos and PCNA expression are abundant

in the MPNST contrasting with the non-detectable levels of these

proteins observed in the normal nerve (Fig. 6B). Again, c-Fos

expression appears tightly correlated with the proliferative state

of the tissue: it is not detectable or absent in normal tissue and

Figure 2. Phospholipid synthesis is activated in c-Fos-contain-
ing membranes from a human GM. A human GM and adjacent non
pathological tissue excised from the same patient were used to prepare
total homogenate (TH), microsomal membrane fraction (MF), 1M KCl-
stripped microsomal membrane fraction (MF+KCl) and stripped MF plus
1 ng of c-Fos/mg of TH (MF+KCl+c-Fos) and assayed for phospholipid
synthesis capacity. Results are the mean % 6 SD of 3 experiments
performed in triplicate; non-pathological TH values were taken as 100%.
Inset: WB for c-Fos content in the samples assayed; Tubulin staining is
used as a loading control. NP: non-pathological; GM: glioblastoma
multiforme.
doi:10.1371/journal.pone.0009544.g002

c-Fos Supports Tumor Growth
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up-regulated in the tumor one. Finally, the capacity of both

samples to synthesize phospholipids was measured in vitro. As

expected, TH phospholipid synthesis was .4-fold higher in the

MPNST respect to the normal sample (Fig. 6C).

Discussion

Previous results disclosed a dual function of c-Fos that is

topologically and temporarily separable: it first releases the

genomic program for nuclear control of cell growth and then

sustains it via its cytoplasmic association to the ER and activation

of phospholipid synthesis [8,10]. Since the above mentioned

results were obtained from cells in culture, the role of c-Fos as a

stimulator of membrane biogenesis in events associated to cell

growth an proliferation must necessarily be confronted with results

obtained using experimental paradigms that include the complex

environment in which in vivo tumor development occurs.

Examination of an array of human brain tumors consistently

showed abundant cytoplasmic, ER-associated c-Fos expression.

Moreover, microsomal membranes from non fixed human

malignant brain tumors showed activated phospholipid synthesis;

this capacity was lost upon removal of c-Fos by washing with 1M

KCl, but was recovered upon addition of recombinant c-Fos.

Similar results were found in a MPNST in which abundant c-Fos

expression together with a more than 4-fold increase in

phospholipid synthesis activity was observed when compared to

non-pathological tissue.

Tumor growth dependence on cytoplasmic c-Fos expression

was further confirmed in tumor-bearing NPcis mice which

consistently show elevated expression of ER-associated c-Fos in

brain cortex and in proliferating cells of PNS and CNS tumors. c-

Fos antisense oligonucleotide infused intra-cranially reduced c-Fos

expression and cell proliferation. Moreover, no tumor develop-

ment occurred in NPcis fos(2/2) mice in spite of the fairly

conserved levels of AP-1 content in brain tissue from all animals

irrespective of their c-Fos content. Thus, in vivo results in this

model disclose the dependence of CNS and PNS tumor growth on

cytoplasmic c-Fos expression and phospholipid synthesis activa-

tion. Also, compared to non-pathological tissue, human brain

Figure 4. c-Fos expression in NPcis and C57BL/6J WT mice
brain according to age and to the proliferative status of the
tissue. c-Fos content was determined by WB in brain homogenate
from NPcis and WT mice at the ages indicated (upper panel). Tubulin
was used as a loading control (lower panel). Results shown are from one
representative experiment out of two performed.
doi:10.1371/journal.pone.0009544.g004

Figure 3. Expression and subcellular localization of c-Fos in CNS and PNS tumors from NPcis mice. (A) c-Fos expression was determined
in mouse brain cortex from a tumor-bearing NPcis mouse (left) and a WT littermate (right) by staining with DAB-peroxidase. Note the abundant c-Fos
expression in the NPcis sample, contrasting with the undetectable levels in the WT animal. (B) c-Fos (left) and PCNA (right) expression in peripheral
nerve tumors stained as in (A). (C) Confocal immunofluorescence analysis of peripheral nerve tumors evidencing abundant c-Fos (red) and the ER
marker Calnexin (green) immunolabeling. The merged image at right clearly shows c-Fos/ER co-localization. Three additional animals showed the
same results as in (A), (B) and (C). Inset: magnification of the box delimited area. Bar: 20 mm.
doi:10.1371/journal.pone.0009544.g003

c-Fos Supports Tumor Growth
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tumors evidenced abundant ER-associated c-Fos expression, and

more than 2-fold activated phospholipid synthesis.

Diverse studies have suggested that, as a transcription factor, c-

Fos is indispensable for proliferation. However, homozygous

fos(2/2) mice are viable, morphologically normal but grow to a

smaller final size than their counterpart WT or fos(+/2) animals

[25]. This poses the question of why mitogenic stimulation of cells

results so effective in inducing the expression of c-fos [1,4] and yet

c-Fos absence affects animal size rather than cell proliferation.

Noteworthy is the observation that in these fos(2/2) mice another

component of the AP-1 family, Fra-1, rescues c-Fos functions in

the growth process when its expression is controlled by the c-Fos

promoter but fails to substitute c-Fos in inducing expression of

target genes in fos(2/2) fibroblasts [27]. Interestingly, the basic

domain of c-Fos (BD that comprises amino acids 139–159), which

is essential to achieve phospholipid synthesis activation [8,9] is

highly homologous to the BD of Fra-1, differing only in two

conservative amino acid substitutions. This predicts the BD of Fra-

1 as capable of activating phospholipid synthesis when Fra-1 is

expressed and should, in consequence, support normal growth

rates. Preliminary data from our laboratory have shown that this is

indeed so (G Castro & BL Caputto, unpublished data). However,

this is not the case in fos(2/2) animals probably because as in WT

mice, only very small overlapping expression patterns of these

proteins is observed when each gene is controlled by its own

promoter [27]. So, even if AP-1 c-Fos may trigger the genomic

events required for proliferation and growth, this activity must be

exerted by other AP-1 complexes in the fos(2/2) mice.

At present there is abundant information about genomic events

that underlie uncontrolled growth of tumor cells [28]. On the

contrary, reports on the pleiotropic changes that necessarily

accompany cell growth and proliferation are scarce. Although the

elucidation of the molecular mechanism is still in progress, c-Fos is

emerging as an inducible protein capable of activating the metabolic

machinery of lipid synthesis for membrane biogenesis to accompany

growth. Nevertheless, it is clear that not all enzymes of a lipid pathway

must be activated to attain an overall lipid activated state [9,29].

Regarding the activation mechanism, two different mechanisms seem

at first sight feasible: one is that c-Fos interacts directly with the

enzymes that it activates and the other is that c-Fos interacts with

other ER components modifying the microenvironment of the

enzymes that leads to their activation. In fact, both possibilities have

experimental data that support them [9,30]. In either case, the

association of c-Fos to ER components activates for example the

enzyme Glusosylceramide synthase by increasing its Vmax without

Figure 5. Phospholipid synthesis activation and AP-1 content
in NPcis mice brain as compared to C57BL/6J WT or fos (2/2)
KO mice. (A) NPcis mice at 4 months of age showing clear PNS tumor
burden were treated during 28 days with ASO, SO or vehicle dispensed
by an osmotic pump into the caudate putamen (CP) (see Materials and
Methods). After treatment, animals were sacrificed and CP examined by
WB for c-Fos and PCNA expression, the latter as an indication of the
proliferative status of the tissue. The first two lanes correspond to CP
from the left (non-treated) and right (ASO-treated) brain hemispheres
from the same NPcis mouse. The 3rd and 4th lanes correspond to the
CP from the right, SO-treated or vehicle-treated hemisphere from NPcis
mice. The last lane corresponds to CP from a non-treated NPcis mouse.
One experiment representative of two performed is shown. Tubulin was
stained as a loading control. (B) Phospholipid synthesis was measured

in vitro in CP from NPcis mice non-treated (1st column), or treated
during 28 days as indicated in (A) with SO (2nd column) or from NPcis
mice treated only in the right hemisphere with ASO (3rd column,
NPcis+ASO) and compared to CP from the left hemisphere of the ASO-
treated animals (4th column, NPcis –ASO) or to WT (5th column) or
C57BL/6J fos (2/2) KO mice (last column), as indicated. Results are the
mean 6 SD of two independent experiments performed in triplicate;
*p,0.005 with respect to WT mice as determined using Student’s t test.
(C) EMSA determination of total AP-1 content in nuclear fractions
prepared from CP of mice treated as stated in (A). The first two lanes
correspond to the left, non-treated and right, ASO-treated brain
hemispheres from the same NPcis mouse. The 4th and 5th lanes
correspond to the left, vehicle-treated and right, SO-treated hemi-
spheres from the same NPcis mouse. The last 3 lanes correspond to
C57BL/6J fos(2/2) KO mouse (7th lane), a C57BL/6J WT mouse (8th
lane) and a non-treated NPcis mouse (last lane). Lanes marked with (C)
were competed with 100X unlabeled AP-1 probe (3rd and 6th lanes) to
establish binding specificity. Results are from one of three experiments
performed with the same results.
doi:10.1371/journal.pone.0009544.g005
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substantially modifying its Km [9]. Having found that c-Fos deletion

mutants that contain the NH2-terminus up to BD of the full length

protein (aa 1–159) are capable of activating lipid synthesis to similar

rates as c-Fos [8,9] and that the phosphorylation of tyrosine residues

10 and 30 precludes c-Fos/ER association and consequently lipid

synthesis activation [10] suggests that the NH2-terminus participates

in associating c-Fos to ER components whereas BD would promote

the activation of the corresponding enzymes.

The data available at present allow us to hypothesize a shared

activation mechanism in response to high-rate membrane

biogenesis demands of cells irrespective of these demands arising

from physiological [5–9] or pathological situations as shown

herein. Furthermore, not only tumor-associated pathologies show

ER-associated c-Fos: in spinal cord of rats sensitized to develop

experimental allergic encephalomyelitis in which positive reactive

gliosis is promoted [31], c-Fos expression is also increased and ER-

associated (Fig. S2). In support of this hypothesis it should be noted

that herein it is shown that the addition of c-Fos both to a non-

pathological brain preparation obtained from a GM-patient as

well as to the tumor sample stripped of associated proteins (Fig. 2)

results in an activated rate of phospholipid synthesis.

The cytoplasmic regulatory role of c-Fos is not the only AP-1

independent activity of an early response gene. c-Jun was also

shown to protect cells from apoptosis independently of its AP-1

activity [32]. More recently, an additional cytoplasmic activity for

p53, another well characterized transcription factor capable of

triggering apoptosis has been described [33]. Consequently, the

concept that the biological activities of these proteins results from

the combination of their nuclear and cytoplasmic activities is

worth considering [34]. Therapies directed towards blocking

phospholipid synthesis activation by blocking c-Fos expression are

promising moreover if it is considered that this protein is normally

down regulated in healthy nervous tissue but becomes up-

regulated during and is causally related to cancer progression.

Materials and Methods

Animals
Nf1;Trp53 cis (NPcis) mice were a kind gift from Tyler Jack’s lab

(Massachusetts Institute of Technology, USA). To maintain our

animal colony, founders were bred to wild-type mice and progeny

scored by PCR genotyping for both mutations on the same

chromosome in cis using the primer sequences described [18].

fos(+/2) mice from Jackson Laboratories [25] were inbred to

obtain fos(2/2) animals. NPcis animals were mated to fos(+/2)

mice to obtain NPcis, fos(+/2) mice which were then mated with

fos(+/2) mice to obtain NPcis, fos(2/2) mice. The wild-type allele

of c-fos was amplified with the primers FKO1 (59-GAGCAACT-

GAGAAGACTGGATAGAGCCGGC-39) and FKO2 (59-GGA-

GAGCCCATGCTGGAGAAGGAGTCG-39); FKO2 and PN1

primers (59-GGCGAGGATCTCGTCGTGACC-39) were for c-

fos mutant allele scoring. When comparing tumor burden, only

male NPcis, fos(+/+), fos(+/2) or fos(2/2) were considered to

avoid gender-promoted differences. All mice were on a C57BL/6J

background and grown under standard conditions.

Phospholipid Synthesis Determination
In vitro phospholipid synthesis capacity of tumors or sub-

cellular fractions was performed as described previously [8]; when

stated, recombinant His-tagged c-Fos (1 ng/mg of initial TH

protein), obtained as in [30], was added suspended in 300 mM

imidazole/8 M urea; control incubates contained an equal volume

of vehicle. TH’s prepared in H2O plus protease inhibitor cocktail

(Sigma-Aldrich, St. Louis, MO, USA) were centrifuged for 1h at

100,000xg and separated into MF and SF. For stripping of TH,

prior to centrifugation, TH’s were made 1M with KCl, left to

stand for 10 min, centrifuged at 100,000xg for 1h to separate into

MF and SF. MF was re-suspended in the initial volume of H2O

plus protease inhibitor cocktail.

Table 1. NPcis, fos(2/2) mice do not generate tumors.

NPcis, fos(2/2) Littermates [NPcis, fos(+/+) and fos(+/2)]

Mouse lifespan tumor littermate tumor age (days) when % with

(Nu) (days) burden (Nu) burden tumor was detected tumor

1 100 no #1 no

#2 yes v.a.s.* 50%

2 120 no #1 no

#2 yes v.a.s.

#3 yes 69 66%

3 123 no #1 yes 99 100%

4 141 no #1 no

#2 yes v.a.s.

#3 yes 116 66%

5 146 no no NPcis littermates

6 166 no #1 no

#2 yes v.a.s.

#3 yes 148

#4 yes 155 75%

Tumor burden in all NPcis littermates was determined (or confirmed in the case detection was prior to sacrifice) at the time of death of the NPcis, fos(2/2) mice. No
differences were observed in tumor burden between NPcis, fos(+/+) and NPcis, fos(+/2) mice which were pooled as a single group and compared to their NPcis, fos(2/2)
littermate. Mean tumor incidence in the NPcis, fos(+/+) plus NPcis, fos(+/2) animals was 71.4% (n = 13) contrasting with the 0% (n = 6) found in the NPcis, fos(2/2) group.
*v.a.s.: verified at sacrifice.
doi:10.1371/journal.pone.0009544.t001
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Reactions were initiated by addition of 100 mg of TH, or

the corresponding protein recovered in MF or stripped fractions

re-suspended in incubation buffer, and stopped by addition of

trichloroacetic acid – phosphotungstic acid (5%-0.5% final

concentration). 32P-phospholipid labeling was quantified as

described previously [35].

Protein Quantification and Western Blot (WB) Analysis
10 mg of protein from tissue samples in H2O plus protease

inhibitor cocktail were subjected to SDS-PAGE on 12% polyacryl-

amide gels as described [8]. Blocked membranes were incubated

with rabbit anti c-Fos antibody (Santa Cruz Biotechnology, Santa

Cruz, CA, USA dilution 1/5000), mouse DM1A mAb raised against

a-Tubulin (Sigma-Aldrich, dilution 1/5000) or mouse anti PCNA

antibody (Santa Cruz Biotechnology, dilution 1/1000), washed twice

for 15 min in PBS-Tween and incubated with secondary biotin-

conjugated antibody (Vector Laboratories, Burlingame, CA, USA,

dilution 1/15000) raised against each corresponding primary

antibody followed by incubation with streptavidin-peroxidase

conjugated antibody (Amersham, Little Chalfont, Buckinghamshire,

UK dilution 1/60000). Immunodetection was performed using ECL

plus (Amersham) and protein concentration determined using

Bradford Protein Assay (BioRad, Hercules, CA, USA).

Electrophoretic Mobility Shift Assay (EMSA)
Nuclear extracts prepared as described by Wang et al. [36] were

stored at -70uC until use. A double-stranded AP-1 oligonucleotide

59-CGCTTGATGAGTCAGCCGGAA-39 containing a TGAG-

TCA consensus sequence (Promega, Madison, WI, USA) was end-

labeled with c 32P-ATP (Amersham) using T4 polynucleotide

kinase. AP-1 binding reaction, AP-1 competition assay, and

electrophoresis in non-denaturing polyacrylamide gels were

performed as described by the manufacturer (Promega).

Animal Treatment
NPcis mice with clear signs of peripheral nerve tumor burden

were anesthetized with chloral hydrate (50 mgr/gr animal weight),

a cannula (Alzet, Cupertino, CA, USA, Brain Infusion Kit II) was

inserted into the right caudate putamen (CP) and connected to a

osmotic minipump (Alzet, Model 2004) implanted under the neck

skin to ensure continuous administration of the desired solution

(350 nmol/7.8 ml DMEM/day, for 28 days). Minipumps were

filled with c-fos mRNA Morpholino modified antisense (c-Fos

ASO: 59-GCGTTGAAACCCGAGAACATCATGG-39) or sense

oligonucleotide (c-Fos SO: 59-GGTACTACAAGAGCCCAAA-

GTTGCG-39) (Gene Tools, Pilomath, OR, USA).

Figure 6. c-Fos expression is abundant and phospholipid synthesis is activated in a MPNST from a patient with NF1 syndrome. (A)
Histological examination of a MPNST and a non-pathological specimen excised from an NF1patient, stained with haematoxylin/eosin. Note the
neoplastic cells in the MPNST contrasting with the non-pathological (NP) tissue. (B) WB for c-Fos and PCNA of the samples shown in (A). Note the lack
of c-Fos and PCNA expression in the normal tissue (NP). Tubulin was used as a loading control. (C) Phospholipid synthesis capacity in TH from the
MPNST and the NP sample. Results are the mean % 6 SD of 2 experiments performed in triplicate. TH values from NP were taken as 100%.
Phospholipid synthesis activity in the MPNST was .4-fold that in NP; *p,0.005.
doi:10.1371/journal.pone.0009544.g006
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All experiments were performed in agreement with the

standards stated in the Guide to the Care and Use of Experimental

Animals published by the Canadian Council on Animal Care and

approved by the local animal care committee (Facultad de

Ciencias Quı́micas, Universidad Nacional de Córdoba, Argentina,

Exp. 15-99-39796).

Immunohistochemistry
Anesthetized animals were perfused intracardially with 4%

para-formaldehyde/PB 0.1 M. Excised brains and peripheral

tumors were immersed in PB 0.1 M/30% sucrose and cryo-

sectioned at 30 mm thickness. Sections were blocked in 4% BSA/

0.3% Triton X100 in PBS 10 mM, stained with rabbit anti c-Fos

(Santacruz Biotechnology, dilution 1/5000) or rabbit anti PCNA

(Santacruz Biotechnology, dilution 1/5000) antibodies, diluted in

blocking solution for 48 hours at 4uC and incubated with anti-

rabbit biotinilated secondary antibody diluted in blocking solution

(Vector, dilution 1/300) for 1h at room temperature. Detection

was performed with the ABC kit (Vector) using DAB (Sigma-

Aldrich) as peroxidase substrate. Slides were visualized on an

Axiovert-200 (Carl Zeiss, Oberkochen, Germany) microscope and

images obtained with a MicroMax CCD camera (Princeton

Instruments, Trenton, NJ, USA).

Human Tumor Samples
Fixed human brain tumor sections and matched benign

specimens were from Ambion (Austin, TX, USA). Non-fixed

human brain tumor and matched benign specimens were from

patients that gave their physicians a written consent on forms

approved by the corresponding Research Ethics Board of the

Hospital San Roque and Clı́nica Vélez Sarsfield, Córdoba, and

MPNST’s at Hospital de Clı́nicas, Buenos Aires, Argentina.

Samples were processed anonymous.

Tissue Immunofluorescence
Specimens were de-waxed in xylene, re-hydrated, treated with

target retrieval solution (DakoCytomation, Glostrup, Denmark) at

95uC for 30 min and blocked with 1% BSA/0.1% Tween 20 (v/v)

in 10 mM PBS (blocking buffer). Primary antibodies diluted in

blocking buffer as follows: rabbit anti c-Fos (Sigma-Aldrich,

dilution 1/300), goat anti PCNA (Santacruz Biotechnology,

dilution 1/300), mouse anti GFAP (Chemicon, Temacula, CA,

USA, dilution 1/1000) and goat anti calnexin (Santacruz

Biotechnology, dilution 1/300) antibodies were incubated over-

night at 4uC. Anti goat Alexa 488, anti rabbit Alexa 546 and anti

mouse Alexa 688 (Molecular Probes, Eugene, OR, USA)

secondary antibodies were applied (dilution 1/500); slides were

mounted in Prolong Antifade (Molecular Probes) and visualized on

a confocal laser scanning LSM Pascal 5 microscope (Carl Zeiss).

LSM 5 Image Browser software was used for image processing.

Statistical Analysis
Statistical analysis was performed by Student’s two tailed t test

using Infostat software (Universidad Nacional de Córdoba,

Argentina). Data are reported as mean 6 SD. Differences were

considered statistically significant at p,0.005.

Supporting Information

Figure S1 c-Fos is abundantly expressed and co-localizes with

the ER marker calnexin in embryonic mouse brain. Expression of

c-Fos (red) and the ER marker calnexin (green) were determined in

brain samples from 18 day old embryos and from adult animals.

Note c-Fos/ER co-localization as evidenced in the merged image

to the right.

Found at: doi:10.1371/journal.pone.0009544.s001 (1.02 MB

DOC)

Figure S2 c-Fos is abundantly expressed and co-localizes with

the ER marker calnexin in spinal cord slices from rats with

experimental allergic encephalomyelitis. Expression of c-Fos (red),

the ER marker calnexin (green) and the reactive gliosis marker

GFAP (grey) were determined in spinal cord slices from adult rats

with clear symptoms of having developed experimental allergic

encephalomyelitis [37] and littermate controls. The last column is

the merge of the two first micrographs and clearly shows c-Fos/

ER co-localization in the EAE samples that evidence reactive

astrocytes as determined by GFAP immunostaining.

Found at: doi:10.1371/journal.pone.0009544.s002 (0.39 MB

DOC)
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