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Abstract

The Indus script is one of the major undeciphered scripts of the ancient world. The small size of the corpus, the absence of
bilingual texts, and the lack of definite knowledge of the underlying language has frustrated efforts at decipherment since
the discovery of the remains of the Indus civilization. Building on previous statistical approaches, we apply the tools of
statistical language processing, specifically n-gram Markov chains, to analyze the syntax of the Indus script. We find that
unigrams follow a Zipf-Mandelbrot distribution. Text beginner and ender distributions are unequal, providing internal
evidence for syntax. We see clear evidence of strong bigram correlations and extract significant pairs and triplets using a
log-likelihood measure of association. Highly frequent pairs and triplets are not always highly significant. The model
performance is evaluated using information-theoretic measures and cross-validation. The model can restore doubtfully read
texts with an accuracy of about 75%. We find that a quadrigram Markov chain saturates information theoretic measures
against a held-out corpus. Our work forms the basis for the development of a stochastic grammar which may be used to
explore the syntax of the Indus script in greater detail.
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Introduction

The earliest urban civilization of the Indian subcontinent

flourished in the valley of the river Indus and its surroundings

during the Bronze Age. At its peak, in the period between 2600

BCE and 1900 BCE [1], it covered approximately a million square

kilometers [2], making it the largest urban civilization of the

ancient world. The remains of the civilization were first found in

Harappa and, following historical convention, is called the

Harappan civilization.

The Indus people used a script, which has mainly survived on

seals (see Fig. 1 for an example), pottery, and other artifacts made

of durable materials such as stone, terracotta and copper. The

script is yet to be deciphered. The script occurs usually in short

texts, numbering not more than 14 signs in a single line of text.

Around 400 distinct signs have been identified [3,4], though Wells

identifies up to 676 distinct signs [5]. The total number of texts is

about 3000. Obstacles to the decipherment of the sign system

include the paucity of long texts, the absence of bilingual text, and

the lack of any definite knowledge of the underlying language(s)

the script may have expressed.

The Indus script remains controversial, with contested claims of

decipherment. The main methodological difficulty in attempting

any interpretation of the script is that, due to the paucity of

information on the context of the writing, one is perforce required

to make an assumption regarding the content of the script. This

leads to a profusion of interpretations, which are often not even

falsifiable. The range of opinion on what the script encodes varies

from an Indo-Aryan language [6] and a Dravidian language [4] to

a purely numerical system [7]. There is no consensus on any of the

above interpretations.

A more objective approach, not requiring a priori assumptions,

is the method of statistical analysis. The method involves

identification of patterns through counting. While such an

approach cannot shed light on the semantics of the script, it

can reveal important features of its syntax. Research on the Indus

script using the statistical approach was initiated by Knorozov

and his team in 1965, further developed by Parpola and

collaborators in 1969 (for review of various attempts see [8–10]),

continued by Siromoney [11] in the 1980s and followed up

more recently by us [12–15].

In this article, we apply the technique of n-gram modeling

[16,17] for a thorough statistical analysis of sequences in the Indus

script. This technique finds widespread use in the analysis of

sequences, be they letters or words in a natural language, the base

pairs in the genetic code, or the notes in a musical score. This

generality is possible because n-gram models are indifferent to the

semantic content of the units or tokens (the words, the letters, the

base pairs or the notes) making up the sequence but, nonetheless,

reveal the syntax, if any, that the sequences follow. The n-gram

approach, then, provides a framework in which the Indus script

can be studied without making any a priori assumptions. Our

previous work explored some applications of bigrams (an n-gram

model with n = 2) to analyze the Indus script [14,15]. This paper

presents further results for the bigram model and extends the

analysis to higher order n-grams.
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Results and Discussion

Empirical Analysis
Statistical analysis of the Indus script requires a standard

corpus. Three major corpora of the Indus texts, by Mahadevan

[3], Parpola [4] and Wells [5], are available. We use the

electronic concordance of Mahadevan, henceforth referred to as

M77, which records 417 unique signs in 3573 lines of 2906 texts

(see Materials and Methods for details). We first present the

results of an empirical statistical analysis of the EBUDS corpus.

EBUDS is a filtered corpus created from M77 to remove

duplicates and ambiguities (see Materials and Methods for

details). Fig. 2 shows the frequency distribution of signs in

EBUDS. The sign corresponding to 342 in M77, is the most

frequent sign, followed by signs 99, 267, and 59. The relative

frequencies have no significant change in the M77 and EBUDS

corpora.

The same data can be plotted as a rank-ordered frequency

distribution. The most frequent sign is given rank r = 1 and its

frequency is denoted by e1, the next most frequent sign is given

rank r = 2 and its frequency is denoted as e2 and so on, till all signs

are exhausted. The rank-ordered frequency er is then plotted

Figure 1. An example of an Indus seal. It shows the three typical components: the Indus script at the top, a field symbol (an animal) in the
middle, and a decorated object at the bottom left (Copyright Harappa Archaeological Research Project/J.M. Kenoyer, Courtesy Dept. of Archeology
and Museums, Govt. of Pakistan). Here, since the script is embossed on a seal, it is to be read from the left to the right, whereas on the sealing, which
are impressions of the seal, it is read from the right to the left. For the most part, the seals are typically between 1 to 2 square inches in size.
doi:10.1371/journal.pone.0009506.g001
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against the rank r, on double logarithmic axes, as shown in Fig. 3.

The data can be fit very well to the Zipf-Mandelbrot law,

log fr~a{b log (rzc) [16]. This statistical regularity in word

distributions is found across a wide range of languages [16,18].

Mandelbrot [19] has shown that the Zipf-Mandelbrot law appears

as a consequence of linguistic evolution that tends to maximize

information per word under the constraint of constant effort, or

equivalently, to minimize effort per word under the constraint of

constant information. Thus the Zipf-Mandelbrot law emerges, in

this derivation, as a plausible necessary feature of linguistic tokens.

Clearly, since distributions of city sizes, incomes and several other

quantities also follow a Zipf distribution, the presence of a Zipf-

Mandelbrot distribution is not sufficient to declare a sequence as

linguistic. It is significant that the distribution of individual tokens

in the Indus script follows a Zipf-Mandelbrot distribution.

Qualitatively, a distribution which follows the Zipf-Mandelbrot

law has a small number of tokens which contribute to the bulk of

the distribution, but also a large number of rare tokens which

contribute to a long tail. To emphasize this point, it is estimated

that English has approximately a million words, though a college

graduate might know only between 60,000 to 75,000 of these, and

yet be a competent user of the language [20]. The Indus script

seems to follow the same pattern, with a small number of signs

accounting for the majority of usage, but with a large number of

signs which are used infrequently.

To further follow up this point, we plot the cumulative

frequency distribution of the signs in EBUDS in Fig. 4. As can

be seen from the graph, 69 signs account for about 80% of

EBUDS and the most frequent sign (342) alone accounts for 10%

of EBUDS. This observation is consistent with previous analysis by

Mahadevan for M77 corpus [3].

In the same graph, we plot the cumulative distribution of text

beginners and text enders. Here, an interesting asymmetry is

evident: 82 text beginners account for about 80% of the text

beginner usage, but only 23 text enders are needed to account for

the same percentage of text ender usage. Since the possible set of

text beginners and text enders can include any of the 417 signs, the

numbers above indicate that both text beginners and text enders

are well-defined, with text enders being more strictly defined than

text beginners. This indicates the presence of syntax in the writing.

The analysis above has only been concerned with frequency

distribution of single signs. We may extend the analysis to sign

pairs, sign triplets and so on, as in our earlier work [12,13,15].

This allows one to explore the order and correlations between the

signs, which are the manifestations of syntax. Below, we explore a

general n-gram Markov model to study how sign order and sign

correlations can provide insights into the syntax of the Indus

script. Throughout, we use ‘‘correlated’’ to imply that the joint

distribution of the variables cannot be factored into products of

individual distributions. This applies not only to bigrams with

n = 2 but also to the general n-gram with n.2. We assume the

Markov chain to be stationary.

n-Gram Model for the Indus Script
An n-gram model can identify the correlations that exist between

tokens s1, . . . ,sN in a sequence SN of N tokens. Conditional

probabilities form the core of an n-gram model. Specifically, for a

string SN~s1s2 . . . sN the n-gram model is a specification of

conditional probabilities of the form P(sN Ds1s2 . . . sN{1), quantify-

ing the probability that the previous N21 signs of the sub string

SN{1~s1s2 . . . sN{1 is followed by the sign sN . Given the n-gram

conditional probability, and the relation between joint and

Figure 2. Frequency distribution of individual signs in the EBUDS corpus. The five most common signs are shown alongside the frequency
bars. The relative frequency distribution does not change significantly between EBUDS and M77 corpora.
doi:10.1371/journal.pone.0009506.g002
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conditional probabilities P(ab)~P(bDa)P(a), the probability of the

string SN can be written as,

P(SN )~P(sN Ds1 . . . sN{1)P(s1 . . . sN{1)

~P(sN DSN{1)P(SN{1)
ð1Þ

Recursively applying P(ab)~P(bDa)P(a) to the rightmost terms, we

obtain the probability as a product over conditional probabilities

P(SN )~ P
N

i~1
P(si DSi{1) ð2Þ

In the above, it is understood that S0 = # is a special token

indicating the start of the string. Note that the above expression is an

identity that follows from the basic rules of probability and contains

no approximations. As an example, the probability of a string of

length three, s1s2s3, is given as a product of trigram, bigram and

unigram probabilities

P(s1s2s3)~P(s3Ds1s2)P(s2Ds1)P(s1) ð3Þ

Clearly, for an n-gram model to be tractable, only a finite number

of such probabilities can be retained. In the simplest bigram

model, all correlations beyond the preceding sign are discarded,

so that

P(sN Ds1 . . . sN{1)~P(sN DsN{1) ð4Þ

In a trigram model, all correlations beyond two preceding signs are

discarded, so that

P(sN Ds1 . . . sN{1)~P(sN DsN{2sN{1) ð5Þ

In a general n-gram model, all correlations beyond the (n21)

preceding signs are discarded. An n -gram model can then be

thought of as an (n21)th order Markov chain in a state space

consisting of the signs si. The introduction of the Markov

assumption is the main approximation in n-gram models. n-grams

were first used by Markov [21] to analyze the probability of a

consonant following a vowel in Pushkin’s Eugene Onegin. Shannon

applied word n-grams to model sentences in English text and with

n = 4 obtained sentences which have a remarkable syntactic

similarity to English [22]. Since then, n-gram models have found

wide use in many fields where sequences are to be analyzed,

including bioinformatics, speech processing and music. The

theory and applications of n-grams are described in several

textbooks [16,17]. Our method of obtaining probabilities from

counts and the use of smoothing and backoff to account for

unseen n-grams is described in Materials and Methods. The

measures we use for evaluating the n-gram model and the tests we

use to assign a statistical significance to the correlations are

discussed below.

In any n-gram study, a maximum value of n has to be chosen in

the interest of tractability, beyond which correlations are

discarded. This can be done in an empirical fashion, balancing

Figure 3. Rank-ordered frequency distribution of signs er plotted against the rank r for the EBUDS corpus. The data can be fit well by
the Zipf-Mandelbrot law, log fr~a{b log (rzc). For c = 0 and b = 1, this reduces to Zipf’s Law, fr~a=r. Both these laws are used to fit the frequency
distribution of words in linguistic corpora. Our fitted values are a = 15.39, b = 2.59 and c = 44.47. For English (the Brown Corpus), a = 12.43, b = 1.15 and
c = 100 [16].
doi:10.1371/journal.pone.0009506.g003

Analysis of Indus Script

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9506



the needs of accuracy and computational complexity, using

measures from information theory which discriminate between

n-grams models with increasing n [16,17], or by more sophisticated

methods like the Akaike Information Criterion which directly

provides an optimal value for n [23].

In previous work [12], it was shown that bigram and trigram

frequencies in the EBUDS corpus differ significantly from

frequencies expected from a Bernoulli scheme. The small size

of the corpus limits the ability to assess significance of

quadrigrams and beyond, when using the method in [12]. In

our subsequent work [13] it has been shown that 88% of the texts

of length 5 and above can be segmented using frequent unigrams,

bigrams, trigrams and quadrigrams and complete texts of length

2, 3 and 4. Moreover, frequent bigrams or texts of length 2 alone

account for 52% of the segmented corpus. Thus the bulk of the

corpus can be segmented with n-grams with n not exceeding 4,

and almost half the corpus can be segmented into bigrams

alone.

Here, we use cross-entropy and perplexity, discussed in detail

below, to measure how well n-gram models with varying n capture

the syntax in the corpus. We have modeled the EBUDS corpus

with successive orders of Markov chains starting with n = 1 to n = 5

for calculating perplexity. Our evaluation methodology involves

partitioning the corpus into a training set (from which the n-gram

probabilities are learnt) and a test set (on which the n-gram

probabilities are evaluated). The test set is commonly called a held-

out corpus. We find that the perplexity monotonically decreases as

n ranges from 1 to 3 (corresponding to unigram, bigram and

trigram correlations), but then saturates beyond n = 4 (correspond-

ing to quadrigram and higher correlations, see Table 1). This is

consistent with our earlier work [12,13] where syntactic units

consisting at most of quadrigrams were identified on the basis of

frequency and segmentation analysis.

From the differential reduction in perplexity with increase in

model order, it is clear that the most significant correlations are

due to bigrams, with somewhat modest trigram correlations, and

almost negligible quadrigram correlations. This appears reason-

able, given that the mean length of the Indus texts is about five

tokens. Here we present detailed analysis of bigram probabilities,

and representative results for trigrams. The main conclusions that

we draw in this paper on the structure of the script are expected to

remain broadly unaltered with the inclusion of trigram and

quadrigram correlations. The role of higher order correlations will

be more fully explored in forthcoming work.

Figure 4. Cumulative frequency distribution of all signs, only text beginners, and only text enders in the EBUDS corpus.
Approximately 69 signs account for 80% of the corpus. The script has a large number of signs which are used infrequently. The cumulative
distributions for text beginners and text enders show an asymmetry, with only 23 signs accounting for 80% of all text enders, while 82 signs account
for 80% of all text beginners. This is clear evidence of an underlying logic in the sign usage.
doi:10.1371/journal.pone.0009506.g004

Table 1. Perplexity and the n-gram cross entropy Hn(Q,P) for
the EBUDS corpus.

n 1 2 3 4 5

Perplexity (P) 68.82 26.69 26.09 25.26 25.26

Hn(Q,P) 6.10 4.74 4.71 4.66 4.66

The perplexity reduces dramatically when bigram correlations are included, has
a small but significant reduction with trigram correlations, but then saturates
beyond quadrigram correlations. This indicates that a bigram model captures a
significant portion of the syntax.
doi:10.1371/journal.pone.0009506.t001
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Figure 5. Bigram probability P(b|a) for a random distribution with no correlations amongst the signs (above) and for the EBUDS
corpus (below). Horizontal lines in the upper matrix imply that the conditional probability of a sign b following a sign a is equal to probability of
sign b itself. The bigram probability P(b|a) after Witten-Bell smoothing is shown in the lower plot. The difference between the two matrices indicates
the presence of correlations in the texts.
doi:10.1371/journal.pone.0009506.g005
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Analysis of Bigrams
We now present the results of a bigram analysis of the sequence

of signs in the EBUDS corpus. In a bigram model, it is assumed

that the probability P(sN Ds1 . . . sN{1) depends only on the

immediately preceding sign and is the same as P(sN DsN{1). The

bigram model is fully specified by the unigram probabilities P(si)
and the bigram conditional probabilities P(si Dsi{1).

We introduce two additional tokens # and $ which indicate the

beginning and end of a text respectively. By convention, the

unigram probability for the start token is unity, P(#)~1, since

every text must begin with #. The probability of sign a being a

beginner is then P(#a)~P(aD#), since P(#)~1. The probability

of sign a being an ender is P(a$).

The two plots in Fig. 5 compare the bigram conditional

probabilities in the absence of correlations (such that P(bDa)~P(b)
is just the unigram probability) with the bigram conditional

probabilities for EBUDS corpus after Witten-Bell smoothing (see

Materials and Methods). If there is no correlation between b and a, we

expect P(bDa)~P(b), that is, the conditional probability of b is

identical to the marginal probability. We show this marginal

probability in the first plot of Fig. 5. In the second plot of Fig. 5 we

show the matrix of bigram conditional probabilities P(bDa) that sign b

follows sign a in the corpus. There are significant differences between

the two plots. This indicates the presence of correlations in the script

and the necessity of going beyond unigrams to model the script.

In Fig. 6 we show the text beginner and text ender sign

probability distributions. This confirms our earlier conclusion

(Fig. 4), based on raw counts, that text enders are more strictly

defined than text beginners.

We can further analyze the nature of correlations of a sign with

other signs preceding or following it using the results of bigram

analysis. As an example, we explore the correlations of the three

most frequent text beginners (sign numbers 267, 391, and 293) and

the three most frequent text enders (sign numbers 342, 176 and

211) shown in Fig. 6 with other signs. It can be inferred from the

plots of conditional probabilities in Fig. 7, that is, P(bD267),
P(bD391) and P(bD293) for the text beginners and P(342Da),
P(176Da) and P(211Da) for the text enders, that the text beginners

267, 391 and 293 are more selective in terms of the number of

signs which can follow them in comparison to the text enders 342,

176 and 211 which can be preceded by relatively larger number of

signs. Thus, there is greater flexibility for signs preceding the text

enders than the signs which tend to follow the text beginners.

We can gain further insights into the sequential structure of the

texts by examining the signs 99 and 123 which most often follow

the text beginners. The number of signs which follow 99 and 123 is

quite similar to the number of signs that precede the text enders

342, 176 and 211 though in reverse direction (see plots of P(bD99)
and P(bD123) in Fig. 8). This helps us in finding the weaker and

stronger junctions in the texts as shown in [13] where this

information was used in segmenting the long texts into smaller

segments.

The diagonal elements P(bDb) of the matrix of bigram

probabilities are the probabilities of sign pairs with same signs.

Figure 6. Probability P(a|#) of a sign a following the start token # (text beginners) and probability P(a$) of sign a preceding the end
token $ (text enders). This is extracted from bigram matrix P(bDa) with Witten-Bell smoothing. Text beginners with a significant probability are
more numerous than text enders at the same threshold of probability.
doi:10.1371/journal.pone.0009506.g006

Figure 7. Conditional probability plots for text beginners a~~267, 391, 293 followed by sign b and for texts enders b~~342, 176, 211
preceded by sign a from bigram matrix P(b|a) with Witten-Bell smoothing. Text beginners are more selective in terms of the number of
signs which can follow them than text enders, which can have a large number of signs preceding them.
doi:10.1371/journal.pone.0009506.g007
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The most frequent sign pairs with repeating signs in the corpus are

(153,153) and (245,245).

To quantitatively assess the significance of correlations, and to

obtain statistically significant sign pairs, we need to test the null

hypothesis that signs a and b are independent. In Table 2 we give

the most frequent sign pairs as well as the ones which are

statistically most significant. Here, we enumerate the 20 most

significant sign pairs on the basis of log-likelihood ratio measure of

association for bigrams [24]. It is interesting to note that the most

significant sign pairs are not always the most frequent ones (given

in the first column of Table 2). Such a conclusion has also been

arrived at using an independent method of evaluating significant

pairs [25]. An exhaustive analysis of sign correlations, using several

measures of association and including significant bigrams, trigrams

and quadrigrams, will be forthcoming.

The bigram model can be used to generate texts according to

the Markov chain defined by the unigram and bigram probabil-

ities. In Fig. 9 we show examples of texts generated by the bigram

model. The evaluation of the performance of the model is

discussed in Materials and Methods.

To summarize, the results above show that it is necessary to go

beyond unigrams in modeling the EBUDS corpus, that there is

significant structure in the bigram probabilities, and that the

bigram probabilities themselves are statistically significant.

Analysis of Trigrams
The general n-gram model allows us to systematically go beyond

bigrams. In a trigram model, it is assumed that the probability

P(sN Ds1 . . . sN{1) depends only on the two immediately preceding

signs and is the same as P(sN DsN{2sN{1). The trigram model is

fully specified by the unigram probabilities P(si), the bigram

conditional probabilities P(si Dsi{1), and the trigram conditional

probabilities P(si Dsi{2si{1). While the unigram and bigram

conditional probabilities can be conveniently displayed as a graph

and as a matrix, the trigram probability, which is a three-

dimensional array, is not as easily displayed. It is possible to study

sections of the three-dimensional array by fixing one of the three

indices of the trigram conditional probability, and studying the

variation of the remaining two. In Fig. 10 we have plotted a

section of the trigram conditional probability P(cD336b), choosing

Figure 8. Conditional probability plots for sign b following text beginners a = 99 and a = 123. The number of signs following the signs 99
and 123 is greater than the number of signs following text beginners 267, 391 and 293 (Fig. 7).
doi:10.1371/journal.pone.0009506.g008

Table 2. Significant sign pairs from the log-likelihood ratio
(LLR) measure of association for bigrams.

Sign
Pair Rank Frequency Significant Rank

LLR
Value

(Naive) (EBUDS) Sign Pair (LLR)

267,99 1 168 267,99 1 792:40

336,89 2 75 336,89 2 522:03

342,176 3 59 342,1 3 286:46

8,342 4 58 51,130 4 252:02

391,99 5 56 342,176 5 210:24

347,342 6 56 347,342 6 208:68

342,1 7 48 8,342 7 201:77

293,123 8 40 293,123 8 196:14

87,59 9 39 245,245 9 195:67

48,342 10 38 130,149 10 181:35

171,59 11 36 171,59 11 169:99

249,162 12 34 249,162 12 156:07

89,211 13 34 391,99 13 155:63

245,245 14 33 222,254 14 147:21

59,211 15 31 182,293 15 137:34

51,130 16 27 150,123 16 132:38

65,67 17 27 89,211 17 130:77

99,67 18 26 216,254 18 128:64

162,342 19 25 171,8 19 114:87

123,343 20 25 87,59 20 111:01

The 20 most frequent sign pairs (first column) are compared with the 20 most
significant sign pairs (third column). The most frequent sign pairs are not
necessarily the most significant sign pairs, as measured by the log-likelihood
ratio measure of association.
doi:10.1371/journal.pone.0009506.t002

Figure 9. Examples of texts generated by the bigram model.
The texts are to be read from the right to the left. Some of the texts
generated by the model occur in the corpus.
doi:10.1371/journal.pone.0009506.g009
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a = 336, as the most frequent triplet is 336,89,211. This gives the

trigram conditional probability of all strings of the form 336,b,c.

Exhaustive studies of the type done for bigrams can also be

performed, but we leave reporting this for future work.

Significant trigrams can also be assessed from the trigram

conditional probabilities. Here, there are four possible null

hypotheses that can be tested, namely that of complete

independence P(abc)~P(a)P(b)P(c), and that of pairwise

independence P(abc)~P(ab)P(c) or P(abc)~P(a)P(bc) or

P(abc)~P(b)P(ac). Since bigram correlations have already been

established, assessing significant trigrams based on the first null

hypothesis is redundant. Instead, we test for pairwise indepen-

dence using the same log-likelihood ratio measure of association

used for bigrams [24]. The 20 most significant triplets using the

null hypothesis, P(abc)~P(ab)P(c), is displayed in Table 3. As in

the case of bigrams, the most frequent sign triplets are not the most

significant ones. Also, like the sign pairs the sign triplets also seem

to have a preferred location within the texts [12].

Significance of Correlations
Information theoretic measures (see Materials and Methods for

details) are commonly used to measure the goodness of n-gram

models and to assess the significance of correlations between

tokens. Here, we supplement our previous analysis of the bigrams

and trigrams with information theoretic measures such as the

entropy, mutual information (see Materials and Methods for

details) and perplexity.

In Table 4 we compare the unigram entropy and bigram

mutual information of the corpus with that of a completely

random sequence with no correlations. For this, the probability of

signs is uniform P(a) = 1/377 (since only 377 signs out of 417

appear in EBUDS) and the joint probability is P(ab)~P(a)P(b).
This gives an entropy of { log2 (377) = 8:56 and a vanishing

mutual information. In contrast, the unigram entropy of the

EBUDS corpus is 6.68 and the bigram mutual information is 2.24.

This also points to the presence of correlations, but the difference

between the entropy and mutual information also indicates that

there is flexibility in the sign usage, and the probability of a sign is

not completely determined by the preceding sign.

The main goal of n-gram analysis is to construct a good model

for the probability of sequences in a corpus. The cross-entropy is a

useful metric in evaluating the performance of n-gram models with

different n. For a true distribution Q(a) and its estimate P(a), the

cross entropy is defined as,

H(Q,P)~{
X

a

Q(a) log2 P(a) ð6Þ

The cross-entropy is minimum when the true and estimated

probability distributions coincide, Q(a) = P(a). As the model

accuracy increases, the cross entropy H(Q,P) approaches the true

entropy H(Q) of the corpus. The perplexity P, which is the

measure commonly used in the natural language processing, is the

exponential of the cross-entropy,

P~2H(Q,P) ð7Þ

The true probability distribution Q(a) is not known, but it can be

shown [16,17] that for a corpus of size M obtained from a

stationary and ergodic chain, the cross-entropy is given by the

limit,

Figure 10. A section of the trigram matrix. Trigram conditional probability P(c|ab), with a = 336, the most frequent triplet being 336,89,211
(circled in the plot). This gives the trigram conditional probability of all strings of the form 336,b,c.
doi:10.1371/journal.pone.0009506.g010
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H(Q,P)~ lim
M??

{
X

a

1

M
log2 P(a) ð8Þ

The previous formula does not require knowledge of Q(a), and

can then be used to give an estimate of the cross-entropy for a

large, but finite, corpus. The relation has obvious generalizations

to joint probability distributions P(ab), P(abc) . . ., of bigrams,

trigrams and higher n-grams. We denote the n-gram cross-entropy

by Hn(Q,P).

We measure the cross-entropy against a held-out portion of the

EBUDS corpus. The perplexity is reduced considerably when

bigram correlations are taken into account. This is consistent with

the previous analysis using entropy and mutual information. We

have also evaluated the perplexity for trigram and quadrigram

models, and this shows a monotonic reduction in perplexity as

shown in Table 1. This implies that correlations beyond the

preceding sign are important, though the most important

correlations comes from the preceding sign. The perplexity of

the bigram model is 26.69 which is significantly lower than that of

unigram model which equals 68.82. As discussed in the beginning

of this section, this motivates our choice of retaining only bigram

correlations for the present study. From the differential reduction

in perplexity, it is fair to conclude that the bulk of the correlations

are captured in bigrams. Applications based on bigram correla-

tions alone can therefore be expected to be reasonably accurate.

The evaluation of the bigram model using cross-validation is

discussed below.

Restoring Illegible Signs
An important practical use of the bigram model, first suggested

in [15], is to restore signs which are not legible in the corpus due to

damage or other reasons. We can use the bigram model to

evaluate the probability of a suggested restoration, and choose the

restoration with the highest probability. For example, consider the

three sign text S3~s1sxs3 in which the middle sign sx is illegible.

We use the bigram model to evaluate the probability of the string

for different choices of sx by

P(S3)~P($Ds3)P(s3Dsx)P(sxDs1)P(s1D#) ð9Þ

The most probable sign with which to restore the text is, then, the

maximum of this probability over all possible signs sx. Since there

are 417 possible signs, this can be accomplished by a direct

enumeration. When the number of illegible signs is more, the space

over which the maximization needs to be done grows rapidly. With

p illegible signs, there are 417p values from which to pick a

maximum. In such instances, instead of a direct search, a dynamic

programming algorithm may be applied. Here, we use the Viterbi

algorithm [16] for finding the most probable state sequence for a

given observation in a hidden Markov model, suitably modified to

make it applicable to a Markov chain, to find most probable

sequence of signs. Our results for sign restorations are summarized

in Fig. 11. We list the original text, a randomly chosen deletion for

that text, the most probable restoration, and the next probable

restorations obtained using the bigram model. We see that in all

cases, the bigram model is successful in reproducing the deleted

sign. This gives us confidence that the bigram model can be used to

suggest restorations of illegible signs in various corpora. Fig. 12 gives

few examples of how the model can be used for restoration of

doubtfully read signs in the texts of M77 corpus.

We can also use the model to find most probable texts of various

lengths. In Fig. 13 we reproduce the most probable texts of length

4,5 and 6 as predicted by the bigram model. There are exact

instances of the most probable texts of length 4,5 and slight

variants of most probable text of length 6 in the M77 corpus.

Model Performance Evaluation by Cross-Validation
The restoration algorithm also provides another measure of the

model performance by cross-validation. The corpus is divided into

a training set, from which the probabilities are estimated, and a

test set, on which the model is evaluated. The measure of goodness

of the model calculated is sensitivity defined as

Table 3. Significant sign triplets from the log-likelihood ratio
(LLR) measure of association for trigrams.

Sign
Triplet Rank Frequency Significant Rank

LLR
Value

(Naive) (EBUDS) Sign Triplet (LLR)

336,89,211 1 34 267,99,387 1 780:19

293,123,343 2 25 267,99,65 2 756:18

249,162,342 3 24 267,99,70 3 752:65

249,169,342 4 20 267,99,67 4 748:54

171,8,342 5 19 267,99,87 5 744:07

51,130,149 6 19 267,99,204 6 737:60

99,87,59 7 16 267,99,53 7 734:74

403,87,342 8 16 267,99,48 8 733:81

130,149,342 9 16 267,99,72 9 730:26

267,99,67 10 14 267,99,86 10 728:56

267,99,87 11 14 267,99,336 11 723:86

72,336,89 12 14 267,99,59 12 723:25

267,99,65 13 12 336,89,211 13 672:25

67,244,342 14 12 72,336,89 14 514:78

178,389,15 15 11 70,336,89 15 500:43

53,171,59 16 10 65,336,89 16 489:80

25,245,245 17 10 67,336,89 17 482:13

48,8,342 18 9 59,336,89 18 480:92

112,194,342 19 9 99,336,89 19 473:64

65,336,89 20 9 51,130,149 20 436:36

We use the null hypothesis, P(abc)~P(ab)P(c). The 20 most frequent sign
triplets (first column) are compared with the 20 most significant sign triplets
(third column). The most frequent sign triplets are not necessarily the most
significant sign triplets, as measured by the log-likelihood ratio measure of
association.
doi:10.1371/journal.pone.0009506.t003

Table 4. The entropy and mutual information of the EBUDS
corpus.

Measure Random EBUDS

Entropy (H) 8:56 6:68

Mutual information (I) 0 2:24

The entropy is smaller than a random equiprobable sequence of 417 signs. The
mutual information is non-zero, indicating the presence of correlations
between consecutive signs.
doi:10.1371/journal.pone.0009506.t004
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Figure 11. Suggested restoration of signs missing from texts. The last column lists the suggested restorations in decreasing order of
probability (Left to Right).
doi:10.1371/journal.pone.0009506.g011

Figure 12. Suggested restoration of doubtfully read signs in the texts of M77 corpus. The last column lists the suggested restorations in
decreasing order of probability (Left to Right). The signs with asterisk sign at the top right are the doubtfully read signs which are being restored
using the bigram model.
doi:10.1371/journal.pone.0009506.g012
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Sensitivity~TP=(TPzFN) ð10Þ

where TP is the count of true positives and FN is the count of false

negatives. The ratio of training to test set size used is 80:20. We

divide EBUDS into 5 equal parts i.e. P1, P2, P 3, P4 and P5 each

being one-fifth of the corpus. We start with the first part, selecting

that to be the test set and concatenate the remaining parts to form

the first training set. We use the training set to learn the

parameters of the model and use the test set to evaluate the

goodness of the model. We drop out signs randomly from the test

set and ask the model to fill in the dropped signs. We then count

the number of true positives, that is, the number of times the

predicted signs match with the signs under 90% area of the

cumulative probability curve; otherwise, they are considered false

negatives. This is repeated 100 times with the first test set and

training set.

The cross-validation test described above is repeated by taking

each of the five equal parts of EBUDS as the test set and

concatenating the remaining part as the training set. The results

are shown in Table 5 and Fig. 14. As can be seen from the plots,

the sensitivity of the model, considering all signs under 90% area

of the cumulative probability curve as true positives, is 74%.

Conclusion
We conclude that an n-gram Markov chain can be used to learn

syntactic features of the Indus script that depend on the contiguity

of signs. Our analysis shows that a quadrigram model appears to

be sufficient for this purpose. We find a Zipf-Mandelbrot

distribution for unigrams and unequal distributions in the

frequencies of text beginners and text enders, which provides

internal evidence for syntax in writing. Using a log-likelihood ratio

test of association, we find significant sign pairs and triplets, which

do not always correspond to high-frequency sign pairs and triplets.

Using entropic measures we find that trigrams and quadrigrams

make increasingly modest contributions to the overall correlations

in the script. A bigram version of the model is used to suggest

probable restorations of illegible signs from a corpus and a

measure of model performance is provided using cross-validation.

The combined results of our analysis, summarized in Table 6,

along with our earlier work [12–15], indicate that the script has a

rich syntax with an underlying logic in its structure which needs to

be explored further. Our results provide evidence in favor of the

linguistic hypothesis for the script but additional work is required

to reach a conclusive verdict. To the best of our knowledge, our

work represents the first use of the methods of n-gram analysis to

an undeciphered script. We believe probabilistic methods hold

considerable promise in elucidating syntax in undeciphered

scripts. Inducing grammar and syntactic structures for the Indus

script based on Markov chains is part of ongoing work.

Materials and Methods

Corpus
The corpus used for analysis is that of Mahadevan, compiled in

1977 [3], henceforth referred to as M77. It records 417 unique

signs in 3573 lines of 2906 texts. The serial number of the signs

used in this paper is as given in M77. As a convention followed in

the present paper, the texts depicted by pictures are to be read

from right to left, whereas the texts represented by just strings of

sign numbers are to be read from left to right (see M77 for

discussion on direction of texts). Moreover, throughout the paper,

we have used text beginners to refer to the signs at the right extreme

Figure 13. The most probable texts of length 4, 5 and 6 predicted by the model. Note that exact instances of the predicted texts are
present in the corpus for the 4-sign and 5-sign texts. For the 6-sign text, the same sequence, but with 2insertions, is found in the corpus.
doi:10.1371/journal.pone.0009506.g013

Table 5. Mean sensitivity (in %) with standard deviation of
the model predicted from each of the five test sets P1, P2, P3,
P4 and P5.

Test Set Train Set Mean Sensitivity STDEV

P1 {P2, P3, P4, P5} 75 2

P2 {P1, P3, P4, P5} 74 2

P3 {P1, P2, P4, P5} 74 2

P4 {P1, P2, P3, P5} 75 2

P5 {P1, P2, P3, P4} 72 2

Average 74 2

doi:10.1371/journal.pone.0009506.t005
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Figure 14. Sensitivity of the bigram model taking all signs under 90% area of the cumulative probability curve as true positives. The
five plots are for five different sets of test and training sets of EBUDS as given in Table 5.
doi:10.1371/journal.pone.0009506.g014

Table 6. Major conclusions.

Sl. No Test/Measure Results Fig./Table No. Conclusions

1. Zipf-Mandelbrot law Best fit for a = 15.39, b = 2.59,
c = 44.47 (95% Confidence interval)

Fig. 3 Small number of signs account for bulk of the data while a
large number of signs contribute to a long tail.

2. Cumulative frequency
distribution

69 signs: 80% of EBUDS, 23
signs: 80% of Text Enders, 82
signs: 80% of Text Beginners

Fig. 4 Indicates asymmetry in usage of 417 distinct signs. Suggests
logic and structure in writing.

3. Bigram probability Conditional probability matrix
for EBUDS is strikingly different
from the matrix assuming no
correlations.

Fig. 5 Indicates presence of significant correlations between signs.

4. Conditional probabilities
of text beginners and text
enders

Restricted number of signs
follow frequent text beginners
whereas large number of signs
precede frequent text enders.

Fig. 7 Indicates presence of signs having similar syntactic functions.

5. Log-likelihood significance
test

Significant sign pairs and
triplets extracted.

Tables 2, 3 The most significant sign pairs and triplets are not always the
most frequent ones.

6. Entropy Random: 8.56; EBUDS: 6.68 Table 4 Indicates presence of correlations.

7. Mutual information Random: 0; EBUDS: 2.24 Table 4 Indicates flexibility in sign usage.

8. Perplexity Monotonic reduction as n
increases from 1 to 5.

Table 1 Indicates presence of long range correlations, see also [12,13].

9. Sign restoration Restoration of missing and
illegible signs.

Figs. 11, 12 Model can restore illegible signs according to probability.

10. Cross validation Sensitivity of the bigram
model = 74%

Table 5, Fig. 14 Model can predict signs with 74% accuracy.

doi:10.1371/journal.pone.0009506.t006
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of texts depicted by pictures, and text enders to refer to the signs at

the left extreme of texts depicted by pictures. In order to remove

ambiguity, an Extended Basic Unique Data Set (EBUDS) is

created by removing from the concordance all texts containing

lost, damaged, illegible, or doubtfully read parts [12]. Texts spread

across multiple lines are also removed. For texts that occur more

than once, only a single copy is retained. Variations due to the

archaeological context of the sites, stratigraphy, and type of object

on which the texts are inscribed are, at present, not taken into

account in the interests of retaining a reasonable sample size.

The reasons for discarding texts which are spread over multiple

lines are twofold. First, it is not clear if each line of a multi-line text

is to be treated as a single text having a continuity of sequence, or

if it is to be regarded as separate text. Second, assuming a

continuity of sequence, the order in which the texts are to be read

across lines remains ambiguous [3].

The EBUDS dataset contains 1548 texts. In EBUDS, 40 signs out

of 417 present in the sign list of M77 do not make their appearance.

Out of these removed 40 signs, one sign (374) appears 9 times, one

sign (237) appears 8 times, two signs (282, 390) appear 3 times, three

signs (324, 376, 378) appear twice and thirty-three signs appear only

once in M77. Fig. 15 compares the distribution of texts lengths in

various datasets and shows the effect of the removal of texts on the

final dataset (EBUDS). We have already shown in our earlier work

[12], that the relative frequency distribution of signs in EBUDS is

comparable to M77 and hence EBUDS is a true representation of

M77, with a reduction in total sign occurrences, but not in the

percentage of total sign occurrences.

Other corpora include those of Parpola (see [4]) and Wells (see

[5]). Preliminary results from a comparative statistical analysis of

these corpora indicate that the major syntactic features are robust

across these corpora.

Probability of Sequences
We denote a sequence of N signs by SN~s1s2 . . . sN , where each

si is one of the 417 possible Indus signs. Each of these SN is referred

to as a text. The EBUDS corpus contains texts of maximum length

N = 14. In the empirical analysis above, we have obtained

frequency distributions for the signs si by counting the number of

times c(si) that sign si occurs in the corpus, and then dividing it by

the total size of the corpus. This is identified with the probability, in

the sense of maximum likelihood, of seeing the sign si in a text,

P(si)~
c(si)P
i c(si)

ð11Þ

In the absence of correlations, the joint probability that we see sign

s2 after sign s1 is independent of s1, and is just the product of their

individual probabilities

P(s1s2)~P(s1)P(s2) ð12Þ

Generalizing, the probability of the string SN~s1s2 . . . sN is simply

a product of the individual probabilities

Figure 15. Text length distributions in the different corpora used in the analysis. The raw corpus (M77) contains four instances of outliers,
texts of length n = 2 and n = 3 which occur in unusually large numbers. Keeping only single occurrences of these removes the sharp maximum around
n = 2 in the raw corpus. The corpus free of the outliers is then reduced again to keep only unique occurrences of the texts. This gives the M77-unique
corpus. Finally, damaged, illegible and multi-line texts are removed to give the EBUDS corpus. Texts of length n = 3 and n = 5 are most frequent in this
corpus.
doi:10.1371/journal.pone.0009506.g015
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P(SN )~P(s1s2 . . . sN )~P(s1)P(s2) . . . P(sN ) ð13Þ

In the absence of correlations, then, we have a scenario analogous to

die throwing, where instead of 6 possible outcomes, we have 417

possible outcomes in each throw, and the ith outcome has a

probability P(si). Each throw outputs a single sign, and the outcome

of a throw is independent of all previous throws. In N throws, we

generate a line of text SN. Our analysis shows that such an unigram

model, where each outcome is independent of the previous

outcome, is not adequate to model the EBUDS corpus. Thus it

necessary to explicitly account for correlations, which can be done

systematically using n-gram Markov chains.

Information Theoretic Measures
The information theoretic measures, entropy H and the mutual

information I, used to quantify the bigram correlations in the

sequences are given below.

H~{
X

a

P(a) log2 P(a), ð14Þ

I~
X

ab

P(ab) log2

P(ab)

P(a)P(b)

� �
, ð15Þ

Learning Markov Chains
n-gram probabilities are obtained from counts. For single signs,

the counts are unambiguous. However, for sign pairs, it is possible

that a rare combination may not be present in a small sized

corpus. The count, and the resulting probability estimate for that

sign pair, then is zero. However, in the absence of reasons to the

contrary, common sense dictates that no sign pair should have a

strictly zero probability. This intuition is quantified by various

rules which remove probability weight from seen sign pairs and

distribute it to sign pairs which have never been seen, but are

nonetheless not impossible. Common amongst such ‘‘smoothing’’

rules are Laplace’s add-one rule, a method developed by Turing

and Good in breaking the Enigma code, and a more recent

algorithm due to Witten and Bell [26]. Here, we use the Witten-

Bell algorithm to smooth our n-gram models. In Fig. 16 we show

the estimate of the probability of a sign being followed by sign 2,

P(bD2) before smoothing and after Witten-Bell smoothing. In

above panel, the only non-zero probabilities are those corre-

sponding to signs 12,14,162 and 176. These probabilities sum to

one, indicating that other sign pairs are impossible. The Witten-

Bell smoothing algorithm restores a finite, but small probability to

the unseen sign pairs, ensuring again that all probabilities sum to

one. Apart from being a more reasonable way of estimating

probabilities from counts, it also ensures that the resulting Markov

chain is ergodic. A Markov chain is ergodic if it is possible to reach

every state from every state (not necessarily in one move) and is

aperiodic. An ergodic Markov chain is essential in such

Figure 16. The conditional probability P(b|a = 2) from the maximum likelihood estimate (above) and from Witten-Bell smoothing
(below). The maximum likelihood estimate assigns zero probabilities to unseen sign pairs and results in a non-ergodic Markov chain. The Witten-Bell
smoothing algorithm reduces the probabilities of the seen sign pairs and distributes the reduction over unseen sign pairs. This gives an ergodic
Markov chain. The square root of conditional probabilities are plotted in each case to highlight the probabilities of unseen sign pairs.
doi:10.1371/journal.pone.0009506.g016
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applications, since otherwise, probabilities of all strings containing

unseen n-grams vanish.

Smoothing is not the only way of correcting for unseen n-grams.

Another method, called backoff uses probabilities of (n21) -grams

to estimate n-gram probabilities. Thus, the probability of unseen

trigrams can be estimated from that of seen bigrams and unigrams.

Here, we used the Katz backoff algorithm to estimate bigram,

trigram and quadrigram probabilities when appropriate.

The estimation of n-gram probabilities from n-gram counts is

called learning. A learned n-gram model can then be tested to see

if it produces n-grams in the corpus. To avoid circularity, the

corpus is usually divided into a training set, from which the

probabilities are estimated, and a test set, on which the model is

evaluated. There are several standard measures for evaluating the

goodness of an n-gram model. Here, we use a standard measure,

the perplexity, which is related to the information theoretic

measure, the cross-entropy. We also do a cross-validation test

using standard procedures.

Finally, we need tests of association to ascertain the significance

of sign pairs which appear more or less frequently than what

would be predicted by the Bernoulli scheme model. For this, we

use a log-likelihood ratio test, testing the null hypothesis that there

is no association between sign pairs [24]. We leave more

sophisticated statistical analyses [27] of significance of association

to future work.

Markov chain learning was implemented using the SRILM

toolkit [28] while the NSP [29] toolkit was used for the log-

likelihood ratio test of association.
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