
FastTree 2 – Approximately Maximum-Likelihood Trees
for Large Alignments
Morgan N. Price1,2*, Paramvir S. Dehal1,2, Adam P. Arkin1,2,3

1 Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America, 2 Virtual Institute of Microbial Stress and Survival, Lawrence

Berkeley National Lab, Berkeley, California, United States of America, 3 Department of Bioengineering, University of California, Berkeley, California, United States of

America

Abstract

Background: We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of
thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing
scalability.

Methodology/Principal Findings: Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution
criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-
likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site
(the ‘‘CAT’’ approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate
than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not
quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and
for large alignments, FastTree 2 is 100–1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support
values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory.

Conclusions/Significance: FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments.
FastTree 2 is freely available at http://www.microbesonline.org/fasttree.

Citation: Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5(3): e9490. doi:10.1371/
journal.pone.0009490

Editor: Art F. Y. Poon, Providence Health Care, Canada

Received November 25, 2009; Accepted February 9, 2010; Published March 10, 2010

Copyright: � 2010 Price et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the US Department of Energy Genomics: GTL program (DE-AC02-05CH11231). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: MorganNPrice@yahoo.com

Introduction

Inferring evolutionary relationships, or phylogenies, from

families of related DNA or protein sequences is a central method

in computational biology. Sequence-based phylogenies are widely

used to understand the evolutionary relationships of organisms and

to analyze the functions of genes.

The largest gene families already contain tens to hundreds of

thousands of representatives, and with the rapid improvements in

DNA sequencing, we expect even larger data sets to arrive soon.

Large families can be aligned with profile-based methods that scale

linearly with the number of sequences (http://hmmer.janelia.org/;

[1]). However, most methods for inferring phylogenies from these

alignments scale as O(N2L) or worse, where N is the number of

sequences and L is the length (width) of the alignment. Thus,

inferring phylogenies has become computationally challenging.

We recently described a scalable method for inferring

phylogenies, FastTree 1.0 [2]. FastTree 1.0 is based on the

‘‘minimum-evolution’’ principle – it tries to find a topology that

minimizes the amount of evolution, or the sum of the branch

lengths. FastTree 1.0 uses a heuristic variant of neighbor joining

[3,4] to quickly find a starting tree and uses nearest-neighbor

interchanges (NNIs) to refine the topology. (A nearest-neighbor

interchange swaps a node and its neighbor; for example, it might

change ((A,B),C,D) to ((A,C),B,D) or ((A,D),B,C).) FastTree

implements these operations in O(NLazN
ffiffiffiffiffi
N
p

) space, where a
is the number of characters in the alphabet, by storing profiles of

subtrees instead of distances between them. This requires far less

memory than storing the pairwise distances, which is necessary for

neighbor joining and related approaches. This also allows for

heuristics that reduce the theoretical running time to

O(N
ffiffiffiffiffi
N
p

log Nð ÞLa). (FastTree 1.0 also included some O(N2)

steps, but these have since been removed, see http://www.

microbesonline.org/fasttree/ChangeLog.) In comparison, com-

puting all pairwise distances, which is required with most

minimum-evolution approaches, requires O(N2L) time. The main

limitation of FastTree 1.0, as compared to other minimum-

evolution methods, is that it does not correct distances for multiple

substitutions during its initial neighbor joining phase. However,

this is more than made up for by the NNIs. In practice, FastTree

1.0 is more accurate than most other minimum-evolution

methods, but not as accurate as maximum-likelihood methods [2].

In the maximum-likelihood (ML) approach, evolution is

explicitly modeled with a transition rate matrix, and the tree that

best explains the data – the tree with the highest likelihood – is the

best tree [5]. The ML criterion ranks the trees but does not specify

how to find a good topology. Because ML phylogenetic inference

is NP complete [6], no practical method can guarantee that it will

PLoS ONE | www.plosone.org 1 March 2010 | Volume 5 | Issue 3 | e9490



find the optimal topology for a large alignment. The most scalable

ML methods, such as PhyML and RAxML, begin with a starting

tree produced by a faster method, and try to increase the

likelihood by optimizing individual branch lengths and performing

local rearrangements [7–9]. By re-optimizing only a few branch

lengths at each move, the cost of considering or performing a

move can be reduced to O(La2) time, where a is the size of the

alphabet. However, in practice, the number of moves grows as

roughly O(N2), and the optimization steps are inherently slow

because they require numerical solving and iteration. This

explains why both PhyML and RAxML can take over a day for

just 1,000 protein sequences. Estimating the reliability of the tree

with the bootstrap [10] generally increases the computational

requirements another 100-fold (although this can be reduced by

reusing computations across replicates [11]).

Here, we describe FastTree 2, a tool for inferring ML trees for

large alignments. Besides constructing an initial tree with neighbor

joining and improving it with minimum-evolution NNIs, FastTree

2 uses minimum-evolution subtree-pruning-regrafting (SPRs)

[8,12] and ML NNIs to further improve the tree. (In subtree-

pruning-regrafting, a subtree is removed from the tree and

reinserted elsewhere, e.g., pruning and regrafting C might change

((A,B),(C,D),E) to ((A,(B,C)),D,E).) FastTree 2 uses heuristics to

reduce the search space and hence to maintain the scalability of

both stages. Another justification for reducing the search space is

that intensive tree search often finds small improvements in the

tree’s length or likelihood, but these changes may not be

statistically or biologically significant (e.g., [13]). Briefly, FastTree’s

key heuristics are:

N It uses ‘‘linear SPRs’’ to consider just O Nð Þ of the O N2
� �

possible SPR moves. At each node, it examines the shortest

SPRs first and then extends the most promising candidates.

N It searches for SPR moves for every subtree just twice, instead

of iterating until convergence.

N During the ML phase, it limits the ML NNIs to at most

2 log Nð Þ rounds; in practice, it converges before it reaches this

limit, but the limit ensures a predictable running time.

N It limits the effort to optimize model parameters and branch

lengths.

N It abandons optimization for NNI moves that seem, after

partial optimization, to significantly lower the likelihood.

N It does not try to improve parts of the tree that did not improve

in recent rounds.

To account for the variation in rates across sites, FastTree uses

the ‘‘CAT’’ approximation [14] rather than the standard discrete

gamma model with four rates (C4) [15]. Some sites evolve much

more slowly than others, and the ideal way to account for this is to

integrate the likelihood at each site over the (unknown) relative

evolutionary rate of that site, using a prior distribution over the

relative rates such as a gamma distribution. However, these

integrals are analytically intractable and computationally prohib-

itive. The ‘‘C4’’ approach is to use four rate categories to

approximate the continuous gamma distribution. However, C4 still

requires four times more CPU time and memory than a model

with no rate variation across sites. Furthermore, for large

alignments, the data tightly constrains the rate at each site. Thus,

it is much faster, and just as accurate, to use a good estimate of the

rate at each site (CAT) rather than to sum over four potential rates

(C4) [14]. FastTree selects the most likely rate for each site from

among 20 fixed possibilities.

Because of the heuristics, FastTree 2 is not guaranteed to reach

a locally optimal likelihood in tree space. However, at each step it

does guarantee that the likelihood increases (under the CAT

approximation). Thus, FastTree 2 is an approximately-maximum-

likelihood method.

We will show that in practice, FastTree 2 is slightly more

accurate than a standard implementation of maximum-likelihood

NNIs, PhyML 3 with default settings [16,17]. Specifically, in

simulations, FastTree 2 recovers a higher proportion of true splits,

and on genuine alignments, FastTree 2’s topologies tend to have

higher likelihoods. FastTree’s minimum-evolution SPR moves give

it a better starting tree than PhyML’s starting tree, which is

obtained with BIONJ (a weighted variant of neighbor joining

[18]). This more than makes up for FastTree’s heuristics, which

reduce the intensity of search for ML NNIs but have little effect on

accuracy. We also confirm that using the CAT approximation

instead of the C4 model (which is itself an approximation of the

continuous gamma distribution) has little effect on the quality of

the tree.

Although FastTree 2 is significantly less accurate than ML

methods that use SPR moves, such as PhyML with slower settings

or RAxML, most of the splits that disagree are poorly supported,

and FastTree is much faster. FastTree 2 can analyze alignments

with tens or hundreds of thousands of sequences in under a day on

a desktop computer. For alignments with 500 sequences or more,

FastTree 2 is at least 100 times faster than either PhyML 3.0 or

RAxML 7.2.1. FastTree 2 is faster than RAxML 7 mostly because

of less intensive ML search (NNIs instead of SPRs) and because

RAxML 7 optimizes branch lengths under the C4 model.

However, FastTree also has a faster starting tree, and it initially

increases the likelihood more quickly than RAxML 7 does.

Because of its speed, FastTree 2 is suitable for bootstrapping.

However, to provide a quicker estimate of the tree’s reliability,

FastTree 2 provides local support values based on the Shimodaira-

Hasegawa (SH) test [16,17,19]. FastTree 2 should be useful for

reconstructing the tree of life and for analyzing the millions of

uncharacterized proteins that are being identified by genome

sequencing.

Results

We compared FastTree’s speed and accuracy to those of

PhyML 3.0 and RAxML 7, the most popular maximum-likelihood

methods. To measure the quality of the resulting trees, we

measured the topological accuracy on simulated alignments and

the likelihood on genuine biological alignments.

Topological Accuracy in Simulations
We tested FastTree on simulated protein alignments with 250 to

5,000 sequences [2]. These simulations were derived from diverse

gene families that arise in genome-scale studies (‘‘Collections of

Orthologous Groups’’ or COGs, [20]). The simulations include

varying evolutionary rates across sites and include realistic

placement of gaps. The simulations are available from the

FastTree web site (http://microbesonline.org/fasttree/#Sims).

We defined the topological accuracy as the proportion of the

splits in the true trees that are recovered by each method. This is the

converse of the topological (‘‘Robinson-Foulds’’) distance, scaled to

range from 0 to 1. As shown in Table 1, FastTree 2 was slightly

more accurate than PhyML 3 with default settings (NNI search),

and much more accurate than minimum-evolution or parsimony

methods, but not as accurate as ML methods that use SPR moves.

The differences in accuracy between FastTree 2 and the other

methods were statistically significant (all Pv10{5, paired t tests).

To test the practical significance of the additional true splits that

are found by using ML SPR moves, we examined the local support

FastTree 2

PLoS ONE | www.plosone.org 2 March 2010 | Volume 5 | Issue 3 | e9490



values reported by PhyML 3. We defined ‘‘strongly supported’’ as

having both SH-like local supports and approximate likelihood

ratio test (aLRT) supports [21] of 95% or higher. Only 16% of the

true splits that are found by PhyML 3 with SPR moves but missed

by FastTree 2 were strongly supported. The full distribution of

support values is shown in Figure 1. Conversely, among the

strongly supported splits that were found by PhyML 3 with SPRs

but not FastTree, 20% were incorrect. Thus, few of the additional

true splits have high support, and of the splits that disagree, even

the ones that have high support have a significant probability of

being incorrect.

To understand why FastTree 2 was outperforming PhyML 3

with NNI search, we ran PhyML 3 with FastTree’s minimum-

evolution tree as its starting tree. For the protein simulations with

250 sequences, this improved PhyML’s accuracy to 86.8%, which

is statistically indistinguishable from FastTree’s accuracy of 86.9%

(P~0:11, paired t test, n~308). We also confirmed that

FastTree’s minimum-evolution phase yields more accurate starting

trees than either PhyML 3’s approach of using BIONJ with

maximum-likelihood distances or RAxML’s implementation of

parsimony (Table 1).

CAT-Based Branch Lengths and Local Support Values
Because FastTree 2 does not exhaustively optimize the

likelihood, and because it reports branch lengths and local support

values that were estimated using the CAT approximation, we

compared its branch lengths and local support values to C4-based

lengths and supports. Specifically, for the protein simulations with

250 sequences, we re-optimized the branch lengths and computed

local SH-like support values for the FastTree topologies with

PhyML 3 and C4. (For both tools, we used the Jones-Taylor-

Thorton (JTT) model of amino acid evolution.) PhyML’s internal

branch lengths were well correlated with those from FastTree

(r = 0.90). For branch lengths of 1.0 or less, the average difference

was just 0.01, and for branch lengths between 0.01 and 1.0, the

average percent difference was 13%. For internal branch lengths

on correct splits, FastTree agreed slightly better with the true

lengths (median absolute difference of 0.062 for PhyML and 0.059

for FastTree). Thus, the CAT approximation gave acceptable

branch lengths.

If accurate branch lengths are essential, however, then neither

the CAT approximation nor the standard C4 approximation is

sufficient. The C4 approximation was introduced for alignments

with just 10 sequences, and four discrete rate categories may not

suffice to give accurate likelihoods on larger alignments [15,22].

For alignments of 16S ribosomal RNAs, C4 branch lengths can be

a factor of two shorter than C1000 branch lengths (Figure S1). As

explained in Figure S1, correcting by the average posterior rate

reduces this problem, and FastTree can compute a fast but

accurate approximation to C20-based lengths.

The local SH-like support values also showed a good correlation

between FastTree and PhyML (r = 0.90). For splits with local

support values of at least 0.9 from either FastTree or PhyML, the

average absolute difference was just 0.008, which is not much

greater than the sampling error. (For example, with 1,000

bootstraps and 95% support, the standard deviation of support

values due to sampling is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000:0:95: 1{0:95ð Þ

p �
1000 = 0.007.)

FastTree was less effective than PhyML in distinguishing correct

from incorrect splits, but the difference was slight: the area under

the receiver operating curve (AOC) was 0.880 instead of 0.887

(Pv10{5, test of [23]).

Effectiveness of Heuristics
We then examined how the topological accuracy of FastTree 2

is affected by its heuristics. As shown in Table 1, the minimum-

evolution phase of FastTree, which uses linear SPRs, is not as

accurate as FastME 2, a minimum-evolution method that

performs exhaustive SPR moves [8,12]. FastME computes

distances between internal nodes differently from the minimum-

evolution phase of FastTree: FastME uses averages of distances

Table 1. Topological accuracy of trees inferred from
simulated alignments.

250 1,250 5,000 78,132

Method a.a. a.a. a.a. nt.

RAxML 7 (JTT+CAT, SPRs) 90.5% 88.4% 88.4% –

PhyML 3.0 (JTT+C4, SPRs) 89.9% – – –

FastTree 2.0.0 (JTT+CAT or JC+CAT) 86.9% 83.7% 84.3% 92.1%

PhyML 3.0 (JTT+C4, no SPRs) 86.0% – – –

FastME 2.06 (log-corrected distances, SPRs) 80.5% 78.8% 77.0% –

FastTree 2.0.0, no ML NNIs 80.4% 78.3% 76.6% 91.4%

BIONJ (ML distances) 77.7% 73.7% 73.1% –

Parsimony (RAxML) 76.8% 76.5% 69.4% –

Neighbor joining (log-corrected distances) 76.0% 72.6% 71.6% 66.1%

Clearcut (log-corrected distances) 75.5% 72.3% 71.5% 58.1%

For alignments with 5,000 sequences, we used RAxML 7.2.1 with fast
convergence; for smaller alignments we used RAxML 7.0.4. An earlier version of
PhyML 3 took up to 4 days for individual simulations with 1,250 sequences,
even without C4 , so we did not try to run PhyML 3 with C4 on the larger

simulations.
doi:10.1371/journal.pone.0009490.t001

Figure 1. Local support values for splits found by PhyML with
SPR moves and/or FastTree. We examined local support values for
the splits inferred by PhyML 3.0 with C4 + SPRs on simulated alignments
with 250 protein sequences. We classified PhyML’s splits as correct and
found by both PhyML and FastTree, correct but missed by FastTree, or
incorrect. We show the distribution of support values for each class. The
right-most bin includes the strongly supported splits (0.95 to 1.0), and
the gray dashed line shows the uniform distribution. The support values
are PhyML’s minimum of the approximate likelihood ratio test [21] and
SH-like [16,17] local supports.
doi:10.1371/journal.pone.0009490.g001

FastTree 2

PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9490



between sequences, while FastTree uses distances between profiles,

which are averages of sequences. Nevertheless, FastTree 1 with

only NNI moves gave very similar results as FastME with only

NNI moves [2]. Thus, we attribute the modest difference in

accuracy of the minimum-evolution methods with SPRs to

FastTree’s heuristics. To eliminate this effect, we ran FastTree

with the FastME starting tree. To eliminate the effect of FastTree’s

ML heuristics, we ran it with exhaustive ML NNIs, and with more

exhaustive optimization of branch lengths within each NNI (4

rounds of optimizing branch lengths for each quartet, instead of 1–

2 rounds). In combination, FastTree 2 with FastME+SPR starting

trees and exhaustive NNIs improved the accuracy on simulated

alignments with 5,000 protein sequences from 84.3% to 85.0%.

This modest effect illustrates that all of FastTree’s heuristics have

little effect on accuracy, and that removing them would improve

the topology little relative to adding ML SPRs (e.g., RAxML 7.2.1

was 88.4% accurate).

We also tested FastTree on simulations with over 78,000

nucleotide sequences. These simulations are derived from a 16S

ribosomal RNA alignment (see Methods). The large size of these

simulated alignments makes them a stringent test of FastTree’s

heuristics. In these simulations, FastTree gave much more

accurate topologies than exact neighbor joining or Clearcut

[24], a faster heuristic variant of neighbor joining (Table 1). (To

analyze such large alignments with exact neighbor joining, we

used NINJA [25].) To verify that the heuristics in FastTree’s

neighbor joining phase do not reduce accuracy, we also ran

FastTree with the exact neighbor-joining tree as its starting tree,

before doing minimum-evolution NNIs and SPRs and ML NNIs.

This gave the same accuracy as the regular FastTree or as

FastTree with the fastest settings of its heuristics for the neighbor

joining phase (-fastest). All three variants found 92.10% of splits

correctly.

It may seem surprising that FastTree can reach accurate

topologies when it does not compare all pairs of sequences to each

other. However, minimum-evolution NNIs and SPRs are

‘‘consistent’’ – they find correct trees, even if the distances contain

some errors, as long as the errors are much smaller than the

internal branch lengths [26,27]. In practice, the errors are often

larger than the internal branch lengths, but this still probably

explains why NNIs and SPRs suffice to find most of the splits

correctly.

Quality of Topologies for Biological Alignments
To confirm that FastTree finds good topologies for genuine

alignments, and not just in simulations, we tested it on 16S

ribosomal RNAs and on protein families from COG. Although

these families are quite large (up to 300,000 or 19,000 members,

respectively), we first tested random subsets of just 500 sequences,

so that we could run PhyML 3 with C4. To measure the quality of

the topologies from FastTree 2, PhyML 3, and RAxML 7, we re-

optimized the branch lengths with a C4 model (using RAxML) and

compared the resulting likelihoods. As expected from the

simulations, FastTree found better topologies than PhyML 3 with

C4 and NNI moves, but not as good as RAxML 7 (Table 2).

We then tested FastTree and RAxML on larger alignments of

16S rRNAs and COGs. For alignments with thousands of

sequences, RAxML 7.0.4 is a bit slow, so we used RAxML

7.2.1, which introduced a fast convergence option as well as other

optimizations. With fast convergence, RAxML terminates the

search if less than 1% of splits change during a round of SPR

moves. As shown in Table 1, for 5,000 proteins, RAxML with fast

convergence is nevertheless quite accurate.

On the larger alignments, RAxML 7.2.1’s likelihoods were

much higher than FastTree’s, and all of the differences in

likelihood were statistically significant (all P~0, SH test using

CONSEL [28]). However, FastTree did find most of the splits in

the RAxML topology that had strong support (Table 3). For

example, FastTree found 96–98% of RAxML’s splits that had

global bootstrap of 90% or higher.

Running Time and Memory Required
Finally, we compared the computational performance of

FastTree, RAxML, and PhyML, on genuine alignments. As

shown in Table 4, for alignments with 500 sequences, FastTree is

about 100 times faster than RAxML 7.0.4 when using the same

model of evolution, and even faster relative to PhyML 3. For

alignments with thousands of sequences, FastTree was still 100–

800 times faster than RAxML 7.2.1 with fast convergence of

Table 2. Average log-likelihood for genuine alignments with
500 sequences.

Method 16S COG

RAxML 7.0.4 (GTR+CAT or JTT+CAT, SPRs) 2168,104 2206,724

FastTree 2.0.0 (GTR+CAT or JTT+CAT) 2168,577 2206,993

PhyML 3.0 (GTR+C4 or JTT+C4, no SPRs) 2168,603 2207,156

For all topologies, the log likelihood was computed with RAxML 7, re-optimized
branch lengths and model parameters, and the GTR+C4 or JTT+C4 models for
16S or COG, respectively. All differences between FastTree and other methods
were statistically significant (Pv10{10) except for the comparison with PhyML
on 16S rRNAs (P~0:07, paired t test).
doi:10.1371/journal.pone.0009490.t002

Table 3. Comparison of RAxML and FastTree’s log likelihoods,
and the agreement of FastTree with RAxML’s well-supported
splits, for large genuine alignments.

16S rRNA 16S rRNA 7 COGs

Number of sequences 4,114 6,718 2,500

RAxML 7’s Log Likelihood 2325,581 2481,259 21,238,666

FastTree 2’s Log Likelihood 2328,062 2493,841 21,240,916

Difference 2,481 12,582 2,251

Well-supported RAxML splits (bootstrap§0.9)

Total in RAxML tree 851 1,124 –

Found by FastTree 837 1,075 –

Weakly-supported RAxML splits (bootstrap 0.8–0.9)

Total in RAxML tree 265 419 –

Found by FastTree 250 365 –

Locally-supported RAxML splits (SH§0.95)

Total in RAxML tree 1,336 1,927 1,018

Found by FastTree 1,033 1,319 889

We ran RAxML with the fast convergence option. All values for COGs are
averages over seven families. Log likelihoods for all topologies were computed
with RAxML using C4 and GTR or JTT. Global bootstrap values are from using

the standard bootstrap with RAxML 7.0.4 (from [11]). SH-like local support

values for RAxML’s topology were computed with FastTree 2, the CAT

approximation, and GTR or JTT.
doi:10.1371/journal.pone.0009490.t003

FastTree 2

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9490



SPRs, while PhyML 3 did not complete in a reasonable amount of

time.

For one of the largest alignments existing today, containing

237,882 16S ribosomal RNAs, FastTree took less than a day and

5.8 GB of memory on a desktop computer. For comparison, given

that RAxML took over 2 days for just 15,011 sequences, and

optimistically assuming O(N
ffiffiffiffiffi
N
p

) scaling, RAxML would take

around half a year for the full 16S alignment. Analyzing such

alignments with traditional minimum evolution approaches based

on a distance matrix would also be prohibitive – just computing

and storing all pairwise distances for these sequences, without

computing a topology, would require roughly a day and a half and

113 GB of storage.

All of the FastTree times include the computation of local SH-

like support values, while the other tools were run without support

values. The local support values do not affect FastTree’s running

time much. For example, across seven COG alignments with

2,500 protein sequences each, the average time for FastTree to

infer a tree is 345 seconds, and the average time for it to compute

SH-like supports is 51 seconds. For the full alignment of 237,882

16S rRNAs, the supports required just one hour.

Much of the time in RAxML 7.2.1 is spent optimizing the

branch lengths under the C4 model, even though the CAT

approximation is used to search for a good topology. (RAxML can

also perform SPR moves under the C4 model, but we ran it with

SPR moves under the CAT model only, followed by optimizing

branch lengths under C4, because RAxML 7.2.1 does not report

CAT-based branch lengths.) If branch lengths are not required,

such as during bootstrapping, then RAxML can be 2–3 times

faster than shown in Table 4. For example, for 15,011 16S rRNAs,

if the C4 phase is removed, then RAxML 7.2.1 takes 30 hours

instead of 64 hours, which is still about 45 times slower than

FastTree. The C4 phase of RAxML is also expected to quadruple

the memory required. For example, for 15,011 16S rRNAs,

FastTree required 0.56 GB of memory, while RAxML with C4

required 2.6 GB.

Improvement of Likelihood Over Time
To compare the search strategies of FastTree and RAxML

more directly, we compared their improvement in likelihoods over

time for a nucleotide alignment of 4,114 16S rRNAs [11] and for

seven protein alignments of COG families with 2,500 members.

We ran both methods with the CAT approximation and with

either the generalized time-reversible (GTR) model of nucleotide

substitution or the JTT model of amino acid substitution. We

computed likelihoods for intermediate and final trees with

RAxML, re-optimized branch lengths, and C4. Figure 2 shows

the running time and log likelihood for FastTree’s minimum-

evolution and final tree, for RAxML’s initial parsimony tree and

successive rounds of SPR moves, and also for RAxML with

FastTree’s minimum-evolution tree as its starting tree. These times

do not include FastTree’s support values or RAxML optimizing

branch lengths under C4.

Given the same starting tree, FastTree’s ML phase improved

the likelihood by roughly the same amount as one round of

RAxML’s SPR moves, and in about 40% of the time (Figure 2).

FastTree’s ML phase also performs about as well as one round of

RAxML’s SPR moves in finding well-supported splits (Figure S2).

We obtained similar results for other large 16S alignments (Table

S1). Although this comparison shows that FastTree is initially

faster than RAxML, the RAxML’s first round of SPR moves is

only a fraction of its run time. Most of the difference in speed

between FastTree and RAxML is because of RAxML’s more

thorough search for a better topology and because of RAxML’s C4

branch lengths.

Starting Trees: Minimum-Evolution versus Maximum
Parsimony

RAxML’s parsimony phase was 4–17 times slower than

FastTree’s minimum evolution phase, and generally slower than

FastTree with ML NNIs. FastTree’s speed advantage grows with

larger alignments (data not shown), which is expected because

FastTree should scale as O(N3=2) and RAxML’s parsimony phase

uses randomized stepwise addition, which scales as O(N2), as well

as limited parsimony-based SPR moves. There are faster

implementations of parsimony, such as RAxML 7.2.5 (which

was released after we conducted the above experiments) or TNT

[29], but these still scale as O(N2). For 15,011 16s RNAs, RAxML

7.2.5’s parsimony and FastTree’s minimum evolution phase take

about the same time (data not shown).

As measured by likelihood, FastTree’s minimum-evolution

starting trees were much better than RAxML’s parsimony starting

trees for the COG alignments, but much worse for large 16S

rRNA alignments (Figure 2 and Table S1). The differences in

likelihood reflects the criterion, and not merely differences in the

search strategy: for the COG alignments, the RAxML parsimony

starting trees were more parsimonious than FastTree’s minimum-

evolution trees (average parsimony scores of 281,237 and 283,125,

Table 4. Running time and memory usage on genuine alignments.

Distinct FastTree 2.0.0 RAxML 7 PhyML 3

Alignment Sequences Positions Model Hours GB Hours Hours

16S rRNA, subsets 500 1,287 nt. GTR 0.02 – 2.2 2.9

COGs, subsets 500 65–1,009 a.a. JTT 0.02 – 5.2 7.2

COGs, subsets 2,500 197–384 a.a. JTT 0.11 – 61 –

Efflux permeases 8,362 394 a.a. JTT 0.25 0.35 197 w1,200

16S rRNAs, families 15,011 1,287 nt. GTR 0.66 0.56 64 w2,000

ABC transporters 39,092 214 a.a. JTT 1.02 0.96 – –

16S rRNAs, all 237,882 1,287 nt. JC 21.8 5.8 – –

All runs used a single thread of execution. All runs accounted for variable rates across sites, using CAT for RAxML 7 and FastTree 2 or C4 for PhyML 3. All FastTree runs
include local SH-like supports and all RAxML runs include branch lengths under C4. RAxML and PhyML were run without support values (no bootstrap). For random
subsets of 500 16S rRNAs or for COGs, we show average running times. For alignments with over 1,000 sequences, we used RAxML 7.2.1’s fast convergence option.
doi:10.1371/journal.pone.0009490.t004

FastTree 2

PLoS ONE | www.plosone.org 5 March 2010 | Volume 5 | Issue 3 | e9490



respectively). Conversely, for the 16S alignment with 4,114

sequences, FastTree’s minimum-evolution tree was shorter than

the parsimony tree (lengths of 43.0 and 44.6, respectively). For this

alignment, the minimum-evolution tree’s log likelihood was 2,705

worse than parsimony’s, yet minimum evolution found more of the

strongly-supported splits in the final RAxML tree: minimum

evolution found 826 of the 851 splits with a global bootstrap

§90%, while parsimony found 814 of them. Thus, we are not

sure if the difference in likelihood is biologically meaningful.

Discussion

We have shown that FastTree 2 computes accurate topologies

in a reasonable amount of time for alignments with up to hundreds

of thousands of sequences. FastTree is open source software and is

available at http://microbesonline.org/fasttree. The C source

code is extensively documented and contributions are welcome.

FastTree trees for every microbial gene family, including families

with tens of thousands of members such as ABC transporters, are

available at MicrobesOnline (http://microbesonline.org/), along

with a ‘‘tree-browser’’ for examining these trees. These trees will

be updated from FastTree 1 to FastTree 2 in the next release of

MicrobesOnline.

Because DNA sequencing technology is improving rapidly, we

expect to have alignments with millions of sequences soon. For

these huge alignments, the most computationally demanding step

will be the initial neighbor-joining phase. In FastTree 2.0, which is

described here, neighbor joining takes O(N1:5La) time and

O(N1:5zNLa) space, while the other stages take at most

O(N log Nð ÞLa2) time and O(NLa) space. For example, for

237,882 16S sequences, the neighbor-joining phase of FastTree

2.0 already takes 10.8 of the 21.8 hours. In FastTree 2.1, we have

improved the scaling of time and memory from O(N1:5) to

O(N1:25), without affecting accuracy in our simulations (data not

shown). FastTree 2.1 also supports parallel execution of the key

steps in the neighbor-joining phase. To improve scalability further,

it might be possible to use a divide-and-conquer method to find

clusters of closely related sequences in O(N log Nð ÞL) time, as in

PartTree [30]. In our simulations, PartTree starting trees do not

allow FastTree to reach the same accuracy as FastTree’s neighbor-

joining starting tree does (data not shown), but a divide-and-

conquer approach might still suffice to obtain a partially resolved

initial tree.

Such huge families also raise challenges for multiple sequence

alignment. We have used profile alignment to avoid the challenges

of multiple sequence alignment on large families. This works well for

16S RNAs because Infernal takes advantage of highly conserved

secondary structure [1], but we are not sure that it gives accurate

results for diverse protein families. In contrast, traditional

progressive multiple sequence alignment methods are not scalable

because their output grows as O(N2L): there are O(NL)

independent insertions, and each insertion requires a new column

in the alignment and hence O(N ) storage. However, Fast Statistical

Alignment uses an O(NL) representation, both internally and as an

output format [31]. Combining this representation with fast guide

tree construction, it should be possible to build progressive multiple

sequence alignments with millions of sequences.

Figure 2. Likelihoods over time for genuine alignments. Each line shows the time it takes a different tool to reach a given likelihood. For the
COG alignments, all times and likelihoods are averages over the seven alignments. For FastTree, we show the time and the improvement in likelihood
for the minimum-evolution topology and the final (approximately-ML) topology. For RAxML, we show the maximum parsimony starting topology,
the first two rounds of SPR moves, and the final topology (note the interrupted x axis). For RAxML with FastTree’s (minimum-evolution) starting tree,
we show the starting topology and RAxML’s first two rounds of SPR moves.
doi:10.1371/journal.pone.0009490.g002

FastTree 2

PLoS ONE | www.plosone.org 6 March 2010 | Volume 5 | Issue 3 | e9490



Finally, it is not clear how to assess the quality or reliability of

such large trees. Different methods gave very different topologies

and large differences in likelihood, and yet few of the differences

were well-supported by the bootstrap. In fact, a topology with

relatively poor likelihood could have relatively good agreement

with the best tree. This could indicate that higher-likelihood trees

contain many improvements, but that few of the individual

improvements are statistically significant. This is expected if there

is limited phylogenetic signal. Alternatively, the bootstrap could be

too conservative. Local support values do suggest a greater

number of significant differences (Table 3), but local support

values may be biased upwards because they do not consider all of

the alternate topologies. Further study of these questions is needed.

Materials and Methods

Minimum-Evolution ‘‘Linear’’ Subtree-Pruning-Regrafting
To reduce the number of SPR moves considered from O(N2) to

O(N ), FastTree does just two rounds of ‘‘linear SPRs.’’ For each

node, FastTree does an exhaustive search for moves up to length

two. It extends each of these moves up to a length of 10 along the

best choice at each point along the way.

As suggested by Richard Desper and Olivier Gascuel, FastTree

treats each potential SPR move as a sequence of NNIs. The

change in tree length for the SPR move is then just the sum of the

changes due to the NNIs, much as (a{c)~(a{b)z(b{c).
The change in tree length for an NNI from ABDCD to ACDBD,

where A, B, C, and D may be subtrees rather than sequences, is

estimated by d A,Cð Þzd B,Dð Þ{d A,Bð Þ{d C,Dð Þð Þ=4. In Fas-

tME, which introduced balanced minimum evolution [12],

d A,Cð Þ is a topologically weighted average of distances between

the members of A and C. In contrast, in FastTree, d A,Cð Þ is the

log-corrected distance between the profiles for the subtrees A and

C, and the profile P of a subtree is derived from that of its children

by P ABð Þ~ P Að ÞzP Bð Þð Þ=2. (Although FastTree 1 used weight-

ed joins, as in BIONJ, FastTree 2 uses unweighted joins because

they are faster, and the slight effect on accuracy is erased by the

ML NNIs.) For nucleotide sequences, the log correction is the

Jukes-Cantor correction d~{
3

4
log 1{

4

3
du

� �
, where du is

average dissimilarity of positions across profiles. For amino acid

sequences, FastTree uses an empirical log correction similar to

that of scoredist [32], d~{1:3:log 1{duð Þ, where du is based on

an amino acid dissimilarity matrix derived from the BLOSUM45

similarity matrix.

In FastME, the above formula for the change in tree length is

exactly correct because the changes in other branch lengths in the

tree can be expressed as combinations of distances that cancel each

other out [26]. In FastTree, however, the formula for the change

in tree length is an approximation, because the log-corrected

distances do not cancel in this way. Nevertheless, FastTree with

NNIs and FastME with NNIs give very similar results [2], and

computing the exact change in total tree length does not improve

the accuracy of FastTree’s SPRs (data not shown).

The Maximum-Likelihood Phase
The key data structures for the maximum likelihood phase are

the tree topology, the branch lengths, and the posterior

distributions for each internal node. (FastTree stores the tree with

a trifurcation at the root, but the placement of the root is not

biologically meaningful and does not affect the likelihood [5].) The

posterior distribution for an internal node describes the state of the

corresponding ancestor, given the branch lengths and the

sequences beneath it. For example, for nucleotide data, it stores

the probability that a given site was an A, C, G, or T. FastTree

stores posterior distributions for N{3 internal nodes (not for the

root), and they require O(La) space each, where L is the

alignment’s length and a is the number of characters in the

alphabet.

The key primitive operations are (1) to compute the joint

likelihood of two posterior distributions, given the length between

them, and (2) to compute the posterior distribution of a parent

node given the posterior distributions of its two children and their

two branch lengths. These suffice to compute the likelihood of the

tree [5]: for example, the likelihood of the tree (A,B,(C,D)) is

Lk(A&B):Lk(C&D):Lk(AB&CD) where AB and CD are

posterior distributions.

At the beginning of the ML phase, we have a minimum-

evolution topology and branch lengths. The steps for the

maximum-likelihood phase are:

N Compute an approximate posterior distribution for each node,

using the weighted averages of its children. Although the initial

posterior distributions are approximate, all future changes to

the topology or to the branch lengths will update the posterior

distributions to their exact values.

N Optimize all branch lengths for one round, using a simplified

model with no parameters (without CAT, and with Jukes-

Cantor instead of GTR if GTR was requested).

N Perform one round of ML NNIs, using the simplified model.

N If the GTR model is being used, optimize the nucleotide

transition rate parameters, switch from Jukes Cantor to the

GTR model and recompute posterior distributions, and

optimize all branch lengths for one round with the new model.

N If the CAT model is being used, estimate rate categories for

each site, recompute posterior distributions, and optimize all

branch lengths for one round with the new model.

N Perform additional rounds of ML NNIs, with subtree skipping

and the star topology test.

N Perform a final round of ML NNIs without subtree skipping or

the star topology test.

N Optimize all branch lengths for one round.

N Compute SH-like local support values.

A round of ML NNIs. During each round of NNIs, FastTree

visits each node before it visits its parents (depth-first post-order

traversal). At each node, it compares the likelihood of the trees

ABDCD, ACDBD, and ADDBC, where A and B are its children, C

is its sibling, and D is the rest of the tree. During this process,

FastTree uses the posterior distributions (or sequences) for A, B,

and C and an ‘‘up-posterior’’ D, which represents the rest of the

tree. More precisely, the up-posterior D is the posterior

distribution of the node’s parent N, given all of the nodes that

are not children of N (see Figure 3). These up-posteriors can be

thought of as a way to temporarily reroot the tree at the current

location. In particular, the likelihood of the tree can be computed

from the posteriors A, B, C, and D.

The up-posterior for a node can be computed from its parent’s

up-posterior and its sibling’s posterior distribution. FastTree only

stores these up-posteriors for the path to the root from its current

location in the tree, so they take O(dLa) space, where dvN is the

maximum depth of the tree. Because FastTree always visits

children before their parents, the posterior and up-posterior

distributions it uses are up to date, even as the topology changes.

When it visits each node, for each of the three alternate

topologies around the node, FastTree optimizes the branch lengths

to maximize the likelihood. For the topology ABDCD, the five

FastTree 2

PLoS ONE | www.plosone.org 7 March 2010 | Volume 5 | Issue 3 | e9490



initial branch lengths are set from the current tree. For the other

topologies, the branch lengths to A, B, C, and D are maintained,

as is the internal branch length. Given a quartet (say ABDCD),

FastTree first optimizes the branch length between AB and CD,

and then the branch length leading to A, B, C, and D. FastTree

optimizes each branch length to an accuracy of 0.0001 or 0.1%,

whichever is greater. These five optimizations define a round of

optimization for the quartet. Within a round of optimization,

FastTree reuses some of the internal posterior distributions: it

needs posterior distributions for AB and CD so that it can optimize

the branch length between AB and CD, and then it needs

posterior distributions for BCD, ACD, the new posterior

distribution for AB given the new branch lengths to A and B,

and finally ABD and ABC.

By default, FastTree optimizes the branch lengths within all

three quartet topologies for one round. Any topology that is

significantly (5 log-likelihood units) worse than the current

topology is abandoned after the first round. If more than one

topology remains, then the remaining topologies are optimized for

another round. After the rounds of optimization are complete,

FastTree updates the topology if necessary. In either case, it

updates the branch lengths to the re-optimized values and

recomputes the posterior distribution for the node.

A difference of 5 in log likelihood may seem like a small

difference, so that the heuristic might miss a good change to the

topology. However, optimization of branch lengths after the first

round usually leads to small improvements in the log likelihood.

For example, if we analyze 40 randomly selected 16S rRNAs with

FastTree and the GTR+CAT model, and we increase the rounds

of branch length optimization to 4 (-mlacc 4), then the average

improvement for any NNI is just 1.1 log-likelihood units in the

second round of branch length optimization and just 0.04 in

rounds 3 and 4 combined. To put these numbers in perspective,

differences in log-likelihood of less than 2 are not statistically

significant (P&0:05, likelihood ratio test), and NNIs with much

larger changes in likelihood are common. For the simulated

alignments with 5,000 protein sequences, always optimizing for

two rounds improved accuracy by a negligible amount (0.03%)

and increased the running time by 23%.

Optimizing model parameters. After the first round of

NNIs, FastTree optimizes any parameters in the model. First, if

the GTR model is being used, there are six relative rates to

optimize, one for each nucleotide conversion. (The stationary

distribution for the transition matrix is set to the empirical

frequency of the four nucleotides.) FastTree optimizes the

likelihood of the tree (with fixed branch lengths and topology) by

numerically optimizing each of the six parameters in the model in

turn. With each change in the model, it recomputes all posterior

distributions. It then optimizes the six parameters a second time.

This does not fully optimize the model parameters, but it gives

acceptable results (Table 2).

Second, unless the -nocat option is set, FastTree estimates the

rate of evolution at each site. Given the desired number of

categories of relative rates n, FastTree selects n values that are

logarithmically spaced between 1=n and n. By default, n~20, and

the relative rates range from 0.05 to 20. For each of these relative

rates, FastTree recomputes all posterior distributions and

recalculates the log likelihood of the tree at each site. FastTree

then uses a Bayesian approach to select which rate to use at each

site: FastTree maximizes P(rateDSite)!Lk(SiteDrate)P(rate),
where P(rate) is a gamma-distributed prior. To avoid overfitting,

we made the prior more peaked than real rate variation in

alignments: the prior has a shape parameter of 3, a scale

parameter of 1/3, and a mean of 1. After choosing the rate

categories, FastTree scales the rates so that the average rate across

all sites is 1.0.

We confirmed that the Bayesian approach to setting the rate

categories prevents overfitting on small alignments. For example,

on simulated protein alignments with just 10 sequences (from [2]),

adding the CAT model improves FastTree’s accuracy from 76.2%

to 78.0%. (For comparison, PhyML without C4 or SPRs was

74.4% accurate [2].) Conversely, on nucleotide simulations with

24 sequences that (unrealistically) do not contain any rate variation

across sites (the fast-evolving alignments of [12]), the CAT model

only reduces accuracy slightly, from 93.6% to 93.4%. (For

comparison, PhyML without C4 or SPRs was 93.6% accurate [2].)

Completing the ML NNIs. In later rounds of NNIs,

FastTree uses the more accurate model and it uses two

additional heuristics ‘‘subtree skipping’’ and the ‘‘star topology

test,’’ which are described below. As discussed in the Results, these

heuristics have little effect on accuracy.

If no NNI leads to an improvement of more than 0.1 in the

likelihood of any quartet, then FastTree considers the NNIs to

have converged. FastTree repeats rounds of NNIs until conver-

gence, up to a limit of 2 log(N) rounds, which takes

O(N log(N)La2) time. This is the slowest part of the ML phase.

The limit on rounds ensures a predictable running time, but

FastTree usually converges before reaching the limit, even for

huge alignments such as 237,882 16S rRNA sequences. We chose

a log(N) limit so that a misplaced subtree could move all the way

across a (roughly balanced) tree, and the factor of 2 is an arbitrary

safety factor.

After convergence, FastTree does one final round of ML NNIs

with the subtree skipping and the star topology test turned off, as in

the first round. We view this as a safety valve for the heuristics.

Finally, FastTree does a final round of optimizing the branch

lengths and computes the SH-like local supports.

Subtree skipping. The intuition behind subtree skipping is

that if a subtree has not changed during recent rounds of NNIs,

then further attempts to optimize the subtree will be fruitless.

Specifically, during ML NNIs, FastTree does not traverse into

subtrees that have not seen any significant improvement in

likelihood (0.1 log likelihood units) in either of the previous two

rounds. Before skipping a subtree, FastTree also checks that none

of the nodes adjacent to the parent node were affected by a

significantly improving NNI in the previous round. The ‘‘subtree

skipping’’ heuristic typically gives a 3-fold speedup, making it the

Figure 3. Traversing a tree with up-posteriors. FastTree optimizes
the tree near node N by analyzing the posterior distributions for
subtrees A, B, and C, as well as the ‘‘up-posterior’’ D.
doi:10.1371/journal.pone.0009490.g003

FastTree 2

PLoS ONE | www.plosone.org 8 March 2010 | Volume 5 | Issue 3 | e9490



most important of FastTree’s ML heuristics. Subtree skipping

might be useful for SPR moves as well.

Star topology test. If the current topology (A,B,(C,D)) is

much better than the star topology (A,B,C,D) then an NNI is

unlikely to give an improvement. Specifically, if the current

topology is significantly (5 log-likelihood units) more likely than the

star topology (after optimizing the internal branch length), then

FastTree does not optimize the other branch lengths or consider

the two alternate topologies. However, FastTree only uses this

heuristic if the node that was unchanged in the last round of NNIs.

To approximate the likelihood of the star topology, FastTree uses

the likelihood with the minimal internal branch length of 0.0001.

Branch lengths. To optimize all branch lengths in the tree at

the beginning and end of the ML phase and after optimizing the

model parameters, FastTree again uses post-order traversal. At

each node, it considers a three-node star topology on the node’s

children and parent, using the posterior distributions for the two

children and the up-posterior for itself. (At the root, it uses all three

children instead.) It numerically optimizes these three branch

lengths in series for two rounds.

SH-like local supports. For each node, the local support is

derived from the per-site likelihoods for the current topology and

the two alternate (NNI) topologies. For the current topology,

FastTree uses the current (already optimized) branch lengths. For

the alternate topologies, FastTree optimizes branch lengths for the

quartets, as during the NNIs, for up to two rounds. Given the per-

site likelihoods for the three topologies, FastTree uses the SH test

with 1,000 bootstrap replicates to estimate the confidence in the

given split [19]. If there are poorly resolved nodes nearby, then the

support values should be interpreted cautiously, because a high-

likelihood alternate topology might not have been considered.

Low-level optimization of likelihood computa

tions. Whereas RAxML stores likelihood vectors (that is, the

joint likelihood of a subtree and of a given character at an internal

node), FastTree stores posterior distributions, which are

normalized so that each site’s values sum to 1. This may

improve numerical stability for huge alignments. To reduce

memory usage, FastTree stores these vectors in single-precision

floating point. Log-likelihoods for the tree or for specific sites are

stored with double precision.

Similar to RAxML, FastTree stores the posterior distributions in

a rotated form, multiplied by the eigen-matrix of the transition

matrix. (For the Jukes Cantor model, this is not necessary.) This

reduces the time for likelihood computations from O(a2) per site to

O(a), while leaving the cost of computing the posterior distribution

at O(a2) per site (but with a higher constant factor).

While computing the joint likelihood for a pair of posterior

distributions, FastTree avoids performing a logarithm at every site

by operating on likelihoods instead of log likelihoods. To prevent

numerical underflow, FastTree rescales the likelihood by a

constant when necessary. It updates a separate (log-likelihood-

based) counter whenever it does this. Similarly, when computing

the tree’s likelihood at each site, for example while optimizing the

rate categories, FastTree rescales each site’s likelihood if necessary

after visiting each node.

FastTree uses SSE2 instructions, a special feature of recent

CPUs from Intel and AMD, to operate on 4 single-precision

floating point values with one instruction. This speeds up

computations for protein alignments by up to 50% (data not

shown).

Numerical optimization. To find the parameters that

optimize the likelihood, FastTree uses Brent’s method, a

numerical method that iteratively halves the interval it is

searching within (http://en.wikipedia.org/wiki/Brent’s_method).

Because Brent’s method only operates in one dimension, FastTree

optimizes different parameters in turn, and then repeats the

rounds of optimization (for example, it optimizes the first branch

length, then the second, then the third, then repeats).

FastTree estimates the initial interval to search within from the

initial guess x (e.g., the previous length of the branch) and

alternate values x=2 and 2x. If x=2 is below the minimum value, it

uses the minimum, x, and 5x instead. If the initial guess does not

bracket the minimum (that is, the middle value is not better than

the two endpoints), then FastTree expands the search interval until

it does. However, the small interval is usually adequate. FastTree

also terminates optimization if the parameter changes by a small

amount or by a small proportion. Together, these modifications

eliminate about a third of the evaluations of the likelihood.

Biological and Simulated Alignments
The simulated protein alignments and the genuine COG

alignments were described previously [2]. The 16S alignment with

237,882 distinct sequences was taken from GreenGenes [33]

(http://greengenes.lbl.gov). The 16S alignment with 15,011

distinct ‘‘families’’ is a non-redundant subset of these sequences

(v94% identical). 16S alignments with 500 sequences are also

non-redundant random subsets (v99% identical). Other large 16S

alignments are from [11].

For the 16S-like simulations with 78,132 distinct sequences, we

used a maximum-likelihood tree inferred from a non-redundant

aligned subset of the full set of 16S sequences (v99% identity) by

an earlier version of FastTree (1.9) with the Jukes-Cantor model

(no CAT). To ensure that the simulated trees were resolvable,

which facilitates comparison of methods (but inflates the accuracy

of all methods), branch lengths of less than 0.001 were replaced

with values of 0.001, which corresponds to roughly one

substitution across the internal branch, as the 16S alignment has

1,287 positions. Evolutionary rates for each site were randomly

selected from 16 rate categories according to a gamma distribution

with a coefficient of variation of 0.7. Given the tree and the rates,

sequences were simulated with Rose [34] under the HKY model

and no transition bias. To allow Rose to handle branch lengths of

less than 1%, we set ‘‘MeanSubstitution = 0.00134’’ and multiplied

the branch lengths by 1,000.

Software Used
We used FastTree 2.0.0. We used the July 6 2009 release of the

PhyML 3.0 source code and modified BL_MIN from 1.e-10 to

1.e-8 to overcome numerical problems with some of the simulated

protein alignments, as suggested by Stepháne Guindon. FastME

2.06 was provided by Olivier Gascuel. RAxML 7.0.4 and 7.2.1

were obtained from the author’s web sites. RAxML 7.2.1 was

compiled with SSE instructions. NINJA was provided by Travis

Wheeler and is available at http://nimbletwist.com/software/

ninja/. BIONJ was obtained from http://www.lirmm.fr/,w3ifa/

MAAS/BIONJ/BIONJ.c. BIONJ was run with maximum-

likelihood distances obtained with phylip’s protdist (http://

evolution.genetics.washington.edu/phylip.htm) and the JTT

model (no gamma). Log-corrected distances were obtained with

FastTree and the -makematrix option.

Supporting Information

Figure S1 Branch lengths for an alignment of 200 16S rRNA

sequences vary systematically with the C approximation used. The

CAT lengths are from FastTree, and all C branch lengths are from

PhyML with FastTree’s topology and with optimized shape

parameters. The top panel shows that branch lengths from the

FastTree 2

PLoS ONE | www.plosone.org 9 March 2010 | Volume 5 | Issue 3 | e9490



various models have a roughly linear relationship with each other,

but they have different scales. The bottom panel shows how the

total length of the tree varies with the number of categories (note

log x axis). The ‘‘Use Median’’ lengths are from running PhyML

with –use_median, which uses the median of each region, rather

than the mean, to approximate the gamma distribution. The

‘‘Corrected’’ lengths are the ‘‘Use Median’’ lengths multiplied by

the average posterior rates, which can be obtained by running

PhyML with –print_site_lnl (thanks to Stepháne Guindon for

pointing this out). The corrected lengths converge to the correct

value much more quickly than the other rates. The ‘‘CAT/

Gamma’’ tree length, from FastTree 2.1 with -gamma, is also

reasonably accurate. With this option, FastTree 2.1 optimizes the

C20 likelihood with a shape parameter and a rescaling parameter,

using the site likelihoods from FastTree’s 20 relative rates and

branch lengths that were optimized under the CAT model.

Found at: doi:10.1371/journal.pone.0009490.s001 (0.13 MB PS)

Figure S2 Total Splits or Strongly Supported Splits that

Disagree with RAxML’s Final Tree, versus Time. The 16S tree

has 4,111 splits and the COG trees have 2,497 splits each. All

values for the COG trees are averages over the 7 COGs.

Found at: doi:10.1371/journal.pone.0009490.s002 (0.02 MB PS)

Table S1 Times and likelihoods for large 16S rRNA alignments

Found at: doi:10.1371/journal.pone.0009490.s003 (0.02 MB

PDF)

Acknowledgments

We thank Alexandros Stamatakis for suggesting the time-and-likelihood

comparison between FastTree and RAxML and for commenting on the

manuscript.

Author Contributions

Conceived and designed the experiments: MNP PD. Performed the

experiments: MNP. Analyzed the data: MNP. Wrote the paper: MNP PD

APA.

References

1. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA

alignments. Bioinformatics 15: 1335–7.

2. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum
evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:

1641–50.
3. Saitou N, Nei M (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

4. Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of
Saitou and Nei. Mol Biol Evol 5: 729–31.

5. Felsenstein J (1981) Evolutionary trees from dna sequences: A maximum
likelihood approach. J Mol Evol 17: 368–376.

6. Roch S (2006) A short proof that phylogenetic tree reconstruction by maximum
likelihood is hard. IEEE/ACM Trans Comput Biol Bioinform 3: 92–94.

7. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate

large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
8. Hordijk W, Gascuel O (2005) Improving the efficiency of SPR moves in

phylogenetic tree search algorithms based on maximum-likelihood. Bioinfor-
matics 21: 4338–4347.

9. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models. Bioinformatics 22:
2688–2690.

10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the
bootstrap. Evolution 39: 783–791.

11. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for
the RAxML web servers. Syst Biol 57: 758–771.

12. Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction

algorithms based on the minimum-evolution principle. Journal of Computa-
tional Biology 9: 687–705.

13. Nei M, Kumar S, Takahashi K (1998) The optimization principle in
phylogenetic analysis tends to give incorrect topologies when the number of

nucleotides or amino acids used is small. Proc Natl Acad Sci USA 95: 12390–7.

14. Stamatakis A (2006) Phylogenetic models of rate heterogeneity: a high
performance computing perspective. In: Proceedings of the 20th International

Parallel and Distributed Processing Symposium (IPDPS).
15. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences

with variable rates over sites: Approximate methods. J Mol Evol 39: 306–314.

16. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum
likelihood phylogenies with PhyML. Methods Mol Biol 537: 113–37.

17. Guindon S, Dufayard J, Lefort V, MAnisimova, Hordijk W, et al. (2010) New
algorithms and methods to estimate maximum-likelihood phylogenies: Assessing

the performance of PhyML 3.0. Syst Biol: in press.

18. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a

simple model of sequence data. Mol Biol Evol 14: 685–695.

19. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with

applications to phylogenetic inference. Mol Biol Evol 16: 1114–1116.

20. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, et al.

(2001) The COG database: new developments in phylogenetic classification of

proteins from complete genomes. Nucleic Acids Res 29: 22–8.

21. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches:

A fast, accurate, and powerful alternative. Syst Biol 55: 539–52.

22. Galtier N, Jean-Marie A (2004) Markov-modulated markov chains and the

covarion process of molecular evolution. J Comput Biol 11: 727–733.

23. DeLong ER, Clarke-Pearson DL (1998) Comparing the areas under two or

more correlated receiver operating characteristic curves: a nonparametric

approach. Biometrics 44: 837–45.

24. Evans J, Sheneman L, Foster J (2006) Relaxed neighbor joining: a fast distance-

based phylogenetic tree construction method. J Mol Evol 62: 785–92.

25. Wheeler TJ (2009) Large-scale neighbor-joining with NINJA. In: Proceedings of

the 9th Workshop on Algorithms in Bioinformatics.

26. Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum

evolution method of phylogenetic inference and its relationship to weighted

least-squares tree fitting. Mol Biol Evol 21: 587–598.

27. Bordewich M, Gascuel O, Huber KT, Moulton V (2009) Consistency

of topological moves based on the balanced minimum evolution principle

of phylogenetic inference. IEEE/ACM Trans Comput Biol Bioinform 6: 110–

7.

28. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of

phylogenetic tree selection. Bioinformatics 17: 1246–1247.

29. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic

analysis. Cladistics 24: 774–786.

30. Katoh K, Toh H (2007) PartTree: an algorithm to build an approximate tree

from a large number of unaligned sequences. Bioinformatics 23: 372–374.

31. Bradley RK, Roberts A, Smoot M, Juvekar S, Do ea J (2009) Fast statistical

alignment. PLoS Comput Biol 5.

32. Sonnhammer ELL, Hollich V (2005) Scoredist: A simple and robust protein

sequence distance estimator. BMC Bioinformatics 6: 108.

33. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006)

Greengenes, a chimera-checked 16S rRNA gene database and workbench

compatible with ARB. Appl Environ Microbiol 72: 5069–5072.

34. Stoye J, Evers D, Meyer F (1998) Rose: generating sequence families.

Bioinformatics 14: 157–163.

FastTree 2

PLoS ONE | www.plosone.org 10 March 2010 | Volume 5 | Issue 3 | e9490


