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Abstract

Background: Influenza transmission is often associated with climatic factors. As the epidemic pattern varies geographically,
the roles of climatic factors may not be unique. Previous in vivo studies revealed the direct effect of winter-like humidity on
air-borne influenza transmission that dominates in regions with temperate climate, while influenza in the tropics is more
effectively transmitted through direct contact.

Methodology/Principal Findings: Using time series model, we analyzed the role of climatic factors on the epidemiology of
influenza transmission in two regions characterized by warm climate: Hong Kong (China) and Maricopa County (Arizona,
USA). These two regions have comparable temperature but distinctly different rainfall. Specifically we employed
Autoregressive Integrated Moving Average (ARIMA) model along with climatic parameters as measured from ground
stations and NASA satellites. Our studies showed that including the climatic variables as input series result in models with
better performance than the univariate model where the influenza cases depend only on its past values and error signal.
The best model for Hong Kong influenza was obtained when Land Surface Temperature (LST), rainfall and relative humidity
were included as input series. Meanwhile for Maricopa County we found that including either maximum atmospheric
pressure or mean air temperature gave the most improvement in the model performances.

Conclusions/Significance: Our results showed that including the environmental variables generally increases the prediction
capability. Therefore, for countries without advanced influenza surveillance systems, environmental variables can be used
for estimating influenza transmission at present and in the near future.
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Introduction

Influenza remains a global concern as estimates show that the

annual epidemics may cause up to five million severe illnesses and

500,000 deaths worldwide [1]. Vaccination strategy and surveil-

lance effort as means of prevention prevail only in temperate

regions, especially in the northern hemisphere. Many countries in

the subtropics and tropics, on the other hand, underutilize the

prevention mechanisms [2] despite the year-round outbreaks and

recent findings that (i) East and Southeast Asia act as a source of

new influenza strains and transmission [3,4], and (ii) epidemics

timing in South America travels southward starting from the

equator [5,6]. The scarce surveillance data and the spatiotem-

porally varying transmission pattern further complicate the

development of appropriate vaccination for tropical regions.

The tropics consist of the equatorial regions between the Tropic

of Cancer (23.4uN) and the Tropic of Capricorn (23.4uS). The

regions next to the tropics with latitude less than 40uN and

greater than 40uS are the subtropics. Because in this analysis the

same reasoning is applicable to both the tropics and the

subtropics, for brevity henceforth the term tropics will include

subtropics as well.

Unlike influenza transmission in the tropics that greatly

varies geographically, the consistent wintertime influenza peak

in temperate regions is often associated with, arguably, the

corresponding dry and cold climate [7,8]. It is not only a

condition in which aerosol-borne influenza transmission is most

favorable [9,10], but also one that promotes indoor crowding

tendency which may lead to higher risk for contact transmis-

sion [11]. In addition to temperature and humidity, the El

Nino Southern Oscillation (ENSO) [12] and solar radiation

[13] has been implicated in influenza transmission in temperate

climate. On the other hand, the role of climate on influenza in

the tropics is much less understood. Several regions observe

high influenza transmission that coincides with rainy season

such as southern India, Vietnam and Brazil [14,15,16,17].

While others such as Singapore, Thailand and Philippines,

detect semi annual peaks that are not necessarily associated
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with rainfall [14]. In vivo study by Lowen et al. [18] emphasized

the dominating effect of contact transmission in the tropics,

while Alonso et al. [5], on the contrary, showed that

temperature and humidity contribute more to the southward

influenza spread in Brazil than contact transmission. Thus it

appears that the contributing factors to influenza transmission

in the tropics are region-specific due to the highly varying

transmission pattern.

With the scarcely-available surveillance data for the tropics, we

chose to study influenza transmission pattern in two regions that,

similar to the tropics, are characterized by warm climate, but have

advanced influenza surveillance system. These regions are Hong

Kong, China (22u N) and Maricopa County, Arizona (33u N)–with

Hong Kong in the tropics and Maricopa County in the subtropics.

The objective of the study was to investigate and model the effect

of climate on the transmission pattern. The resulting model, in

turn, can be employed to forecast influenza epidemics in the

tropics that may help to facilitate vaccination strategy develop-

ment and antiviral distribution. Furthermore, the use of climatic

parameters in the forecast for tropics is highly advantageous not

only due to few studies focusing on the influenza prediction–as

demonstrated by Viboud et al. [19])–but also due to the low

surveillance efforts in these regions.

Results

Throughout this study, we utilized a time series-based model

namely Autoregressive Integrated Moving Average (ARIMA), as

well as SARIMA when seasonality is included. The method is

briefly delineated under Methods section. In the following, results

for influenza Hong Kong will be presented first, followed by

Maricopa County results.

Hong Kong
As a first step in ARIMA modeling, we seek to stationarize the

response series, which is the influenza weekly count in Hong Kong

shown in Figure 1. Taking the log transformation of the series

reduced the variances of the influenza cases, and subsequent

differencing–either first or seasonal order of difference–resulted in

stationary series. We further used the Auto-Correlation and Partial

Auto-Correlation Function (ACF and PACF, respectively) plots to

identify the order of the ARIMA model for the stationary series.

For the first-order differenced series, both the ACF and PACF cut

off at lag 2, whereas for the seasonally differenced series the ACF

decreases very slowly with PACF cut off at lag 2.

We further fit several univariate (S)ARIMA models with

different orders, and consequently excluded any models in which

the residuals exhibit autocorrelation. The resulting models and the

estimated coefficients are summarized in the top half of Table 1

(Please see Methods section for ARIMA model notation). As we

can see in Table 1, ARIMA(2,1,2) has the best Root Mean Square

Error (RMSE) for the fitted dataset, ARIMA(1,1,2) has the best

predictive RMSE, while SARIMA(2,0,0)(0,1,0) has the lowest

Akaike Information Criterion (AIC). Among these four univariate

models, the relative differences of the worst from the best

performing AIC is 6%, fit RMSE is 27% and prediction RMSE

is 16%. Since the AIC differences is relatively low, and the

prediction RMSE not only have smaller differences but also it is

unavailable in a realistic case, we will henceforth use the model

with smallest fit RMSE–that is ARIMA(2,1,2)–as a baseline

univariate model for further comparison.

In order to include the environmental parameter as input series

to the model, we first examined the correlations between the

influenza cases and the environmental series. Our results (Table 2)

show that there are significant correlations (based on the two

Figure 1. Hong Kong weekly influenza positive isolates.
doi:10.1371/journal.pone.0009450.g001
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standard error limits) with LST at lag 2 and 5, rainfall at lag 3 and

relative humidity at lag 0 to 3. Subsequently (S)ARIMA models

were estimated with one or more environmental variables

included. The performances of these models and the estimated

coefficients are shown in Table 1. For these multivariate models,

the best fit RMSE is obtained from SARIMAX(0,1,2)(1,0,0) with

LST, rainfall and relative humidity as covariates. SARI-

MAX(1,0,0)(0,1,0) with LST has the best AIC, while ARI-

MAX(2,1,0) with relative humidity has the best prediction RMSE.

Comparing these three models with the baseline univariate model

discussed previously (ARIMA(2,1,2)), we found that including the

environmental input series improve the AIC by 18%, the fit

RMSE by 9% and the prediction RMSE by 16% from the

baseline model.

Among the three best performing multivariate models, AR-

IMAX(2,1,0) with rainfall as input, has the highest AIC values.

Moreover, it has high p-value for estimated rainfall coefficient in

this model (Table 1). Thus we can exclude this model from the

Table 1. Summary of model performance and the estimated coefficients for Hong Kong Influenza.

Model Fit Prediction AR MA Environmental variables

RMSE AIC RMSE Est. Pr . |t| Est. Pr .|t| Vars Est. Pr .|t|

ARIMA(2,1,2) 0.4045 166.26 0.4788 0.44 ,.0001 0.588 0.0037

20.446 ,.0001 20.785 0.0025

ARIMA(1,1,2) 0.4071 166.25 0.4321 0.45 0.0226 0.603 0.0014

20.375 ,.0001

SARIMA(1,0,0)(0,1,0) 0.5144 159.46 0.4993 0.774 ,.0001

SARIMA(2,0,0)(0,1,0) 0.5074 156.56 0.5033 0.608 ,.0001

0.219 0.0288

ARIMAX(1,1,2) with LST, RF, and RH 0.3675 138.51 0.5292 0.426 0.0181 0.6443 0.0001 LST (Lag2) 20.035 0.0016

20.446 ,.0001 LST (Lag5) 20.0307 0.0049

RF (Lag 3) 0.0534 0.0047

RH 0.0164 ,.0001

SARIMAX(0,1,2)(1,0,0) with LST, RF
and RH

0.3662 137.52 0.5433 0.276 0.0104 0.2937 0.0005 LST (Lag2) 20.036 0.0011

20.316 0.0002 LST (Lag5) 20.0324 0.0032

RF (Lag 3) 0.0527 0.0064

RH 0.0168 ,.0001

SARIMAX((2),1,0) with LST 0.4013 156.76 0.4649 0.251 0.0022 LST (Lag2) 20.028 0.014

LST (Lag5) 20.0256 0.0257

SARIMAX(1,0,0)(0,1,0) with LST 0.4666 134.7 0.5104 0.795 ,.0001 LST (Lag2) 20.048 0.0009

LST (Lag5) 20.0312 0.0248

ARIMAX(2,1,0) with RF 0.4174 168.62 0.4029 0.244 0.0017 RF (Lag 3) 0.0244 0.1985

ARIMAX((2),1,0) with RH 0.4073 163.34 0.4728 0.247 0.0021 RH (Lag 1) 0.011 0.0055

SARIMAX(1,0,1)(0,1,0) with RH 0.4968 152.76 0.5831 0.883 ,.0001 0.2588 RH (Lag1) 0.0144 0.0086

ARIMAX((2),1,0) with LST and RH 0.3872 148.07 0.5273 0.259 0.0018 LST (Lag2) 20.029 0.0096

LST (Lag 5) 20.029 0.0097

RH (Lag 1) 0.0124 0.0013

Abbreviations: ARIMA = Autoregressive Integrated Moving Average; S = Seasonal; X = with external/input series; LST = Land Surface Temperature; RF = Accumulated
Rainfall; RH = Relative Humidity; RMSE = Root Mean Square Error; AIC = Akaike’s Information Criterion; AR = Autoregressive coefficients; MA = Moving Average
Coefficients; Est = Estimated values through conditional least square method.
doi:10.1371/journal.pone.0009450.t001

Table 2. Hong Kong: Cross-correlations between pre-whitened environmental series and the influenza counts.

Variable Lag

0 1 2 3 4 5 6 7

LST 0.0515 0.0083 20.1835* 20.1247 20.1132 20.2643* 20.0638 20.1572

RF 0.0005 20.0063 0.1211 0.1417* 0.1045 0.1071 0.0960 0.0532

RH 0.1358* 0.2717* 0.1496* 0.1463* 0.0578 0.0745 0.0730 0.0359

*indicates significant at the two-standard error. See Table 1 caption for abbreviations.
doi:10.1371/journal.pone.0009450.t002
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selection. Between SARIMAX(1,0,0)(0,1,0) with LST only and

SARIMAX(0,1,2)(1,0,0) with LST, rainfall and relative humidity,

the differences in AIC is small (2%), but there is about 27%

differences in the fit RMSE. Thus we choose the SARI-

MAX(0,1,2)(1,0,0) with LST, rainfall and relative humidity since

it has the lower fit RMSE. The fitted and predicted values of this

model were plotted in Figure 2, and the associated environmental

variables are shown in Figure 3.

Maricopa County
Figure 4 showed the time series profile for positive influenza

counts in Maricopa County. Similar to Hong Kong influenza,

taking the log transformation of the series reduced the variation in

the variances. Stationarity of the log-transformed series was

achieved through first order differencing. Further plotting the

ACF and PACF of the stationary series reveals significant

autocorrelations at lag 2 and 21, and significant partial

autocorrelation at lag 2. Based on this ACF and PACF, we fitted

several univariate (S)ARIMA models and found that the two best

performing models are SARIMA(1,1,0)(1,0,0) and SARIMA

(0,1,0)(1,0,0). As shown in Table 3, the performances of the

univariate models measured by AIC and RMSE for the fitting

dataset were similar. Thus we chose SARIMA(0,1,0)(1,0,0) as the

baseline model because all p-values of the estimated coefficient are

relatively significant (,0.05).

We further pre-whitened the environmental variables and

calculated the cross-correlation function. Variables that exhibit

significant cross-correlations are shown in Table 4. As we can see,

influenza cases in Maricopa County are correlated with LST at lag

3, mean air temperature at lag 1 and 7, maximum relative

humidity at lag 3 and 6, minimum relative humidity at lag 6, and

maximum air pressure at lag 0 and 6. The time series profiles of

these variables are illustrated in Figure 5.

We further fitted (S)ARIMAX model with the lagged environ-

mental variables as input series, and the results are summarized in

Table 3. Overall, including one or more input series improves the

model performances as compared to the baseline univariate

SARIMA model previously described. Note that we kept some of

the input variables even though the estimated coefficients have p-

values greater than 0.05. This is mainly due to the model residuals

that exhibit autocorrelation when these variables are removed.

Our results indicate that incorporating the mean air temperature

(Tmean) at lag 1 and 7 yield the lowest AIC value for the fitting

dataset. As compared with the baseline univariate SARIMA model

previously described, the addition of Tmean improves the AIC by

39% and the RMSE by 6%. Lowest RMSE for both fitting and

prediction dataset is obtained by SARIMAX model with

maximum air pressure (PMax) at lag 0 and 6 as covariates.

Compared with the baseline univariate SARIMA, the addition of

PMax improve the fit and predicted RMSE by about 9% and 0.4%,

respectively. We showed in Figure 6 the fitted and predicted values

produced by SARIMA model with Tmean and Pmax.

Discussion

Through the use of ARIMA models, we explored the

relationship between environmental variables and influenza cases

in two regions characterized by warm climate, Hong Kong

(China) and Maricopa County (Arizona, USA). We first examined

whether influenza cases can be modeled as a univariate (S)ARIMA

where it only depends on its own past values and random errors.

We found that the univariate ARIMA was capable of forecasting

1-step ahead future influenza cases relatively well. For Hong Kong

Figure 2. Hong Kong fitted and predicted values as separated by the dashed line. SARIMAX(0,1,2)(1,0,0) with LST lag 2 and 5, accumulated
rainfall lag 3 and relative humidity lag 1.
doi:10.1371/journal.pone.0009450.g002
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Figure 3. Hong Kong environmental variables. (A) weekly average of Land Surface Temperature (LST), (B) weekly accumulated rainfall and (C)
weekly average of mean relative humidity.
doi:10.1371/journal.pone.0009450.g003

Figure 4. Maricopa county influenza cases.
doi:10.1371/journal.pone.0009450.g004
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influenza, the best univariate model is ARIMA(2,1,2), where

influenza cases depend on cases in previous two weeks. While for

Maricopa County, the best univariate model is the seasonal

SARIMA(0,1,0)(1,0,0), which depends on the cases in the previous

one season. In the time series plot of influenza cases in Maricopa

County (Figure 4), the seasonality is very distinct compared to

influenza in Hong Kong (Figure 1). Thus it is expected that

influenza cases in Maricopa County are modeled best when

seasonality is incorporated.

In the multivariate ARIMA models, we found that the

accumulated rainfall, land surface temperature (LST) and relative

humidity are significant predictors for influenza in Hong Kong.

The association of rainfall with influenza is commonly observed in

tropical countries such as in Brazil [17], Singapore [15] and

Thailand [16]. There is yet any direct relationship connecting

rainfall with either the effectiveness of influenza transmission, virus

survivorship or host susceptibility. Common observation is that

rainfall may cause changes in the social behavior that in turn

promotes contact transmission. For example, in rainy seasons,

more people prefer indoor activities that may increase the chance

for social contact, and hence contact transmission. In Hong Kong,

rainy season is between April to September, with heavy and

persistent rain typically in May and August. Meanwhile, influenza

transmission typically peaks around March–April, and June–

August (Figure 1), which in general is considered to be rainy

season.

Temperature and relative humidity is often associated with

influenza epidemics such as in Tokyo (Japan) [8] and especially in

temperate regions where influenza peak coincides with winter.

The prevailing dry and cold condition during winter seems to

enhance influenza transmission, though this not substantiates high

influenza transmission in the tropics. Lowens et al [9] conducted in

vivo study and found that at low temperature (5uC) and low relative

humidity (20% to 35%), transmission through aerosol is most

efficient. At 20uC, aerosol transmission efficiency varies with

relative humidity [9]. On the other hand, 30uC blocks aerosol

transmission but not contact transmission, which explains

influenza transmission in the tropics [18]. In our Hong Kong

Table 3. Summary of model performances and the estimated coefficients for Maricopa County influenza.

Model Fit Pred. AR MA Enviromental vars

RMSE AIC RMSE Est. Pr .|t| Est. Pr .|t| Vars Est. Pr .|t|

SARIMA(0,1,0)(1,0,0) 0.5862 280.582 0.5123 0.34964 ,.0001

SARIMA(1,1,0)(1,0,0) 0.5859 282.454 0.5107 0.02694 0.7228

0.34854 ,.0001

SARIMAX(1,0,1)(0,1,0) with LST 0.6087 196.920 0.6063 0.86496 ,.0001 20.20367 0.062 LST (Lag 3) 20.0418 0.004

SARIMAX(2,0,0)(0,1,0) with Tmean 0.5493 170.958 0.6058 1.2497 ,.0001 Tmean (Lag 1) 0.0188 0.012

20.37896 0.0001 Tmean (Lag 7) 0.015 0.044

SARIMAX(1,0,0)(0,1,0) with RHMax 0.6238 207.660 0.6142 0.9321 ,.0001 RhMax (Lag 3) 0.0101 0.022

RhMax (Lag 6) 0.0071 0.093

SARIMAX(1,0,0)(0,1,0) with RHMin 0.6382 210.540 0.5867 0.8979 ,.0001 RHMin (Lag 6) 0.0173 0.047

SARIMAX(0,1,0)(1,0,0) with Pmax 0.5370 247.390 0.5101 0.41313 ,.0001 Pmax (Lag 0) 20.016 0.043

Pmax (Lag 6) 20.0126 0.106

ARIMAX(1,0,0) with LST and
RHMax

0.5753 277.840 0.5522 0.90303 ,.0001 LST (Lag 3) 20.073 ,.0001

RHMax (Lag 3) 20.013 0.004

SARIMAX(1,0,0)(0,1,0) with LST
and RHMin

0.6048 195.727 0.6137 0.91289 ,.0001 LST (Lag 3) 20.0413 0.004

RHMin (Lag 6) 0.0197 0.023

Abbreviations: Tmean = mean air temperature; RHMax = Maximum Relative Humidity; RHMin = Minimum Relative Humidity. See Table 1 for other abbreviations.
doi:10.1371/journal.pone.0009450.t003

Table 4. Maricopa county: cross-correlations between influenza count and pre-whitened environmental series.

Variable Lag

0 1 2 3 4 5 6 7

LST 0.0482 0.1173 0.0242 20.1795* 0.0250 20.0043 20.0648 0.1706

Tmean 0.1432 0.1836* 0.0405 0.0054 0.0468 0.0328 0.0188 0.1811*

RHMax 20.0854 20.1948 0.0010 0.2555* 20.0839 0.1655 0.2461* 0.0806

RHMin 0.0055 20.0634 20.0411 0.1408 20.0489 0.0378 0.2378* 0.1155

Pmax 20.1368* 20.0275 0.0008 20.0540 20.0809 20.0251 20.1418* 20.0305

*indicates significant at the two-standard error. See Table 3 caption for abbreviations.
doi:10.1371/journal.pone.0009450.t004
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Figure 5. Maricopa environmental variables. (A) LST weekly average and Mean Temperature from ground station, (B) weekly average maximum
pressure and (C) weekly average of minimum and maximum relative humidity.
doi:10.1371/journal.pone.0009450.g005

Figure 6. Maricopa County fitted and predicted values–as separated by the dashed line–from (A) SARIMAX with Tmean lag 1 and 7,
(B) SARIMAX with Pmax lag 0 and 6.
doi:10.1371/journal.pone.0009450.g006
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analysis, land surface temperature (LST) is used instead of air

temperature, but LST can be used as a proxy for the other.

The first influenza peak in Hong Kong typically occurs During

March–April, when the temperature starts rising. The normal

mean temperature at this time is 18–22uC, whereas the relative

humidity is 75%–80%. According to Lowens et al. [9], 20uC
temperature and a relative humidity of 65% induce relatively

higher transmission, whereas no transmission occurs at 80%

relative humidity. Thus Hong Kong condition in March–April,

lies between intermediate to no transmission zone as concluded by

Lowens et al. [9]. However note that during this time of the year,

rainfall starts to increase as well. As a result, the combination of

moderate aerosol transmission efficiency as determined by

temperature and relative humidity, and the behavioral response

that promote contact transmission due to rainfall, causes high

transmission rate during this time of the year. The second peak of

the influenza transmission, on the other hand, occurs during

summer where mean temperature is normally between 26–28uC
and relative humidity is above 80%. At this condition, aerosol

transmission is theoretically blocked, but the high rainfall

frequency promotes the risk of contact transmission. Thus it

seems that the second influenza peak is predominantly caused by

the contact transmission.

Our results for influenza in Maricopa County showed that

influenza cases are correlated with air and land surface

temperature, maximum air pressure, and both maximum and

minimum relative humidity (Table 3). As we have previously

discussed, low temperature and relative humidity induce aerosol

transmission. However, the best model is obtained when only

maximum pressure is included as input series (Table 4). Air

pressure is an important determinant of the weather, including

temperature and precipitation. In general, low pressure brings

clouds and precipitation, and vice versa. Although the best

model uses maximum pressure as its input variable, it should be

noted that the performances of other models are not distinctly

worse (Table 4). For instance, the model with mean air

temperature (Tmean) as an input variable shows not only fitted

RMSE that is only 2% higher than the one with maximum

pressure, but also a better AIC value. In this model, the influenza

incidences are positively associated with the mean air temper-

ature. Whereas the model with minimum or maximum relative

humidity shows that influenza is positively associated with

humidity (both minimum and maximum). These results are in

agreement with the findings that dry and cold condition

enhances influenza transmission.

Both Hong Kong and Maricopa County have comparable

temperatures, where it is generally warm throughout the year.

Nevertheless, Maricopa County is characterized more by desert

climate, where it is drier and hotter (especially in the summer) than

Hong Kong’s subtropical climate where rainfall is much more

frequent. Therefore, the driving factors for influenza transmission

may not be the same as it is reflected in our analysis. Our results

show that Hong Kong influenza cases are associated with rainfall

(Table 3), whereas it is not the case in Maricopa County. We had

included rainfall in the model for Maricopa County but the results

were unsatisfactory (not shown). The association of rainfall with

influenza only in Hong Kong corroborates the finding that contact

transmission is more predominant in the tropics [18], with a

reasoning that rainfall induces social behavior that promotes

contact transmission. Other environmental factors influencing

influenza transmission seems to be common for both regions–

temperature and relative humidity, although measured in different

indicators for both regions–which enhance virus survivorship and

aerosol transmission.

In this paper we have demonstrated the use of environmental/

meteorological variables–as obtained from the satellite and ground

stations–and the influenza biosurveillance data through a

mathematical model, to assess the factors associated with influenza

incidences. We have shown the prediction capability of the

models, as measured by the RMSE of prediction dataset (Table 1

and Table 3), to forecasts the next influenza season. Presently we

use the one-step ahead forecast in calculating the future influenza

cases. In reality this may only be possible for cities with more

advanced computer-based surveillance systems such as New York

City and Hong Kong. Most of the models developed here depend

on the past one to two weeks influenza cases. A more realistic

approach is to predict the influenza cases using more than one-step

ahead forecasts. This means that future forecasts are calculated

using previously predicted number of cases instead of using the

actual cases from the surveillance data (as in one-step ahead

approach). However, one caveat to this approach is that more data

is needed, since model selection will be based not only on the

RMSE of the fitting dataset but also on the prediction dataset.

When the model incorporates seasonality, the number of data that

can be used for fitting process decreases significantly, especially in

this study where the seasonal period is 52 weeks. In this approach

one would divide the data into three: (i) for fitting process, where

the coefficients are estimated, (ii) forecasting process, where future

values are calculated using the predicted values, and the goodness

of fit statistics will typically be used in the model selection and (iii)

for validation process, to ensure that the model does not behave

erratically. Thus the models in this study are a first step towards

developing an early warning system for influenza.

Materials and Methods

Materials/Data
This study uses weekly count of laboratory-confirmed influenza

viruses in two regions, Hong Kong and Maricopa County. We

obtained Hong Kong influenza count between January 2005 to

September 2008, from weekly influenza report as published by the

Department of Health, Government of the Hong Kong Special

Administrative [20]. Maricopa County influenza data, spanning

October 2004–March 2009, were obtained from the weekly report

by the Maricopa Department of Public Health [21]. Maricopa

County flu reports are available during the flu season that usually

begins from week 40 and ends at week 17 of the following year.

We consequently assumed that flu counts outside the season to be

zero.

Climatic and meteorological parameters were collected from

two primary sources: ground-based and satellite-derived measure-

ments. From the Hong Kong Observatory [22] we retrieved daily

meteorological observations including temperature (maximum,

mean, minimum), mean dew point temperature, mean relative

humidity, global solar radiation and total evaporation. Maricopa

County daily climatic observations were acquired from The Flood

Control District of Maricopa County [23], where we aggregated

data from 32 stations. This data includes daily mean air

temperature, dew point (minimum, mean and max), relative

humidity (minimum and maximum), maximum wind speed, air

pressure (minimum and maximum) as well as maximum solar

radiation.

Furthermore, we obtained remotely-sensed daily rainfall

measurements for both Hong Kong and Maricopa County, from

the instruments embarked on the Tropical Rainfall Measuring

Mission (TRMM) [24,25]. TRMM is a collaborative mission

between NASA and Japan Aerospace Exploration Agency. The

goal of the mission is to monitor and study tropical rainfall in order
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to improve the understanding of the water cycle in the climate

system. Of the five instruments onboard the spacecraft, the

Precipitation Radar and the TRMM Microwave Imager have the

most direct relationship to measuring precipitation. As a follow-on

mission for TRMM, the Global Precipitation Mission [26,27],

which is a multinational mission involving a constellation of

satellites, will be launched in 2013. The TRMM data was

retrieved using the GES-DISC Interactive Online Visualization

ANd aNalysis Infractructure (Giovanni) as part of the NASA’s

Goddard Earth Sciences (GES) Data and Information and

Services Center (DISC) [28]. In addition to TRMM data as

rainfall measurements, we extracted Daily Land Surface Temper-

ature (LST) from the MODerate resolution Imaging Spectro-

radiometer (MODIS) data set [29]. Both Terra and Aqua missions

of NASA’s Earth Observing System carry this instrument. The

instrument has 36 bands spanning from the visible to the long

wave infrared spectra, from which information related to disease

transmission can be extracted. The importance of temperature

and precipitation–as environmental determinants in the infectious

disease transmission–have rendered TRMM and MODIS signif-

icant roles in remote sensing-based disease surveillance which has

been demonstrated elsewhere [30,31].

Analysis

The weekly influenza count data was divided into two: one set

was used in the fitting process (parameter estimation), and another

for prediction. We took the observations in the latest 1 year as the

prediction period. Out of 194 observations in Hong Kong

influenza data, we used 155 points for fitting and 39 for

prediction. For Maricopa data, the fitting set consists of 159

observations and the prediction set has 75.

The influenza time series that we analyzed in this study is

characterized by a strong autocorrelation, a property that

commonly violates the ordinary linear regression. Thus in order

to account for the autocorrelation behavior, we employed a class of

time series technique namely Auto Regressive Integrated Moving

Average (ARIMA) [32,33]. We first developed a univariate ARIMA

model, where the response series depends only on its past values and

some random shocks, followed with multivariate ARIMA with the

environmental parameters as input series/covariates. In the

following we will briefly delineate the Box-Jenkins approach for

ARIMA modeling that is used throughout this study.

ARIMA is based on the assumption that the response series is

stationary, that is the mean and variances of the series are

independent of time. Stationarity can be achieved by differencing

the series, or transforming the variable so as to stabilize the

variance or mean. In our analysis we took the logarithmic

transformation to reduce the variances of the influenza time series,

and subsequently differenced the series until it is stationary. Once

the response series is stationary, we examined the Autocorrelation

function (ACF) and Partial Autocorrelation Function (PACF) to

determine the initial autoregressive (AR) and moving average

(MA) order. An ARIMA model is notated as ARIMA(p,d,q), where

p indicates the AR order, d the differencing order and q the MA

order. An ARIMA model that incorporates seasonality is referred

as SARIMA(p,d,q)(P,D,Q) where P,D and Q indicate the seasonal

order of AR, differencing, and MA, respectively. Since the

influenza time series is recorded as weekly observations, the

seasonality period is 52.

Based on the ACF and PACF we fitted several ARIMA models

with varying AR and MA orders. In the fitting process, the AR

and MA coefficients were estimated using conditional least square

method. The residuals were further inspected for autocorrelation

through ACF and PACF. Models with autocorrelated residuals

were discarded, else goodness of fit were examined through

calculated Akaike’s Information Criterion (AIC) and the Mean

Square Error (RMSE). The resulting model was subsequently used

to forecast (1 step ahead) the latest influenza season, and the

associated RMSE were calculated.

Once we developed and selected a univariate ARIMA, we

investigated the effect of the environmental variables and the

corresponding lags on the influenza cases. Note that the daily

environmental data were converted into weekly resolution by

taking the average. The environmental series were first pre-

whitened. In other words, we applied univariate ARIMA

modeling, as previously discussed, such that the environmental

series no longer characterized by autocorrelation. Subsequently,

cross-correlations function (CCF) between the pre-whitened

environmental series and the influenza cases was then calculated

so as to identify the lags to be included in the model. The

significance of the cross-correlations was assessed on the basis of its

two standard error limits (significant at 0.05 level). Environmental

variables that did not exhibit significant cross-correlations with the

influenza cases were excluded from further analysis.

Similar to univariate ARIMA fitting process, we further

estimated the coefficients of the AR and MA terms as well as

the lagged environmental variable. In this study, (S)ARIMA model

that incorporates environmental input series is referred as

(S)ARIMAX. The environmental input series were first included

one at a time before combining them together. Estimated

coefficients with p-values greater than 0.05 are excluded when

possible and the model was re-fitted.

All ARIMA modeling and the corresponding statistical tests

were performed using SAS software, Version 9.1.2 of the SAS

System for Windows (SAS Institute, Inc., Cary, NC).
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