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Abstract

Background: Malaria transmission rates in Africa can vary dramatically over the space of a few kilometres. This spatial
heterogeneity reflects variation in vector mosquito habitat and presents an important obstacle to the efficient allocation of
malaria control resources. Malaria control is further complicated by combinations of vector species that respond differently
to control interventions. Recent modelling innovations make it possible to predict vector distributions and extrapolate
malaria risk continentally, but these risk mapping efforts have not yet bridged the spatial gap to guide on-the-ground
control efforts.

Methodology/Principal Findings: We used Maximum Entropy with purpose-built, high resolution land cover data and other
environmental factors to model the spatial distributions of the three dominant malaria vector species in a 94,000 km2

region of east Africa. Remotely sensed land cover was necessary in each vector’s niche model. Seasonality of precipitation
and maximum annual temperature also contributed to niche models for Anopheles arabiensis and An. funestus s.l. (AUC
0.989 and 0.991, respectively), but cold season precipitation and elevation were important for An. gambiae s.s. (AUC 0.997).
Although these niche models appear highly accurate, the critical test is whether they improve predictions of malaria
prevalence in human populations. Vector habitat within 1.5 km of community-based malaria prevalence measurements
interacts with elevation to substantially improve predictions of Plasmodium falciparum prevalence in children. The inclusion
of the mechanistic link between malaria prevalence and vector habitat greatly improves the precision and accuracy of
prevalence predictions (r2 = 0.83 including vector habitat, or r2 = 0.50 without vector habitat). Predictions including vector
habitat are unbiased (observations vs. model predictions of prevalence: slope = 1.02). Using this model, we generate a high
resolution map of predicted malaria prevalence throughout the study region.

Conclusions/Significance: The interaction between mosquito niche space and microclimate along elevational gradients
indicates worrisome potential for climate and land use changes to exacerbate malaria resurgence in the east African
highlands. Nevertheless, it is possible to direct interventions precisely to ameliorate potential impacts.
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Introduction

Malaria is the leading cause of death in African children,

accounting for approximately 20% of all-cause mortality in children

under the age of five [1]. Malaria transmission varies across Africa, a

phenomenon that is well known but not easily predicted [2,3], but

can also vary dramatically between adjacent communities [4]. The

heterogeneity of malaria transmission likely depends on environ-

mental conditions that affect vector mosquito distributions, such as

temperature, precipitation, humidity and land cover [5], which is

further complicated by differences among the Anopheles vectors in

their capacity to transmit the malaria parasite [6] and in vectors’

responses to control strategies [7]. Ecological niche models use these

environmental factors to predict the generalized distributions of

malaria vectors across Africa [8,9,10,11]. These models can be used

to predict malaria risk continentally [12]. However, these models

are too coarse to guide intervention efforts and their capacity to

predict malaria prevalence remains uncertain.

Targeting limited intervention resources efficiently toward foci

of malaria transmission would reduce malaria mortality and

morbidity [4] but models lack the required precision to implement

such strategies. Malaria transmission can vary considerably

between households in the same community, depending on house

construction or numbers of occupants, but environmental factors

predict malaria risk at the community level [5]. Satellite remote

sensing data have identified land covers [13,14,15] and topo-

graphical characteristics [16,17] associated with vector breeding

habitat and can be used to model malaria transmission [15,16].

Accurate, high resolution ecological niche models for malaria

vectors could bridge the spatial gap required to predict localized

heterogeneity in malaria transmission and guide selection of locally

appropriate vector control interventions.
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The East African highlands are a frontier for potential resurgence

of malaria due to climate change and malaria epidemics have

become more common. The limits of malaria transmission in Africa

are defined by the temperature-dependent development and

survival of the vector and parasite [18,19], which vary directly with

altitude [20]. Warming climates could push malaria transmission to

higher altitudes, resulting in more frequent epidemics among

populations with little recent exposure to the disease [20,21]. The

link between altitude and malaria transmission is convincing [22],

but differences in vector composition between humid coastal regions

(where An. gambiae s.s. predominates) and arid interior regions

(where An. arabiensis predominates) could also affect malaria

transmission [8,22]. The recent reemergence of Plasmodium

falciparum epidemic malaria in the East African highlands is

consistent with climate change [20,23] but could also reflect other

factors, such as antimalarial drug resistance [24,25], land use

changes [26,27], or natural climate variability [28]. High resolution

models predicting the distribution of malaria vectors and malaria

transmission foci could help resolve the causes of malaria resurgence

and serve as a basis for predicting where future malaria prevention

and control efforts will be most needed.

Here, we develop high resolution measurements of environ-

mental factors that previous research indicates should affect vector

distributions in an area of northern Tanzania where recent land

use and climate changes may be contributing to malaria

resurgence. Our models have very high internal accuracies but,

more importantly, they substantially improve predictions of

malaria prevalence among children 2 to 9 years old, in terms of

both accuracy (slope of observed vs. predicted prevalence does not

differ from one) and precision (model r2 = 0.83). We demonstrate

how validated models of malaria prevalence in East Africa,

drawing on our high resolution vector niche models, can be used

to map malaria risk with sufficient spatial detail (at 30630 m

resolution) to account for the extreme and localized heterogeneity

in malaria transmission. These may provide a starting point for

precise and potentially decisive interventions to reduce malaria

risk in highly vulnerable populations.

Methods

Study Area
The study area ranged from areas west of Mount Kilimanjaro to

the coastal plain of northern Tanzania, encompassing the Pare

and Usambara Mountains. This area has a short rainy season in

November and December and a long rainy season in March to

May. Temperatures peak in January and are lowest in July.

Malaria transmission is intense and perennial on the coastal plain

[29] and moderate-to-low further inland [30,31]. The three most

common malaria vectors in Tanzania are An. gambiae s.s., An

arabiensis and An. funestus s.l. [32]. An. arabiensis increases in the arid

interior of Tanzania, while An. gambiae is concentrated in humid,

coastal areas [33].

Data
Eight orthorectified Landsat 7 ETM+ scenes at 30-metre

resolution, available for the years 2000 to 2002, were mosaicked to

cover the area of northeastern Tanzania using Orthoengine in

Geomatica v10.1 (PCI Geomatics, Richmond Hill, Canada).

Nearly cloud-free scenes were available only during the dry season

(January to early March), which served to reduce the potentially

confounding influence of phenological differences and consequent

classification errors along scene boundaries within the mosaic.

Some haze, particularly along the eastern slopes of the Pare

Mountains, was present, but was reduced by using the Haze

Optimized Transform. The study area was clipped to 297 km

6317 km and covered large population gradients, from the

densely population areas around Mount Kilimanjaro in the north-

west and along the Indian Ocean coast in the south-east, and more

sparsely populated areas in the arid interior (Figure 1).

Land cover was classified using Geomatica v10.1. Two image

classification methods were used: (1) an unsupervised K-means

classification with 50 statistically distinguishable clusters, corre-

sponding to different vegetation types, and (2) a maximum-

likelihood supervised classification with 8 pre-defined land cover

classes (broadleafed evergreen forest, broadleafed deciduous

woodland, rainfed crops, rice/irrigated crops, acacia scrubland,

grassland, bare soil, water, and ice/snow) that were selected on the

basis of likely biological significance for malaria vector habitat. For

the supervised classification, 10–20 training polygons were created

for each land cover type. This was facilitated through GPS

ground-truthing across a ,500 km east-west transect of the study

area, including observation of land cover types at different

elevations. The Africover database thematic classification for

Tanzania [34] was cross-referenced to improve the accuracy of

training site classification. To validate the classification scheme a

set of 100 random sample points were compared between the

known and classified land cover. Separability of land cover types

was assessed by the Bhattacharyya distance, which measures the

similarity of two discrete probability distributions. The classifica-

tion output was assessed using the overall accuracy and the kappa

statistic. Ascii grid layers for unsupervised and supervised land

cover classifications were exported to ArcGIS v9.2 (ESRI,

Redlands, CA) for further manipulation.

Nineteen environmental layers were obtained from the

WorldClim database, including 11 temperature and 8 precipita-

tion indices that express spatial variation in annual means,

seasonality and extreme climatic factors [35]. Each layer was

available at a resolution of 30 arc-seconds (,1 km) and was

resampled to 1 arc-second resolution. Resampled environmental

layers were clipped to match dimensions of the landcover

classification grids then transformed to ascii grids. Elevation data

from the Shuttle Radar Topography Mission (SRTM) at a

resolution of 3 arc-seconds (90 metres), and human population

density for the year 2006, from the Oak Ridges National

Laboratory Landscan database (http://www.ornl.gov/landscan),

available at 30 arc-second resolution (,1 km), were similarly

processed.

Occurrence records for An. arabiensis, An. gambiae s.s. and An.

funestus s.l. were obtained from field collections conducted between

2001–2004 [36] and supplemented by a review of published

literature sources and unpublished data sources provided by local

experts. Inclusion criteria for model development were: collection

of adult specimens in 2000 or later, morphological identification of

An. funestus s.l., identification of An. gambiae s.l. to sibling species

level by polymerase chain reaction or cytogenetics, and village-

level georeferencing. Sites where both An. gambiae s.s. and An.

arabiensis were reported were allocated to the predominant sibling

species if it represented .80% of vectors collected, otherwise the

site was included for both species. Eighteen records met the

inclusion criteria for An. arabiensis while only 7 and 10 records were

retained for An. gambiae s.s. and An. funestus s.l., respectively. To

overcome the scarcity of geographically distinct records during the

desired collection period, the dataset was supplemented with

records from earlier studies by Mnzava et al. (1995) [37] and

Mnzava and Kilama (1986) [33]; village coordinates for these

records were obtained from the Global Biodiversity Information

Facility database (http://www.gbif.org). In total 29 geographically

distinct records were used for model development, providing
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occurrence data for An. arabiensis (n = 20), An. gambiae s.s. (n = 10)

and An. funestus s.l. (n = 10) (Figure 1).

Malariometric data was obtained from two cross-sectional

surveys conducted in 2001 by Drakeley et al. (2005) in 24 villages

in the Kilimanjaro and Tanga regions [22]. Study sites were

selected by the authors to cover large environmental and

altitudinal gradients while minimizing socioeconomic differences.

The prevalence of alleles associated with resistance to sulfadoxine-

pyrimethamine, the first line treatment in 2001, was found to be

similar across the study area in northern Tanzania [38,39]. In the

present study, the mean prevalence of Plasmodium falciparum from

the short and long rainy season surveys was used as an indicator of

malaria transmission to reduce seasonal variability. Analysis was

restricted to malaria prevalence in children aged 2–9 years to

control for the confounding effect of infant immunity on

parasitemia [40] and the potential effect of increased population

movement and/or acquired immunity in older age groups.

Shapefiles of administrative boundaries such as water bodies

and rivers were used only for mapping purposes and were

obtained from the FAO GeoNetwork database.

Niche Models
Maximum entropy (Maxent) software [41] was used to predict

the distribution of each species over the chosen geographical

region. Maxent uses presence-only occurrence data in conjunction

with environmental data to predict areas that target species may

occupy. Maxent models are sometimes more conservative than

alternative machine-learning techniques for predicting species

potential distributions [12]. However, comparative studies have

demonstrated that Maxent is among the most reliable species

distribution modeling techniques and retains its effectiveness well

even when species have been observed in only a small number of

localities [42,43].

To limit the influence of individual occurrence records on the

overall model and to provide a means for assessing model

accuracy, data were randomly partitioned for model evaluation,

with 75% of the records used as training data to construct the

models and the remaining 25% set aside for testing. The accuracy

of each model was determined by performing both a threshold-

dependent binomial test of omission and a threshold-independent

receiver operating characteristic analysis [41]. For the binomial

test of omission a threshold of 0.1 was selected from the output

generated by Maxent; a p-value ,0.05 was used to indicate

whether the niche model outperformed a random model [41]. For

the threshold-independent receiver operating characteristic anal-

ysis, which produces a curve of sensitivity vs. 1-specificity, only

models with an area under the curve (AUC) greater than 0.90

were retained. The AUC can be used as an overall estimate of the

Figure 1. Map of study area in north eastern Tanzania.
doi:10.1371/journal.pone.0009396.g001
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model’s discriminating ability, usually expressed as accuracy. AUC

values range between 0 and 1, with maximum accuracy achieved

with values of 1, accuracy no better than random with values of

0.5 and values ,0.5 indicating performance worse than random.

Similar protocols for model retention have been used previously

[12]. A jackknife procedure was used to determine the

contribution of each variable to the model. Maxent calculates

the AUC of the model using each parameter individually, and

again after omitting each of the parameters one at a time [41].

Those parameters for which the difference between these values is

highest can be interpreted as possessing the most information not

present in the other variables. Based on this analysis, the

contribution of parameters to the model is determined as a

percentage.

A two-step selection procedure was used to develop niche

models for individual vector species. Separate covariance matrices

were first generated for the 11 temperature and 8 precipitation

bioclimatic variables; variables were selected that minimized

covariance and represented biologically important criteria for

vector species. Two models were then constructed for each species,

using either the supervised or the unsupervised land cover

classification as a categorical variable in addition to the relevant

bioclimatic variables, elevation and human population density as

continuous variables. Accuracy assessments were applied to

evaluate the goodness-of-fit of each model. Ten model replicates

were run for each species, each with a random partitioning of

training and test data, and the raster maps of probability of

suitability output by Maxent were averaged to determine the

probability of suitability for each grid cell.

The averaged probability of suitability map for each species was

converted into a binary map of predicted suitable and non-suitable

areas. A decision threshold was defined for each model, above

which the habitat suitability for the species was considered to be

high and below which the habitat suitability was considered to be

low. For each species, the average predicted suitability of training

records that were used to construct the model was applied as the

threshold value. This is considered an effective method to

maximize both sensitivity and specificity, i.e. minimize false

negative and false positive rates [44]. A cumulative (all species)

grid of predicted vector habitat was created from the binary

species grids. To this end, cell values were set to one where the

value of the summed individual species grids was greater than or

equal to one to reflect areas of suitable habitat for any vector

species, while cells with zero value reflected areas where the

habitat was unsuitable for any vector species.

Statistical Analysis
The strong association between proximity to breeding sites and

adult vector abundance has been demonstrated in different

environments across Africa [15,45,46]. Bogh et al. (2007) found

that the distance-weighted area of malaria vector breeding habitat

near villages in The Gambia was strongly associated with vector

density and was a reliable predictor of malaria transmission.

Therefore, to relate village-level malaria prevalence to predicted

vector species’ habitat, a buffer of 0.012 decimal degrees

(,1.5 km) was created around each village, reflecting the potential

dispersal range of Afrotropical Anopheles mosquitoes [47]. The

mean value of cells within the buffer zone was sampled from the

binary habitat grids to obtain the proportion of area suitable for

vector species (individual and cumulative) within a radius of

1.5 km of each village.

Ordinary least squares (OLS) regression was used to test for the

effect of altitude and cumulative vector species habitat on P.

falciparum prevalence in children using proc GLM in SAS v9.1

(SAS Institute, Cary, NC). Arcsine square-root transformations

were applied to proportional data. The model residuals were

tested for spatial autocorrelation and the associated Moran’s I

value calculated using SAM v3.0 [48]. Conditional autoregressive

(CAR) models were constructed to adjust for residual spatial

autocorrelation and coefficients compared with those from the

OLS regression model, where necessary. Model goodness-of-fit

was assessed by linear regression of observed versus predicted

malaria prevalence.

Regional differences in village-level vector species’ habitat were

compared using a non-parametric two-way ANOVA with

interaction term. A Kruskal-Wallis rank sum test was used to test

for significance.

Results

Land Cover Classification
The K-means unsupervised land cover classification generated

50 statistically distinct clusters; the resulting land cover map was

applied in Maxent models in comparison with the supervised land

cover classification. The overall accuracy of the maximum

likelihood supervised land cover classification was 95%, with a

kappa coefficient of 0.98. The separability of pairs of land cover

types was measured by the Bhattacharyya distance. The minimum

separability was found between broadleafed evergreen forest and

broadleafed deciduous forest land cover types. This is likely of

minor importance for the prediction of vector habitat because

both land cover types have low biological suitability for the

malaria vector species of interest. However, below average

separability was also measured between rice/irrigated agriculture

and broadleafed deciduous forest, and between acacia scrubland

and rainfed crops, which could affect the prediction of vector

habitat due to the importance of these land cover types for vector

species in Tanzania.

Niche Models
Unsupervised land cover classification outperformed the

supervised classification of land cover types in the niche models

for all species, as indicated by the AUC and percentage

contribution of individual variables (Table 1). Niche models

therefore retained the unsupervised land cover classification to

generate binary habitat suitability maps. Precipitation seasonality

(measured as the coefficient of variation of monthly precipitation

amount), maximum temperature of the warmest month and land

Table 1. Comparison of malaria vector species’ niche models
using unsupervised vs. supervised land cover classifications.

Land cover classification

Species Unsupervised Supervised

An. arabiensis

Model AUC 0.989 0.979

% contribution to model 14.9 2.8

An. funestus

Model AUC 0.991 0.958

% contribution to model 25.7 14.3

An. gambiae

Model AUC 0.997 0.989

% contribution to model 15.0 3.0

doi:10.1371/journal.pone.0009396.t001
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cover contributed the most to the niche models for An. arabiensis

and An. funestus (Table 2). The maximum training gain for both

species from jackknife analysis was associated with precipitation

seasonality, indicating that this variable contained the most

information not present in other variables. In contrast, precipita-

tion of the coldest quarter (June to August, also the driest quarter),

land cover and altitude contributed the most to the niche model

for An. gambiae s.s. and the maximum training gain for this species

was associated with precipitation of the coldest quarter.

Modelled habitat suitability differed substantially between the

three vector species (Figure 2). Models predicted An. arabiensis

habitat to be most widely distributed, including in highland areas

to an altitude of 2300 metres. This species’ habitat is predomi-

nantly in lowland areas associated with river valleys and large-scale

irrigated rice production. In contrast, An. gambiae s.s. habitat is

concentrated in coastal plains, but our models suggest that this

species may extend its range up to 1200 metres in the Eastern

Usambara mountains. An. funestus s.l. habitat is more restricted

than An. arabiensis and is not predicted to occur in areas higher

than 1900 metres, although the two species are predicted to be

sympatric over much of the study area.

The mean proportion of suitable habitat surrounding villages

differed for vector species (P,0.0001). For villages in the

Kilimanjaro region, the mean proportion of suitable habitat

within a radius of 1.5 km of the village was 52% (95%CI 0.28–

0.76) for An. arabiensis, 38% (95%CI 0.08–0.68) for An. funestus s.l.

and 0% for An. gambiae s.s. For villages in the Tanga region, the

mean proportion of suitable habitat was 39% (95%CI 0.21–0.58)

for An. arabiensis, 25% (95%CI 0.0–0.51) for An. funestus s.l. and

18% (95%CI 0.0–0.40) for An. gambiae s.s. Differences in the

proportion of suitable vector habitat around villages in the two

regions were not statistically significant (P = 0.730), although

biologically significant patterns were observed with the highest

concentration of An. gambiae s.s. habitat in the Tanga region.

Statistical Analysis
Altitude relates strongly to P. falciparum prevalence, but model

residuals showed significant spatial autocorrelation at distances less

than 50 km (Moran’s I = 0.366, P = 0.006). A conditional auto-

regressive model was constructed to minimize potential influences

of spatial autocorrelation on probability tests and model

parameters (r2 = 0.50, P,0.001). The relationship between mean

parasite prevalence and altitude was described by the equation:

PP~ sin 0:916z0:00044Að Þ½ �2

where PP is the prevalence of P. falciparum in children 2 to 9 years

old and A is the altitude in metres from SRTM data. The

Table 2. Contribution of environmental variables to malaria vector species’ niche models.

Species Variable
% Contribution
to Model

AUC without
variable

AUC with only
variable

Model
AUC

Anopheles arabiensis precipitation seasonality* 48.5 0.983 0.866 0.989

maximum temperature of the warmest month 16.6 0.990 0.766

land cover (unsupervised)+ 14.9 0.979 0.889

human population density 9.2 0.985 0.776

precipitation of the warmest month 4.1 0.990 0.763

temperature annual range 3.9 0.989 0.736

temperature seasonality 1.9 0.989 0.764

precipitation of the coldest month 0.8 0.989 0.531

altitude 0.1 0.990 0.570

Anopheles funestus maximum temperature of the warmest month* 37.2 0.991 0.826 0.991

precipitation seasonality 35.7 0.963 0.833

land cover (unsupervised)+ 25.7 0.940 0.951

temperature seasonality 0.9 0.987 0.598

human population density 0.5 0.988 0.731

Altitude 0.0 0.987 0.595

Anopheles gambiae precipitation of the coldest quarter*+ 64.7 0.997 0.974 0.997

land cover (unsupervised) 15.0 0.990 0.949

Altitude 8.5 0.997 0.951

minimum temperature of the coldest month 5.3 0.997 0.923

annual precipitation 2.1 0.997 0.959

mean temperature of the warmest quarter 1.6 0.997 0.944

maximum temperature of the warmest month 1.0 0.997 0.910

precipitation of the driest quarter 1.0 0.997 0.967

precipitation of the warmest quarter 0.3 0.997 0.640

human population density 0.4 0.997 0.864

*largest % contribution to model.
+largest AUC on its own.
doi:10.1371/journal.pone.0009396.t002
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regression of predicted malaria prevalence versus observations,

while reasonably accurate (r2 = 0.56), demonstrated a non-linear

trend that could bias predictions of malaria prevalence (Figure 3).

Multiple linear regression revealed a significant interaction

between altitude and habitat on P. falciparum prevalence in

children that substantially improved model accuracy (model

r2 = 0.828, P,0.001), as well as significant main altitude and

non-significant main habitat effects. Area of vector habitat around

villages affects malaria prevalence differently with altitude. 3D

plots of the altitude-habitat interaction effect on parasite

prevalence reveal that habitat is least important at the highest

and lowest elevations and of greatest importance at mid-altitudes

(i.e. the slope of the interaction term is steepest there). The model

residuals were not significantly autocorrelated at any distance class

(Moran’s I = 0.217, P.0.05) and coefficients were nearly identical

to those derived from a CAR model, consistent with the absence of

residual spatial autocorrelation. Addition of area of predicted

vector habitat to the model thus accounted for 65.6% of the

previously unexplained variance in prevalence of P. falciparum in

young children. The linear relationship between predicted malaria

prevalence and prevalence observations indicates unbiased model

prediction with improved precision (r2 = 0.86; slope = 1.021, 95%

CI 0.987–1.056; intercept = 0.026, 95% CI 0.017–0.036)

(Figure 3).

The relationship between mean parasite prevalence, altitude

and area of predicted vector habitat around villages was described

by the equation:

PP~ sin(1:372{0:00043Az0:01311(arcsin
ffiffiffiffi
V
p

)
h

{0:000627 A � arcsin
ffiffiffiffi
V
p� �i2

where A is the altitude in metres from SRTM data and V is the

proportion of area suitable for malaria vector habitat within a radius

of 1.5 km of each 30 m grid cell, predicted from the cumulative

vector species niche model. This equation was used to generate a

map of predicted malaria risk throughout the study region at a

resolution of 30630 m (Figure 4). Parasite prevalence was

considered negligible in cells that had no suitable vector habitat in

the surrounding 1.5 km radius. Categories were generated to reflect

meaningful levels of malaria endemicity (Figure 5).

Discussion

Satellite-derived data is being increasingly employed to generate

maps and predictive models of malaria risk, usually at a global or

continental scale [3,8,10,12]. While these maps provide useful

indications of the distribution and dynamics of malaria vectors

and/or malaria transmission across the African continent, and

may be used to project large-scale changes in malaria distribution

under different climate change scenarios [10,49], they are of

limited operational use for targeting malaria control interventions

[4]. A recently published contemporary global map of malaria

endemicity is expected to facilitate regional planning of malaria

control in endemic countries [3], but it lacks a mechanistic link to

vector mosquito habitat that could improve the accuracy and

spatial resolution of predictions, particularly in areas with sparse

malaria prevalence data.

Although ecological niche models constructed using Maximum

Entropy are considered relatively reliable, few studies are able to

use independent data to test whether those models provide

effective biological insight [50]. Here, we demonstrate that not

only are niche models for competent vectors for malaria highly

accurate based on internal resampling (AUC.0.9), but those

niche models independently improve the best previous prediction

for malaria prevalence among children 2 to 9 years old by 65.6%.

The inclusion of spatially detailed habitat characteristics, as

assessed by the detailed multispectral assessment possible using

Landsat Thematic Mapper data, in addition to coarser resolution

climatic data, provides tactically useful guidance around the

distribution of malaria vector species. Areas with higher

Figure 2. Malaria vector niche models. Models show the area of predicted suitable habitat (shaded area) at a resolution of 30630 metres across
north eastern Tanzania for the dominant malaria vector species, An. arabiensis, An. gambiae s.s. and An. funestus s.l.
doi:10.1371/journal.pone.0009396.g002
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seasonality of precipitation were predicted to be most suitable for

An. arabiensis, while areas that experienced greater precipitation in

the cold, dry season favoured An. gambiae s.s. This is consistent with

the adaptation of the former sibling species to withstand seasonal

aridity, while the more competent vector, An. gambiae s.s., is best

adapted to areas that experience year-round humidity. Suitability

for An. arabiensis was further seen to peak in areas with moderate

human population densities while low suitability was observed in

areas with very sparse or very dense populations, suggesting a

reduction of suitable habitat in heavily populated, urban areas.

While urbanization was not explicitly addressed in our analysis,

this suggests the importance of including human population

density in vector species distribution models. An important

implication of our ecological niche models is that the predicted

distribution of malaria vector species in northern Tanzania can

inform the selection of locally appropriate vector control

interventions. Our models suggest that An. arabiensis is most widely

distributed in the northern Tanzanian interior. This implies

reduced efficacy of indoor residual spraying (IRS) as the preferred

strategy for mitigation of malaria epidemics in highland areas [51],

because this exophilic vector is less susceptible to indoor

applications of residual insecticides in contrast to An. gambiae s.s.

and An. funestus s.l., which remain indoors after feeding. History

has shown that the success of IRS programs may be jeopardized in

areas with vector species combinations [52].

This study develops land cover data intended to reveal

ecological differences important for predicting malaria vector

species distributions by means of an unsupervised classification of

high resolution Landsat 7 ETM+ data. The resulting land cover

led to large improvements in malaria prevalence prediction by

contributing to prediction of vector habitat distribution, probably

by successfully detecting potential vector breeding habitat.

Previous land cover data for the region were highly aggregated

and do not improve predictions of malaria prevalence. The

diminished thematic detail of generalized land cover data at

coarser resolutions, such as well-known global and continental

products from the Advanced Very High Resolution Radiometer

(AVHRR) or Moderate Resolution Imaging Spectroradiometer

(MODIS) data [53], are also less likely to provide the necessary

biological insights to distinguish malaria vector habitat. The use of

land cover data that were not developed to assess habitat suitability

for particular species may explain why land cover is often found to

be an ineffective addition to niche models [12]. We show that

detailed assessment of vector habitat, measured here as the area of

vector species’ habitat within a radius of 1.5 km of villages,

improves models of malaria prevalence substantially relative to

previous work demonstrating the primary importance of altitude.

The spatial detail present in such models, as well as their

demonstrated effectiveness in predicting disease prevalence,

permits high resolution mapping of malaria risk in an epidemic-

prone region in Africa which may improve the effectiveness of

malaria control strategies. These mapping efforts may further

provide a baseline to evaluate the impact of malaria interventions.

Our analysis suggests that vector habitat exerts an important

influence on malaria prevalence at mid-altitudes, but that its

influence at altitudinal extremes diminishes. At very low altitudes

this could reflect the saturation of infection with increasing

transmission, as measured by the entomological inoculation rate

(EIR) [54]. Host immunity, antimalarial drug use, or coverage with

insecticide-treated nets could also affect malaria prevalence at low

altitudes, diminishing the importance of vector habitat as a

predictor. Our model may provide a means to assess the relative

importance of these factors to site-specific malaria prevalence,

recognizing the primary importance of environmental factors. At

very high altitudes, temperature-dependent effects on parasite

survival and development may limit malaria transmission despite

the presence of suitable vector habitat. This phenomenon, referred

to as ‘anophelism without malaria’, while common in Europe and

North America [55], has not previously been described from the

East African highlands. Rather, despite the presence of suitable

niche characteristics, low vector densities likely limit malaria

transmission in the East African highlands. Epidemics follow

weather that favours formation of productive larval habitats and

that accelerates larval development, namely increased temperatures

and rainfall [56,57]. Increases in transmission may be highly

localized, and influenced to a large extent by topography, as

observed by Lindsay et al. [58] following an El Nino event. Our

modelling approach may identify areas at increased risk of

Figure 3. Regression model goodness-of-fit. Area of predicted
malaria vector habitat improves the goodness-of-fit of models of
malaria prevalence, assessed by regression of observed versus
predicted malaria prevalence in children 2 to 9 years old. Assessments
were performed for (A) an ordinary least squares regression model of P.
falciparum prevalence as a function of altitude, and (B) a conditional
autoregressive model of P. falciparum prevalence as a function of
altitude and habitat. Data points represent 24 villages in north eastern
Tanzania. The 1:1 line is shown for reference.
doi:10.1371/journal.pone.0009396.g003
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epidemics if seasonal weather fluctuations and/or broader warming

trends create favourable conditions for parasite transmission.

Despite the significant contribution of predicted vector species

habitat to models of malaria transmission, this study has several

assumptions. First, we were unable to test the predictive ability of

our malaria prevalence model using independent data. Insufficient

community-based prevalence data, collected using similar con-

trolled methodology, were available within the study area to provide

the basis for independent testing. This highlights the need for

systematic collection of community-based measures of malaria

prevalence in Tanzania and more broadly across the African

continent. Second, we assume that adult occurrence records

represent areas of suitable vector habitat. Given that breeding sites

are often located within several hundred metres of sites with

abundant adult vectors [15,45,46], and that land cover clusters tend

to extend over multiple grid cells, this is unlikely to affect the

accuracy of our niche models at 30 metre resolution. In addition,

while the entomological dataset represents the most comprehensive

and contemporary set of vector species occurrence records available

for northern Tanzania, the data span a period of almost 10 years.

Geographic instability in vector occurrences over this period could

affect the accuracy of the resulting models. Fortunately, this effect

would limited by the data partitioning and use of test replicates in

the construction of niche models. Finally, the correlation between

satellite data and vector abundance has been well described for

other insect vectors such as tsetse flies, which transmit African

trypanosomiasis [59,60] and have relatively stable population

dynamics. The relationship between malaria vector habitat and

vector abundance, however, is more complex and temporally

variable because of seasonality of temperature and rainfall [46,57].

Lack of predicted habitat suitability for An. gambiae s.s. in the

Southern Pare Mountains, where low proportions (5–10%) of this

sibling species have been described relative to An. arabiensis [33,61],

suggest our niche model for An. gambiae s.s. may be conservative in

areas of limited or seasonal species occurrence. Our simplified use of

a cumulative index of vector species habitat is expected to eliminate

inaccuracies in the spatial prediction of malaria prevalence resulting

from seasonal variation in vector species composition. Analysis with

multi-temporal datasets could reveal seasonal contributions of

individual vector species to transmission and further allow for

weighting to reflect inherent differences in vectorial capacity. This

would be of interest if the altitude-independent differences in

malaria transmission observed by Drakeley et al. (2005) in part

relate to a seasonal succession of different vector species, which

serves to extend the transmission season in areas with sympatric

vectors, such as the coastal zone in Tanzania. Ecological niche

modelling of seasonal vector population dynamics is an important

area of future research.

By combining ecological niche models with purpose-built, high

resolution satellite remote sensing data, models predicting malaria

Figure 4. Continuous map of predicted malaria prevalence. Predicted P. falciparum prevalence in children 2 to 9 years old as a function of
altitude and vector habitat availability within 1.5 km of grid cells (predicted from niche models) is shown at 30630 metre resolution on a continuous
scale.
doi:10.1371/journal.pone.0009396.g004
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prevalence in children improve dramatically. This improvement

takes two forms: statistical precision increases by 65.6% and

prediction bias disappears (observed versus predicted prevalence

has a slope of 1 and an intercept of 0). It is clear that ecological

niche models can provide strong benefits for malaria risk mapping

when exhaustive field characterization of vector breeding sites is

impractical, particularly when detailed remote sensing data are

included. Maps such as these can inform the selection of locally

appropriate control strategies based on vector species assemblages

and identify potential foci of transmission to better target scarce

malaria control resources. With the availability of high resolution

multi-temporal land cover data, our model could be applied to

detect seasonal range expansions/contractions for individual

vector species; this is currently not feasible using Landsat TM

data, for which few cloud-free scenes are available. Importantly,

recent malaria vector species niche models for the African

continent suggest the expansion of vector habitat in Eastern and

Southern Africa may result from climate change [49]. Projection

of high resolution niche models using general circulation model

(GCM) scenarios could contribute to the understanding of

potential future effects of climate change on local malaria vector

distributions in the East African highlands.
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