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Abstract

Background: Bluetongue (BT) is a viral disease of ruminants transmitted by Culicoides biting midges and has the ability to
spread rapidly over large distances. In the summer of 2006, BTV serotype 8 (BTV-8) emerged for the first time in northern
Europe, resulting in over 2000 infected farms by the end of the year. The virus subsequently overwintered and has since
spread across much of Europe, causing tens of thousands of livestock deaths. In August 2007, BTV-8 reached Great Britain
(GB), threatening the large and valuable livestock industry. A voluntary vaccination scheme was launched in GB in May 2008
and, in contrast with elsewhere in Europe, there were no reported cases in GB during 2008.

Methodology/Principal Findings: Here, we use carefully parameterised mathematical models to investigate the spread of
BTV in GB and its control by vaccination. In the absence of vaccination, the model predicted severe outbreaks of BTV,
particularly for warmer temperatures. Vaccination was predicted to reduce the severity of epidemics, with the greatest
reduction achieved for high levels (95%) of vaccine uptake. However, even at this level of uptake the model predicted some
spread of BTV. The sensitivity of the predictions to vaccination parameters (time to full protection in cattle, vaccine efficacy),
the shape of the transmission kernel and temperature dependence in the transmission of BTV between farms was assessed.

Conclusions/Significance: A combination of lower temperatures and high levels of vaccine uptake (.80%) in the
previously-affected areas are likely to be the major contributing factors in the control achieved in England in 2008. However,
low levels of vaccination against BTV-8 or the introduction of other serotypes could result in further, potentially severe
outbreaks in future.
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Introduction

Amongst the numerous diseases of ruminants, bluetongue (BT)

has gained considerable importance in recent years as one of the

best examples of the effects of climate change on disease spread

[1,2,3,4]. As an arbovirus, bluetongue virus (BTV), the aetiological

agent of BT, depends almost entirely on the presence of competent

Culicoides biting midges to be transmitted to the local host

population. Currently, 24 serotypes of BTV have been identified

worldwide, with most infected countries confronted with the

challenge of dealing with multiple serotypes circulating in their

ruminant populations [5]. The global range of BTV has

historically been assumed to be restricted by regional differences

in vector competence amongst Culicoides species as well as by the

temperature requirements of the virus for replication. In recent

years, however, the emergence and rapid spread of previously

unreported serotypes (and strains) has occurred in a number of

regions globally, including Europe and North America [5,4].

Between 1998 and 2006, several BTV serotypes made incur-

sions into Europe, but their distribution was limited to the

Mediterranean Basin where the main Afro-Asiatic vector, Culicoides

imicola, was present [3]. Limited evidence indicated that northern

European Culicoides species could also potentially transmit the virus

[6], but the risk of BT for the northern parts of Europe was

considered minimal [7]. Indeed, before 2006, no case of BT had

ever been reported above 50uN [1,2]. It was therefore unexpected,

when, in August 2006, the first cases of BTV serotype 8 (BTV-8)

were recorded near Maastricht in the Netherlands (over 900km

further north than ever before), with subsequent cases reported in

Belgium, Germany, France and Luxembourg [8,9]. By mid-

January 2007, approximately 2,000 holdings had been affected. In

May 2007, BTV-8 re-emerged and caused major outbreaks across

the previously-affected countries, and spread into new areas of

northern mainland Europe. The number of BT cases recorded in

2007 reached tens of thousands of affected farms in some countries

[9]. The first case of BTV-8 in Great Britain (GB) was reported at
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Baylham Farm, near Ipswich on 22 September 2007 and, by the

end of the year, a total of 67 affected holdings had been identified,

although pre-movement testing later increased the number of

known affected holdings to 125 by early 2008 [10].

A voluntary vaccination programme was launched in GB in

May 2008, making use of an inactivated vaccine against BTV-8

which had only just become available. In contrast with other

European countries, GB reported no cases of transmission of

BTV-8 within its borders in 2008. It is essential to investigate why

this was the case and, in particular, to identify key factors

influencing the apparent success of vaccination in order to assess

the risk from future reintroductions if, for instance, the level of

vaccine uptake declines or if temperatures are warmer during the

period of potential BTV transmission. To address these questions

we use a stochastic, spatially-explicit model to describe the spread

of BTV within and between farms in GB, which incorporates the

effects of temperature on infection dynamics and also integrates

the currently available data on BTV epidemiology [11].

Methods

Modelling Framework
A complete description of the model for the transmission of

BTV within and between farms in GB, including parameter

estimation, sensitivity analysis and model validation using data on

BTV in GB from 2007, is presented elsewhere [11]; here we

provide a summary of the approach used.

Within-farm model. A stochastic model, which includes two

host species (cattle and sheep) and one vector, was used to describe

the spread of BTV within a holding. Parameter estimates were

obtained from the published literature, using those applicable to

the GB situation wherever possible. Explicit temperature

dependence was included for the reciprocal of the time interval

between blood meals (related to the biting rate), the vector

mortality rate and the extrinsic incubation period. Remaining

parameters were set for each farm by sampling from appropriate

ranges, except for the duration of viraemia in ruminant hosts

where point estimates for the (gamma) distribution parameters

were used.

Between-farm model. A stochastic, spatially explicit farm-

level model with a daily time step was developed to describe

spread between farms. Transmission between farms was modelled

by a generic transmission kernel, which includes both animal

movements and vector dispersal (both active and passive). The

probability of transmission depends on the distance between farms

(i.e. the kernel) and the species composition of the farms.

Parameters for the transmission probability were estimated using

outbreak data for northern Europe in 2006. Once a farm acquired

infection, the within-farm model was simulated based on the

number of cattle and sheep kept on the farm and on local

temperatures. The impact of movement restrictions on

transmission was incorporated by assuming transmission could

occur between farms only if both were in a protection zone (PZ), as

declared by the Department for Environment, Food and Rural

Affairs (Defra).

Initial conditions. The model was initialised with a single

infected farm (Baylham Farm, near Ipswich) on 4 August 2007. Six

additional farms became infected later (two in Cambridgeshire,

three in Kent and one in Sussex), with no demonstrable

epidemiological link to the main focus in East Anglia. It has

been suggested that these additional cases may have been a result

of new introduction events. Accordingly, they were included as

additional initial foci of infection in the simulations, based on their

location and date of reporting.

Simulations. Simulations were run until 3 November 2008,

the date when Scotland was declared a PZ to allow vaccination.

For each scenario the model was run so that 30 outbreaks (defined

as any increase in the number of affected holdings beyond those

seeded in the simulations; see above) were generated. Replicates

were simulated until the required number (30) of outbreaks had

been generated (i.e. the number of replicates was not specified in

advance, rather it follows a negative binomial distribution). The

number of outbreaks was chosen to give robust results without

being prohibitively expensive in terms of computation time.

Data
The location and the number of sheep and cattle on each

holding were obtained from June agricultural survey data for

2006. Hourly temperature records for 2006 and 2007 (see Figure

S1) were extracted from the BADC/MIDAS database [12] for the

19 meteorological stations used as inputs to the model (see [11]).

For each scenario a single year of data were used for the

simulations, with a farm using temperature records from its nearest

meteorological station.

Vaccination
Vaccination was assumed to act by reducing the probability of

transmission from vector to host (b; i.e. it reduces the probability

that an animal acquires infection) and from host to vector (b; to

reflect lower virus titres in infected, vaccinated animals). The

probabilities decreased linearly over time until full protection was

reached, so that,
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where b and b are the baseline probabilities (i.e. in unvaccinated

animals), e is the vaccine efficacy (assumed to be 100%, unless

stated otherwise) and tvacc and t
(i)
FP are the time of vaccination and

time at which full protection is reached in species i (cattle (C) or

sheep (S)), respectively. Data on the time to full protection in sheep

and cattle were obtained from information supplied by the vaccine

manufacturers: in sheep this is reached at 14 days post vaccination

(dpv) (see also [13,14]); in cattle it is reached at 60 dpv (see also

[14]).

Protection zones (PZ), which identify where vaccine can be

used, were defined by counties within the vaccination zones

declared by Defra. All vaccination scenarios were based on the

roll-out plan implemented by Defra [15,16], using the actual dates

of extension of the PZ as published on the Defra website [16] from

30 April 2008 (when the first batch of vaccine was released) up to 1

September 2008 (when the whole of England and Wales was

declared to be a PZ). Under this approach farmers in counties not-

yet infected were able to vaccinate in a preventive manner.

Only limited data are available on the level of vaccine uptake.

In the summer of 2008, farmer surveys were carried out in East

Anglia (an area affected by BTV in 2008) by the University of

Vaccination and BTV
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Cambridge, where estimates for vaccine uptake of up to 95% were

recorded on sheep farms, although uptake was lower on cattle

farms (Webb, Oura, O’Brien, Floyd and JLNW, unpublished).

Data on sales of vaccine imply, however, that uptake in other areas

was considerably lower. Thus, we simulated vaccination according

to the Defra roll-out plan, assuming different levels of uptake (i.e.

proportion of farmers vaccinating their stock; Table 1): 95% (the

best-case scenario); 80% (the target level of coverage [17]); 50% (a

more pessimistic scenario); and a scenario where the level of

uptake increased with proximity to the area affected in 2007. In

this case, vaccine uptake was 95% in the 2007 PZ, 75% in the

2007 surveillance zone, and 50% elsewhere (the 2007 free area). In

addition, the impact of reduced uptake by cattle-only farms was

investigated, following preliminary results of surveys conducted in

East Anglia in summer 2008, which suggested there was a 10%

lower level of uptake in this farm type (Webb, Oura, O’Brien,

Floyd and JLNW, unpublished). The different scenarios for

vaccine uptake are summarised in Table 1.

Under each scenario, a list of farms to be vaccinated within a

county was created in the following way. A farm was added to the

list with probability given by the specified level of uptake. Once

this was done for all farms in the county, the order of vaccination

was determined by randomising the list of farms to be vaccinated.

The farms on the list were then vaccinated starting from the date

when the county became part of a PZ. Because it is farmers

themselves who vaccinate their stock, not specialised teams as

would be the case for foot-and-mouth disease, vaccination was

implemented at a constant number of farms per day in each

county, such that all farms were vaccinated within 21 days

following the date when that county became part of a PZ.

Preliminary results of surveys conducted in East Anglia in summer

2008 by the University of Cambridge indicated that this was an

appropriate time-scale to consider (Webb, Oura, O’Brien, Floyd

and JLNW, unpublished). If a farm was vaccinated, all animals on

that farm were assumed to be vaccinated. The number of doses of

vaccine required (one per sheep and two per bovine) was recorded,

but was assumed not to constrain the strategy.

Sensitivity Analysis
Sensitivity analyses were carried out to assess the impact of

various model assumptions on the predicted efficacy of a

vaccination programme against BTV-8. In particular, we

examined the effect of: (i) Vaccine uptake: (see above; Table 1); (ii)

Temperature: The impact of temperature was assessed by using two

temperature datasets: 2006 (a warmer year) and 2007 (a cooler

year) (see Figure S1); (iii) Time to full protection in cattle: The model

was simulated assuming full protection in cattle was reached after

30, 45 or 60 dpv; (iv) Vaccine efficacy: Values were considered for

vaccine efficacy which range from 50% to 100%; (v) Shape of the

transmission kernel: Four kernels were used to simulate outbreaks:

three (Gaussian, exponential and fat-tailed) obtained by fitting

models to data on the spread of BTV-8 in northern Europe in

2006 (see [11] for full details), together with that estimated from

the 2001 outbreak of foot-and-mouth disease (FMD) in the GB

[18,19]. In addition, the Gaussian kernel (which yielded the best fit

to the north European data;[11]) was used with a range of values

for its shape parameter; and (vi) Threshold temperature for between-farm

transmission: Although no evidence for temperature dependence in

the transmission of BTV between farms was identified when fitting

to the epidemic of BTV-8 in northern European [11], its potential

impact was assessed by setting a threshold temperature below

which transmission was assumed not occur (none; 5uC; 10uC; and

15uC). A total of 36 scenarios were considered, full details of which

are provided in Table S1.

Statistical Analysis
The results from the simulations were compared to identify

factors influencing: (i) the probability that an incursion results in an

outbreak of BTV (i.e. there is any increase in the number of

affected farms); (ii) the size of the epidemic, expressed as the total

number of farms affected during the simulation; and (iii) the

probability of extinction (i.e. that an outbreak dies out by the end

of the simulation).

The probabilities of an outbreak and of extinction were

compared using x2 or Fisher exact tests. Epidemic sizes were

compared using generalised linear models (GLM) with negative

binomial errors and a log link function. For the combined

vaccination and temperature scenarios model construction

proceeded by stepwise deletion of non-significant (P.0.05) terms

starting from an initial model including temperature, vaccine

uptake and whether or not uptake was reduced for cattle-only

farms as factors, together with pairwise interactions between all

factors. For the remaining scenarios, only the factor under

consideration (time to full protection, vaccine efficacy, kernel

parameter or shape, threshold temperature) was included in the

initial model.

Results

Probability of an Outbreak
Assuming 2007 temperatures 2.7% (95% confidence interval

(CI): 1.9–3.9%) of incursions resulted in outbreaks (cf. [11]). By

contrast, a significantly higher proportion of incursions (21.7%;

95% CI: 15.2–29.6%) resulted in outbreaks for the 2006

temperatures (x2 = 95.3, df = 1, P,0.001).

Spatio-Temporal Dynamics of BTV-8 in GB
In the absence of vaccination the model predicted severe

outbreaks of BTV-8 in GB in terms of both the incidence of

clinical disease (Figure 1A,B) and spatial spread (Figure 2A,B),

particularly so for simulations using the warmer 2006 tempera-

tures. Vaccination reduced both the incidence and spatial spread,

with increasing levels of coverage resulting in greater reductions

(Figures 1 and 2). However, even at high levels of uptake (95%) the

model predicted some spread of BTV (Figures 1G,H and 2G,H).

For the scenarios in which vaccine uptake varied according to

Table 1. Summary of the scenarios for vaccine uptake.

code level of uptake (% farms vaccinated)

other farms{ cattle-only farms

none none none

95 95 95

80 80 80

50 50 50

var 50/75/95{ 50/75/95{

95LC 95 85

80LC 80 70

50LC 50 40

varLC 50/75/95{ 40/65/85{

{other farms: mixed cattle and sheep farms and sheep-only farms.
{level of uptake in free area/surveillance zone/protection zone, as defined by
Defra at the end of 2007.

doi:10.1371/journal.pone.0009353.t001
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distance from the 2007 affected area, the model predictions were

similar to those assuming high levels (95%) of uptake everywhere,

except for certain replicates where the virus escaped the high

uptake area resulting in higher incidence and greater spread

(Figures 1I,J and 2I,J; cf. Figures 1G,H and 2G,H). Finally, there

was a marked impact of temperature with larger outbreaks

(Figure 1) and more extensive spread (Figure 2) for the 2006

compared with the 2007 temperatures.

Outbreak Size
Comparing the results of different scenarios for vaccine uptake

and temperature (Figure 3A,B) indicated that both vaccine

uptake and temperature had a significant (P,0.001) impact on

outbreak size, but that the effect of uptake depended on the

temperature data-set (i.e. there was a significant (P = 0.006)

interaction between uptake and temperature). However, lower

uptake by cattle-only farms did not significantly affect outbreak

size (P = 0.25).

For those simulations using the 2007 temperature data-set the

scenarios could be divided simply into high ($80%) or low

(#50%) levels of uptake, with smaller outbreaks occurring for the

high compared with low levels of uptake (Figure 3A). In contrast,

there were differences in outbreak size between all five levels of

vaccine uptake considered (Table 1) for simulations based on 2006

temperatures (Figure 3B).

Probability of Extinction
In only 2.4% (95% CI: 1.3–4.1%) of outbreaks was BTV

predicted to die out by the end of the simulations (3 November

2008). There was a difference between the probability of

extinction based on the 2006 temperatures (0.4%; 95% CI:

0.01–2.0%) and that based on the 2007 temperatures (4.4%; 95%

CI: 2.3–7.6%), which was not significant at the conventional 5%

level but was significant at the 10% level (Fisher exact test,

P = 0.097). However, there were no significant differences in the

probability of extinction between levels of vaccine uptake for those

Figure 1. Predicted time-course of BTV-8 epidemics in GB under different vaccination and temperature scenarios. Results presented
are for: (A, B) no vaccination; vaccination with (C, D) 50% uptake; (E, F) 80% uptake; (G, H) 95% uptake; and (I, J) variable levels of uptake (95% in the
2007 protection zone, 75% in the 2007 surveillance zone and 50% elsewhere). Simulations are based on (A, C, E, G, I) 2007 or (B, D, F, H, J) 2006
temperatures, assuming the best-fit Gaussian kernel to the north European data, a time to full protection in cattle of 60 dpv and vaccine efficacy of
100%. Each figure shows the median (circles) and 10th and 90th percentiles (error bars) for the incidence of BTV (number of new clinical holdings per
week).
doi:10.1371/journal.pone.0009353.g001
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simulations using the same temperature data-set (Fisher exact test,

P.0.5).

Sensitivity Analysis
The sensitivity of the predicted outbreak size was assessed for

various assumptions underlying vaccination (time to full protection

in cattle, vaccine efficacy), the transmission kernel (kernel parameter,

kernel shape) and temperature dependence in the transmission of

BTV between farms (Figure 3C–G). Changing the time to full

protection in cattle from 60 days (default) to 30 or 45 days did not

significantly (P = 0.5) affect the outbreak size (Figure 3C). Outbreak

size declined as vaccine efficacy increased (b = 20.020, 95% CI:

(20.029, 20.011); P,0.001). Moreover, there was evidence for a

threshold effect of vaccine efficacy, with outbreaks significantly

smaller for high ($80%) compared with low (#70%) levels of

efficacy (b = 20.72, 95% CI: (21.01,20.43); P,0.001) (Figure 3D).

Outbreaks were predicted to become significantly (P,0.001) smaller

as the Gaussian kernel parameter increased, with a marked change

in outbreak size occurring as the parameter changed from 0.01 to

0.034 (Figure 3E). In addition, the shape of the kernel significantly

(P,0.001) affected the predicted outbreak size, with the smallest

outbreaks for the Gaussian kernel, followed by the exponential

kernel with the largest outbreaks for the fat-tailed or FMD kernels

(Figure 3F). Finally, if a threshold temperature was set below which

no transmission occurred between farms, outbreaks were signifi-

cantly (P,0.001) smaller for a threshold of 15uC, but there were no

significant differences when there was no threshold or when it was set

at 5uC or 10uC (Figure 3G).

Figure 2. Predicted spatial distribution of BTV-8 in GB under different vaccination and temperature scenarios. The different maps
represent the extent of the predicted spatial spread up to the end of 2008 under different scenarios for vaccination and temperature: (A, B) no
vaccination; vaccination with (C, D) 50% uptake; (E, F) 80% uptake; (G, H) 95% uptake; and (I, J) variable levels of uptake (95% in the 2007 protection
zone, 75% in the 2007 surveillance zone and 50% elsewhere). Simulations are based on (A, C, E, G, I) 2007 or (B, D, F, H, J) 2006 temperatures,
assuming the best-fit Gaussian kernel to the north European data, a time to full protection in cattle of 60 dpv and vaccine efficacy of 100%. The maps
show the cumulative risk (see colour bars) expressed as the proportion of simulated outbreaks (out of 30 which took off; see Methods) for which at
least one farm was affected by BTV within each 5km grid square.
doi:10.1371/journal.pone.0009353.g002
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Discussion

This paper presents an investigation of the key factors

influencing the success of a vaccination programme against BTV

and, in particular, the effects of the level of vaccine uptake by

farmers and temperature. To address these issues we used

mathematical models developed to describe the spread of BTV

within and between farms in GB, which had been validated using

data on the spread of BTV-8 in GB in 2007 [11].

Qualitatively, the model predicts a similar pattern of outbreaks

(Figure 1) to that observed in northern Europe in 2006 and 2007

(i.e. in the absence of vaccination), with small numbers of affected

holdings in the first year, followed by large numbers in the second

year [9]. Although a quantitative comparison between countries in

the number of outbreaks is problematic because of differences in

size and farming practices, outbreaks involving many thousands of

BTV-8 affected holdings were reported in 2007 for Belgium,

Germany, France and the Netherlands [9]. This was also the case

for the simulations for GB using the 2007 temperature data

(Figure 3A), though outbreak sizes were much larger for sim-

ulations using the 2006 temperatures (Figure 3B).

Vaccination was predicted to reduce incidence (Figure 1), extent of

spread (Figure 2) and outbreak size (Figure 3A,B), with a greater

reduction achieved for higher levels of coverage, in particular, in

previously affected areas. However, even at high levels of uptake,

there was still some spread, though at much lower levels compared

with no vaccination (Figure 1), which is, in part, a consequence of

transmission occurring in the model before vaccination started (on 30

April 2008, i.e. 39 weeks after 4 August 2007). This observation

suggests more consideration needs to be given to the seasonal

dynamics of the vector [11] and, more generally, to the overwintering

of BTV, something which is discussed in more detail below.

Figure 3. Sensitivity analysis of predicted outbreak size for BTV-8 in GB. Impact of: (A,B) vaccination uptake assuming (A) 2007 or (B) 2006
temperatures (see Table 1 for codes for different uptake levels); (C) time to full protection in cattle; (D) vaccine efficacy; (E) Gaussian kernel parameter;
(F) shape of the transmission kernel; and (G) a threshold temperature below which no transmission between farms was assumed to occur. The default
scenario assumed variable vaccine uptake, 2007 temperatures, a time to full protection in cattle of 60 dpv, vaccine efficacy of 100% and the best-fit
Gaussian kernel to the north European data (i.e. no temperature dependence). The boxplots show the median (red line) and the 25th and 75th
percentile (blue box); the whiskers indicate 1.5 times the interquartile range; and the red crosses show outlying values for the cumulative number of
affected holdings at 3 November 2008.
doi:10.1371/journal.pone.0009353.g003

Vaccination and BTV
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A high level (.80%) of vaccine uptake in the previously-affected

area was most important for controlling the spread of BTV

(Figures 1 and 2). If, however, uptake was lower in areas outside

those previously affected, there was a risk of escape of BTV into

areas with lower coverage and, hence, greater potential for spread

(Figure 2I,J; cf. Figure 2G,H). This observation highlights the need

for a buffer zone beyond the previously affected area with high

levels of vaccine uptake to contain the spread of BTV. The size of

the buffer will depend critically on the transmission kernel [11],

with a larger buffer required for kernels with fatter tails (i.e. higher

probabilities of transmission at long distances).

Our analyses suggest that the absence of reported cases of BTV-

8 in GB during 2008 and the apparent success of control can be

attributed to the high levels of vaccine coverage achieved in

previously affected areas, coupled with cooler temperatures in

2008. Although there were no reported cases in GB, the virus was

still circulating in northern mainland Europe in 2008 and 2009

and, consequently, there remains a risk of reintroduction.

Furthermore, other serotypes currently threaten GB, including

BTV-1, which reached the northern French coast in late 2008

with further cases in 2009. In addition, BTV-6 was reported to be

circulating in the Netherlands and Germany in 2008 [20], and

evidence of BTV-11 infection (but not circulation) was found in

cattle in Belgium [21].

Although an inactivated vaccine against BTV-1 is available, it

cannot currently be used in a preventive manner in GB without

the prior creation of a so-called ‘‘blue zone’’ for that serotype. In

addition, no vaccine has yet been developed against BTV-6 or

BTV-11. The results of the simulations indicate that a re-incursion

by BTV-8 or an incursion by BTV-1 (or any other serotype) could

be controlled provided high levels of vaccine coverage are

achieved (Figures 1 & 2). As re-vaccination with the new

inactivated vaccines is recommended annually, it is essential that

the level of vaccination against BTV-8 does not decline over the

coming year and that sufficient stocks of vaccine against BTV-1

are available and can be deployed rapidly should an incursion of

this serotype occur. By contrast, with no inactivated vaccine

available, an incursion of BTV-6 could potentially be very serious,

especially if temperatures are warmer (Figures 1 and 2), though

this assumes that the transmission dynamics for different serotypes

would be similar.

The model predictions for the impact of vaccination were not

greatly affected by assumptions made about the time to full

protection in cattle (Figure 3C). This is largely a consequence of

the way in which vaccine was deployed in areas well in advance of

BTV arriving. If, however, the vaccine were being used reactively

in response to a new incursion, this parameter could influence the

success of vaccination. As would be expected, a decrease in

vaccine efficacy results in an increase in outbreak size (Figure 3D).

Although a linear relationship between the logarithm of the

outbreak size and the efficacy adequately captured the model

predictions, there was evidence for a threshold effect, with a

stepped change in outbreak size at efficacies between 70–80%

(Figure 3D). This is a consequence of herd immunity [22], such

that a herd is protected (i.e. the basic reproduction number (R0) is

reduced below one) provided that a large enough proportion of

animals in the herd is protected. Estimates for R0 for BTV [23]

suggest that this should be achieved with a vaccine efficacy of at

least 75%, which is likely to be the case, at least for sheep [13].

The shape of the transmission kernel had a major impact on the

model predictions (Figure 3E,F). Increasing the probability of

longer-range spread, whether by decreasing the shape parameter

or by using a kernel with fat tails (i.e. fat-tailed or FMD),

dramatically increases the size of the outbreak, even with

vaccination. This reflects the impact of movement restrictions

(which were assumed to prevent transmission outside the PZ, so

that long range transmission is principally a result of animal

movements) on predicted spread using different kernels [11]. For

the Gaussian kernel, movement restrictions had only a small effect

on spread, whereas for the exponential and, especially, the fat-

tailed and FMD kernels, these restrictions greatly reduced spread.

For these kernels, the roll-out of the protection zone to allow

vaccination (see Vaccination in Methods section) has the effect of

markedly increasing the potential for transmission and, hence, for

spread into areas with low vaccine uptake.

In our earlier analyses of outbreak data for BTV-8 in northern

Europe during 2006, we did not identify a significant impact of

temperature on transmission [11]. By contrast, the sensitivity

analyses in the present study indicated that temperature

dependence in the spread of BTV between farms (in this case

via a threshold temperature below which transmission was

assumed not to occur) could impact on model predictions for the

spread and control of BTV. In particular, if no transmission was

assumed to occur below 15uC, outbreaks were significantly smaller

than if there was no threshold or the threshold was #10uC
(Figure 3G). A threshold temperature is a simple, but crude and

potentially inaccurate method of including temperature depen-

dence. For example, Culicoides species are known to be active at

temperatures below 15uC [24], while animal movements are

unlikely to be influenced by ambient temperatures. Accordingly, a

more detailed description of transmission between farms is needed

which disentangles animal from vector movements and which

accounts for seasonal variation in vector activity.

Under all the scenarios considered in this paper, BTV-8 was

predicted to have persisted in a majority of replicates. The long-

term dynamics of BTV-8 are of considerable importance, both in

terms of determining how long vaccination needs to be carried out

(annual booster vaccination is required to maintain protection)

and when freedom from virus circulation can begin to be assessed.

However, investigating the long-term dynamics of BTV requires a

greater understanding of the ability of the virus to overwinter [25]

and of the biology of those Culicoides species implicated as vectors

in northern Europe [7].

Recent evidence of vertical [26,27,28,29] and horizontal [28]

transmission in the vertebrate host have re-launched the debate

about alternative transmission mechanisms being involved in the

spread of BTV. These mechanisms could provide routes by which

the virus can overwinter in temperate climates [25]; the recent

epidemic in northern Europe having confirmed that BTV-8 is able

to overwinter successfully and with apparent high probability. The

outbreak in northern Europe has also demonstrated the potential

for Palaearctic species of Culicoides to transmit BTV efficiently.

However, these species are not yet fully characterised in terms of

their life history parameters or their responses to the prevailing

environmental conditions; vector competence, host preference,

biting habits and abundance of the different vector species are also

largely unknown. While potential differences between vector

species could have a major impact on the risk of BTV to British

livestock, the fact that BTV-1 has spread in northern Europe

underlines the capacity of the northern species of Culicoides to

transmit other serotypes and strains of the virus.

This study represents a first step in analysing the spread and

control of BTV at a national level, but shows that the model

provides a suitable framework for investigating the consequences of

BTV incursions to GB and assessing the relative efficacy of different

options for control. Future work should focus on incorporating in

the model more realistic descriptions of the seasonal vector

dynamics and of the overwintering mechanisms for BTV.
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Supporting Information

Table S1 Full list of scenarios considered for the spread and

control of bluetongue virus (BTV) serotype 8 in Great Britain

(GB).

Found at: doi:10.1371/journal.pone.0009353.s001 (0.08 MB

PDF)

Figure S1 Hourly temperature records for 2006 and 2007 for 19

meteorological stations used as inputs to the model for the

transmission of bluetongue virus within and between farms. Data

for 2006 (blue) and 2007 (red) are plotted for each meteorological

station shown in order from the southernmost to the northern

most station.

Found at: doi:10.1371/journal.pone.0009353.s002 (1.29 MB TIF)
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