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Abstract

Chemotaxis is defined as a behavior involving organisms sensing attractants or repellents and leading towards or away from
them. Therefore, it is possible to reengineer chemotaxis network to control the movement of bacteria to our advantage.
Understanding the design principles of chemotaxis pathway is a prerequisite and an important topic in synthetic biology.
Here, we provide guidelines for chemotaxis pathway design by employing control theory and reverse engineering concept
on pathway dynamic design. We first analyzed the mathematical models for two most important kinds of E. coli chemotaxis
pathway—adaptive and non-adaptive pathways, and concluded that the control units of the pathway de facto function as a
band-pass filter and a low-pass filter, respectively, by abstracting the frequency response properties of the pathways. The
advantage of the band-pass filter is established, and we demonstrate how to tune the three key parameters of it—A (max
amplification), v1 (down cut-off frequency) and v2 (up cut-off frequency) to optimize the chemotactic effect. Finally, we
hypothesized a similar but simpler version of the dynamic pathway model based on the principles discovered and show
that it leads to similar properties with native E. coli chemotactic behaviors. Our study provides an example of simulating and
designing biological dynamics in silico and indicates how to make use of the native pathway’s features in this process.
Furthermore, the characteristics we discovered and tested through reverse engineering may help to understand the design
principles of the pathway and promote the design of artificial chemotaxis pathways.
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Introduction

The ability of motile microorganisms to respond to chemical

gradients in their environment and direct their movement

accordingly is defined as chemotaxis [1,2]. One typical bacterial

chemotactic behavior is the chemotaxis of Escherichia coli, whose

molecular mechanism has been thoroughly investigated in the last

three decades [2–5]. Flagellum rotation, key to E. coli’s mobility, is

driven by a molecular motor switching between two operational

modes. Counter-clockwise (CCW) gyration of the motor entangles

flagella into a bundle driving the bacteria towards a fixed

direction, while clockwise (CW) gyration corresponds to the

tumble and reorientation of the bacteria. The motor rotation bias

(the fraction of time the motor spend on certain state [6,7]) is

controlled by the phosphorylation state of a motor-binding protein

called CheY, whose phosphorylation level is positively related to

the CW rotation bias [8–10]. Specific receptors, which locate in

the very beginning of the chemotaxis pathway, involve in the

sensing of attractantsand transduce the signal via the pathway to

the motor to control its rotation mode. Investigators attempt to

discover essential properties which enable this pathway to direct

chemotactic behaviors by establishing and analyzing its mathe-

matical model [11–13]. Various features, such as amplification

rate, adaptation robustness, relaxation time and feedback loop, are

highlighted in their researches. However, in the scope of synthetic

biology, these fragmented features are necessary rather than

sufficient for pathway design. So far researchers merely prove the

necessity of these features in realizing chemotaxis, while the

sufficiency is still open to doubt.

Furthermore, we hypothesized a similar but simpler version of

the chemotaxis dynamic pathway model by assembling the

essential features of the native pathway together. From the view

of control theory, chemotaxis pathway corresponds to the

controller in bacterial moving system (Fig. 1). A widely-used

design approach for controller is to devise its transfer function

basing on the transfer function of the effecter (in this case,

molecular motor). However, the motor’s working manner is

discrete and stochastic, thus it is impossible to formulate it by

transfer function. Therefore, the above-mentioned method cannot

be used in our project. Here we circumvent this problem by

adapting reverse-engineering methodology. We abstracted the

kinetic relationship between the input (ligand concentration [L])

and output (the concentration of phosphorylated CheY [CheY-P])

in wild type chemotaxis pathway, and wrote controller’s transfer

function accordingly. Then, we assembled the essential features of

the native pathway revealed in our study into a new pathway,

using on the optimized transfer function. Subsequent evaluation

by computational simulation proves its sufficiency to function well.

For the reason that the design is based on reverse engineering, our

findings are also helpful to understand the design principles of
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native chemotaxis pathway. Furthermore, our work enriches

mathematical methods available for synthetic biology.

Results

Frequency-Domain Analysis of Typical Chemotaxis
Pathway

In order to understand how chemotaxis pathway leads E. coli to

find its favorite environment, we employed frequency-domain

analysis in control theory to extract its key features. As mentioned,

chemotaxis pathway corresponds to the controller of E. coli

movement system in terms of control theory (Fig. 1). The strategies

for chemotaxis pathway construction can be classified into two

types according to whether they are adaptive. Typical native

chemotaxis pathway is perfectly adaptive to many ligands, such as

aspartate [7,12,14,15] while a minority of native pathways (for

example of which detecting O2 [16]) as well as pseudochemotaxis

pathways (artificial ones designed to sense certain small molecule

[17]) are not adaptive. These two pathway models have been fully

investigated, in that their mathematical models have been

established. Here we linearized those pathway models near

equilibrium to get their respective approximate transfer functions

and perform frequency-domain analysis. The two pathway models

analyzed here were previously described by Goldstein et al. [18]

and Emonet et al. [11]. Goldstein et al. proved the advantages of

non-adaptive dynamics, which means [CheY-P] directly relates to

stimuli, by carrying in silico chemotaxis evolution. While the

mathematical model of Emonet et al. focuses on aspartate

chemotaxis pathway, a typical adaptive pathway.

Bode diagrams in Fig. 2 show frequency responses of these two

pathways near typical steady states under four [L]s: 0 mM,1 mM,

10 mM and 1mM, which can be further categorized into three

working conditions (quiet condition: 0 mM; a fraction of receptors

are occupied:1 mM and 10 mM; all receptors are saturated:1mM).

The differences between the curves of these working conditions are

due to the nonlinear effects of the pathways. As expected, the

magnitude of pathway is much lower in the saturation condition

than others. It is evident from Fig. 2A that the non-adaptive

pathway here is a low-pass filter allowing sine signals whose

frequencies are lower than a certain cut-off to pass while

attenuating signals above the threshold. This means the pathway

is sensitive to the [L] changing relatively slowly but not that fast

fluctuating. Besides, adaptive pathway functions as a band-pass

filter. It has two cut-off frequencies and only [L] signals with

frequencies in between filter through (Fig. 2B). Eliminating low

frequency signals means constant stimuli, whose frequency can be

considered as 0, is not able to trigger the pathway. In fact, it can be

proved that the 0 magnitude to 0 Hz signal is equivalent to the

perfectly adaptive pathway (see Supplemental Material Text S1).

Consequently, band-pass property leads to adaptation. As these

two kinds of pathway both exist in nature, and were previously

shown to bear their own merits [14,18–21], we first need to

characterize and compare the two design strategies in detail.

Test the Chemotaxis Effects of Low-Pass and Band-Pass
Filter

In order to test the chemotaxis effects of above two design

strategies, we here apply two simple transfer functions to describe the

dynamic relationships between receptor occupancy and [CheY-P]

Figure 1. System block diagram of the chemotaxis model.
Chemotaxis pathway senses the ligand concentration and outputs the
signal controlling motor bias in the form of [CheY-P]. Molecular motors
on the cell surface can change cell’s position or direction. In our
research, the reverse engineering of the pathway is divided into three
steps: analyzing the dynamic properties of native chemotaxis pathway;
selecting and optimizing the transfer function describing the pathway
dynamic; designing new pathway based on the transfer function. We
changed the situation in our simulation by modifying the concentration
field module in our program. The ligand concentration fields used here
are mountain-shaped or peak-shaped.
doi:10.1371/journal.pone.0009182.g001

Figure 2. Bode diagrams of non-adaptive and adaptive
chemotaxis pathway. The figure shows the magnitudes and the
phase shifts (with respect to the sinusoidal [L] signal) of [CheY-P]
against different signal frequencies in non-adaptive chemotaxis
pathway (A) and adaptive chemotaxis pathway (B) near typical steady
states under four ligand concentrations: 0 mM,1 mM, 10 mM and 1mM,
which can be further categorized into three working conditions (quiet
condition: 0 mM; a fraction of receptors are occupied:1 mM and 10 mM;
all receptors are saturated:1mM).
doi:10.1371/journal.pone.0009182.g002

Reverse Engineering of Pathway
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variance from a base line. Then we simulated the movement of

bacteria under the control of these two types of filters. The base line

of [CheY-P] is set to 2.71 mM, corresponding to 20% CW rotation

bias. This makes the motility of unstimulated bacteria consistent to

experiment [11,22,23]. Two most important nonlinear processes,

which are not possible to be incorporated into the transfer function

by approximation, exist in this pathway: 1) the binding of ligand to

receptors, in which a very high ligand level may cause receptor

saturation; and 2) CheY-P controlled motor state, which is extremely

discrete and stochastic. This is the reason why we only use transfer

function to describe the dynamic relation between receptor

occupancy and [CheY-P]. On the other hand, even in extreme

cases when this part deviates much from equilibrium in a way that

linearization will cause substantial error in [CheY-P], the output

([CheY-P]) will fall into the saturated or dead zone of the motor in

which motor response is all or none, so the final result will still make

sense. The two transfer function corresponding to low-pass filter and

band-pass filter are as following:

Hlow(s)~{
Av0

szv0
ð1Þ

Hband (s)~{
A(v1zv2)s

(szv1)(szv2)
ð2Þ

The influences of max amplification (A) and cut-off frequencies

(v0, v1, v2) to chemotactic effect are tested in our simulation. The

range of the cut-off frequencies used in the parameter scan is wide

enough to cover both fast (e.g. phosphorylation) and slow (e.g.

transcriptional regulation) biological processes. We simulated the

movement of bacteria on petri disks, and found that the

distribution of the bacteria is similar to the actual pattern obtained

in experiments (simulated videos are available at http://www.

bioinfo.tsinghua.edu.cn/luojunjie/chemotaxis_movie/), which of-

fers a strong evidence that our approximation is reasonable.

Chemotactic Effect of Low-Pass Filter
Obviously, the chemotaxis effects of the low-pass filter is

determined by two parameters in the transfer function, A and v0,

which correspond to the amplification and delay of the pathway,

respectively. First, the max amplification A is positively related to

the chemotaxis effects, if chemotaxis behavior is detected. A high

amplification of the controller indicates that the pathway is sensitive

to stimulation. The sensitivity should be strong enough to offset the

tendency of stochastic movement, or otherwise, bacteria population

would merely randomly swim in the median (Fig. S1). Second, the

cut-off frequency v0 should be high enough to enable the pathway

to response to fast-changing ligand concentration. This transfer

function is a typical inertia link. A low v0 causes bacteria to respond

to the input with a long delay. In this case if a bacterium is running

in a wrong direction, it takes much time for the controller to

transduce the signal to the motor and correct the cell; similarly if the

direction of the bacterium movement happens to be correct, CCW

bias of the motor cannot increase in time to keep the running state.

Thus only the controller with very high max amplification and cut-

off frequency shows significant chemotaxis behaviors (Fig. S1I).

One important feature inherent to this transfer function is non-

adaptation, which means the steady state output of the pathway is

related to the input signal level. Even though its amplification and

cut-off frequency are both high enough, it still has some

disadvantages. First, the mobility of the cell is high where [L] is

high, which disables E. coli from maintaining their position where

optimal [L] is achieved by favoring both approaching and departing.

Therefore, the cell population spread in a wide area around the

target. The population average ligand concentration oscillates (Fig.

S1I), indicating that bacteria run over the concentration peak but do

not turn back within a short distance. Second, once a bacterium

enters a low concentration zone, its motility decreases so dramatically

that it keeps tumbling there (Fig. S1G–S1I).

Chemotactic Effect of Band-Pass Filter
First of all, we investigated how the three parameters in the transfer

function (A, v1 and v2) influence the chemotaxis effects. We

simulated the movement of 100 bacteria and plotted the average [L]

around each cell from 950 s to 1000 s to describe the chemotactic

effect (Fig. 3A). The reason why we average this value in last 50 s is to

reduce fluctuation resulted from the movement randomness. This

criterion can integrate the speed the average ligand concentration

become stable and how large the final stable value bacteria can

achieve (Fig. S2). Similar to the low-pass filter, magnitude contributes

to the chemotaxis effect (Fig. 3A, S3A and S3B). A good chemotaxis

effects can be much more easily achieved by this band-pass filter

comparing to the low-pass one. The max amplification of the

pathway in Fig. 3B is only 16, but it can lead to a higher final average

[L] (.1.9 mM, Fig. 3B) than that non-adaptive pathway whose max

amplification is 64 does (about 1.6 mM, Fig. S1I).

Fig. 3A shows the average [L] after 1000 s running under

different v1, v2. Generally, to a fixed down cut-off frequency v1,

as up cut-off frequency v2 increases from 0.3 s21 to 100 s21, the

final average concentration increases. But this contribution is not

noticeable once v2 is higher than 5 s21, resulting from the

minimum response time limitation of the motor, which is set at

0.5 s in our model. Signals whose periods are much shorter than it

can hardly influence the working state of the molecular motor.

Figure 3. Chemotactic effects of the band-pass filter. (A) Effects
of variations of v1, v2 on the average ligand concentration. The transfer
function of the pathway is as shown in Eq. 2. The max amplification of
the filter is fixed at 16. Each data point represent the movement of 100
bacteria in a mountain-shape concentration gradient (L = L0exp(2x2/r2),
L0 = 2 mM, r = 2 mm). The initial position of all the bacteria is (1.4 mm,
0 mm). 1000 s running was simulated and the average [L] in the last
50 s are calculated as a measurement of chemotactic effects. (B)
Chemotaxis behaviors of cells guided by a band-pass filter with
v1 = 0.02 s21, v2 = 5 s21 in a mountain-shaped concentration field. The
concentration field and initial point is the same as that in (A). Here, 1000
bacteria are simulated and their local [L] distribution is shown by box
plots at each time point. Each box has three lines, which from low to
high indicate the lower quartile, median, and upper quartile of [L] at a
given time. Whiskers extend from the box out to the most extreme data
value within 1.5 folds of the height of the box. [L] values beyond
whiskers are marked by points. Solid line shows the average of [L]
against time. The average ligand concentration increases fast and
achieves a high final value (.1.9 mM) without oscillation. Few bacteria
are trapped in places with low ligand concentration.
doi:10.1371/journal.pone.0009182.g003
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Interestingly, the down cut-off frequency plays a critical role

in adaptation via regulating the ‘memory’ of this pathway. Its

best value is about 0.01 Hz or 0.02 Hz, which strikes a balance

between sensing concentration ramps and adapting to long term

stimulation, resulting in prompt approaching the concentration

peak and maintaining its position (Fig. S2D–S2F). We can see

from our simulation that if v1 is too high, the ability of keeping

the right direction is abolished, so the population average [L]

increases relatively slow (Fig. S2A–S2C); and if v1 is too low,

when a bacterium runs over the concentration peak, it still

‘‘remembers’’ the former concentration rise and is misinformed to

be swimming in the right direction so that cannot brake in time

(Fig. S2G–S2I).

The controller described by Eq. 2 is perfectly adaptive, because

its numerator is a differential link, which means calculating the

differential of receptor occupancy. The sign of the outcome of the

link indicates whether a bacterium is running up or down the

concentration gradient. Compared to low-pass filter, the adapta-

tion property of band-pass filter makes cell motility at steady state

independent of input [L]. Thus, the distribution of bacteria around

position with the highest [L] is more converged, and they would

not be trapped at places with very low [L] (Fig. 3B).

We also investigated chemotaxis behavior controlled by band-

pass filter in different conditions. The conditions we tested include

placing bacteria at a position farther from the max ligand

concentration (Fig. S3C), sharper concentration gradient (Fig.

S3D) and a peak-shaped concentration field (Fig. S3E, S3F). All

the parameters of each subfigure in Figure S3 are listed in Table

S1. We also tested band-pass filters with ranks higher than Eq. 2,

like the one shown in Eq. 3. (4 rank), which has the same max

amplification and cut-off frequencies. The chemotactic effects of it

are shown in Fig. S3G, S3H.

Hband ’(s)~{
A(v1zv2)2s2

(szv1)2(szv2)2
ð3Þ

It is interesting that all these simulations show very similar

influences of magnitude and the two cut-off frequencies to

chemotaxis effect (including higher rank band pass filters, provided

the up and down cut-off frequencies are the same): high magnitude

and up cut-off frequencies improve chemotactic result and the best

down cut-off frequency is about 0.01 Hz or 0.02 Hz. Our finding

here is possible to be an important guideline for chemotaxis

pathway design. Better chemotactic ability, which could be

recapitulated by the above-mentioned parameters, confers evolu-

tion advantage. Consequently, examining whether relevant

properties of wild type E. coli are consistent with the best

parameter we find is a touchstone to check the reliability of our

work. If bacteria are stimulated by step-wise addition or removal

of chemotactic ligand, the phosphorylation proportion of CheY

increases dramatically but gradually returns to the basal level. The

time half of recovery takes is called adaptation time, which is

mainly determined by the down cut-off frequency. The best

adaptation time deduced from our simulation is about 40s (Fig.

S4), which is consistent with the study done by Sourjik et al. [24]

who measured CheY phosphorylation after step-wise stimuli.

Design Biochemical Dynamics of New Chemotaxis
Pathway Based on Transfer Function and Test Its
Chemotactic Effects

Based on the study on the kinetic features of the native

chemotaxis pathway, we were able to design a novel pathway to

control bacteria tropism by reversing the process from biological

dynamics to transfer function. Traveling up the attractant

concentration gradient is defined as positive chemotaxis, while

the swimming away from repellants is called negative chemotaxis.

We designed a pathway containing three molecules to realize a

band-pass filter for positive chemotaxis. This pathway is proved to

be the smallest structure that works as a band-pass filter (see Text

S1). Their dynamic interactions are shown in Fig. 4A: ligand

quickly binds to molecule u to activate it. Activated u can

dephosphorylate CheY-P and generate active molecule v. Active

molecule v phosphorylates CheY. So when this pathway is

stimulated by chemical attractant, the concentration of CheY-P

decreases at the beginning, but as active molecule v accumulates in

the cell, the dephosphorylation effect of u is neutralized, so the

pathway adapt to the new ligand concentration (Fig. 4A).

Similarly, if we swap the phosphorylation and dephosphorylation

effect of u and v, a negative chemotaxis pathway can be generated

(Fig. 4B). The dynamic of the designed positive chemotaxis

pathway can be described by following differential equations:

dv=dt~k1u{dvv

dy=dt~k3v(yt{y){k2uy

�
ð4Þ

The equilibrium value of y and the transfer function of the

pathway can be derived from Eq. 4:

y0~yt= 1z(dv=k1)(k2=k3)ð Þ ð5Þ

H(s)~
{ k2yt= 1zdvk2=k1k3ð Þð Þs
szdvð Þ szu0 k2zk3k1=dvð Þð Þ ð6Þ

Evidently, the form of transfer function is made up of one

differential link and two inertial links, very similar to Eq. 2. But

because of nonlinear properties of biological systems, the

magnitude and cut-off frequencies of the controller may vary

under different [L] input. We keep the most important feature,

down cut-off frequency dv (molecule v deactivation rate) at the

optimal value 0.02 s21, the magnitude (pathway sensitivity)as high

as possible and up cut-off frequency (,CheY-P dephosphorylation

rate) high enough. In order to exclude any error stemming from

the linear approximation, we tested the control abilities of the

pathway designs and observed the chemotactic behaviors by our

program based on the original differential equations (Fig. 5). For

comparison, a non-adaptive pathway derived from the above two

pathways was simulated together as a control. As expected, the

Figure 4. Designed dynamics of positive, negative and pseudo-
chemotaxis pathway. (A) Positive chemotaxis pathway. (B) Negative
chemotaxis pathway. (C) Pseudochemotaxis pathway.
doi:10.1371/journal.pone.0009182.g004
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positive and negative chemotaxis pathways are able to lead to

significant average [L] increase and decrease, although not as

good as that in Fig. 3B because of limited amplification. The

distribution of bacteria guided by positive designed chemotaxis

pathway is nearly the same as the wild type cells. Both of them

travel to the attractant and form fan-shaped patterns on the plates

(Fig. 6A). In contrary, when the distribution of bacteria is guided

by the designed non-adaptive pathway (pseudochemotaxis), it

tends to defuse faster where the attractant concentration is higher,

as shown in Fig. 6B. In this case, the cells are hard to stay at the

position with high ligand concentration and easy to be trapped

where ligand concentration is low, which accounts for the slight

decline of the average [L] in Fig. 5C. The consistency between the

simulation of designed pathways and actual experiment results

[17] proves both the reliability of the simulation platform and the

validity of our pathway design.

Discussion

Nonlinear Effects Lead to Robustness of Perfect
Adaptation in the Designed Pathway

Some investigators consider the integral feedback as the key

structure for robust perfect adaptation, which means if the activity

of some molecules in the native chemotaxis pathway is changed,

the pathway is still perfectly adaptive [14,19]. However, though

the pathway we designed is absence of any feedback loops, it is still

perfectly adaptive because of its nonlinear properties. We call this

pathway structure ‘‘asymmetric clamp’’. Input signals are

transmitted to CheY-P through the long and short arms of this

‘‘clamp’’. Both of them are low-pass filters but have different cut-

off frequencies. Signals in low frequency regime going through the

two filters neutralize at CheY-P (Fig. S5), ensuring the overall

pathway functions as a band-pass filter. At a first glance, the two

arms’ gains need to be fine tuned to counterbalance each other.

But it is interesting that the amplifications of the two arms are

always the same under different input levels and parameter values,

because the activation and deactivation speed of CheY are always

in proportion at steady state. Therefore, the perfect adaptation of

pathway design is robust. The steady state value of output is

independent of input (Eq. 5) can be considered as criteria for

robust perfect adaptation. It is equivalent to the another criteria

that H(0) = 0 (Eq. 6) (see Text S1).

Apply Control Theory in Synthetic Biology
Our work provides an example of applying control theory in

dynamic model design (an important topic in synthetic biology).

Bacterial chemotaxis pathway design mainly involves two aspects:

one is the sensing of attractants or repellents by macromolecules

and relaying these signals to the motor; the other is the quan-

titative relations between the input ligand concentration and

output signal controlling motor rotation state. The second one is

usually overlooked in previous studies, resulting in the previous

pale imitation of the native chemotaxis process. Control theory is a

powerful tool for designing system dynamics. The method used in

our study, that is deriving transfer function from the mathematic

model of a pathway, bridges the two realms. Linearizing the model

describing a biological system is an approximate, which is only

applicable to biological systems whose nonlinear effects are not

very strong, but not to those working in saturation state or dead

zone.

Figure 5. Chemotaxis results of positive, negative and pseudo- chemotaxis. Movement of 1000 bacteria is simulated in a mountain-shaped
concentration field as the same in Fig. 3(A). Box plots show the distribution of their local [L] at each time point. Solid line shows the average of [L]
against time. Both positive (A) and negative (B) chemotaxis pathways we designed effectively exhibit chemotaxis behaviors, but the chemotaxis
behavior of pseudochemotaxis pathway (C) is not significant comparing to them.
doi:10.1371/journal.pone.0009182.g005

Figure 6. Simulated distribution pattern of cells placed in
attractant gradient (L = L0exp(2x2/r2), L0 = 2 mM, r = 2 mm). The
curve of the [L] against x is shown. (A) Simulated distribution of 2000
bacteria guided by the positive chemotaxis pathway. The initial position
of the bacteria is (3.5 mm, 0 mm). (B) Simulated distribution of 2000
bacteria guided by the pseudochemotaxis pathway. The initial position
of the bacteria is (1.4 mm, 0 mm). These two distribution patterns are
very similar to actual experiment result [17].
doi:10.1371/journal.pone.0009182.g006

Reverse Engineering of Pathway
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Transfer function and bode diagram are useful tools to describe

the dynamics of a pathway in two aspects. First, they distill several

‘‘key parameters’’, which are tightly related to the dynamic

properties of the pathway, like A, v0, v1 and v2 in our research

from large numbers of parameters in the pathway. This makes it

much easier to scan the parameter space to determine the optimal

value. And more importantly, different dynamic properties can be

changed independently in this scanning. For instance, if we try to

solely regulate the relaxation time of the pathway by changing v1,

amplification or moving tendency of the cells will remain constant.

Second, many properties of the bacterial chemotaxis are reflected

in the transfer function. For example, by analyzing the transfer

function, our research sheds light on the question of how E. coli,

which is only capable of sensing its local chemical concentration,

senses the concentration gradient in the environment to determine

its moving direction. We reason that the differential link in Eq. 2,

which means calculating the derivation of [L], indicates whether

or not the bacterium is running in a right direction.

Reverse Engineering in Pathway Design
Reverse engineering is the process of discovering the techno-

logical principles of a device, object or system through analysis of

its structure, function and operation by taking it apart, analyzing

its workings in detail, and manufacturing a new one with similar

function to the original [25–27]. Our work demonstrates that

reverse engineering is helpful to learn the design principles form

the native chemotaxis pathway and design a new pathway model

by circumventing the problem that the working manner of a motor

cannot be described by transfer function.

We need to know the transfer function of a biological controller

in order to carry on reverse engineering. There are several

approaches to uncover the frequency domain characteristics of the

pathway and then derive its approximate transfer function. The

one used here is calculating from the mathematical model based

on detailed biochemical mechanisms, which relies on the existing

knowledge of detailed pathway mechanisms. The second approach

is to consider the controller need to be mimicked as a black box.

We can input sine signals with different frequencies into it and

analyze the magnitudes and phase shift of the output [6,7,27], or

measure the fluctuation of input and output, and deriving the

frequency-domain characteristics from power spectrum

[11,23,28,29]. This approach does not ask for the mechanism of

the controller, but needs complex equipment and sensitive probes

to create input signals and detect output signals. In our approach,

we draw lessons from the native chemotaxis pathway by reverse

engineering it to design and optimize a simplified pathway without

knowledge of detailed. The designed pathway has special

dynamics to be functional for biological systems to work and it

may show how to be enlightened by corresponding structure in

nature.

Methods

Transfer Function of Pathway Near Equilibrium
The differential equation model for a signaling pathway can be

written as:

d~xx=dt~~FF (~xx,~uu);~yy~~GG(~xx,~uu); ð7Þ

~uu is the pathway’s input, which can be the concentration of ligand

([L]) or activated receptor. ~xx is concentration of molecular

components in this pathway. ~yy is pathway’s output, standing

for the concentration of CheY-P ([CheY-P]) in our research. We

linearize above differential equations around equilibrium via one

order Taylor expansion and ignore infinitesimal of higher order:

dD~xx=dt~AD~xxzBD~uu;D~yy~CD~xxzDD~uu ð8Þ

In these equations, Aij = hFi/hxj, Bij = hFi/huj, Cij = hGi/hxj, Dij =

hGi/huj; D~uu~~uu{~uu0,D~xx~~xx{~xx0,D~yy~~yy{~yy0: ~uu0,~xx0,~yy0 are the

values of ~uu,~xx,~yy at equilibrium, which means the state satisfies

0~~FF (~xx0,~uu0);~yy0~~GG(~xx0,~uu0):Transfer function describing the dy-

namic relationship between input and output is derived from

Eq. 8:

H(s)~C(sI{A){1BzD ð9Þ

Frequency Domain Analysis
The steady-state response of a system to sinusoidal input signal is

defined as frequency-domain response. A signal can be decomposed

into a set of sinusoidal signals by Fourier decomposition, thus the

frequency domain properties reflect the dynamics of a system. If the

system is linear, sinusoidal inputs always lead to sinusoidal outputs

with the same frequency. The correlation between input and output

can be characterized by two parameters, namely the Magnitude (the

proportion by which the system amplifies the input sine wave) and

the phase shift (the degree by which the output sine wave is delayed

comparing to the input). To a linear system whose transfer function

is H(s), its magnitude and phase shift to input with an angle

frequency v corresponds to the modulus and phase angle of the

complex H(vj) [30].

Bode diagram shows the magnitude and phase shift of the

frequency response of a linear system under different frequency. The

magnitude is plotted in decibels (dB, computed as 20log10|H(vj)|),

and the phase in degrees.

Modeling Movement of Bacteria
Our simulation program is made up of three modules:

concentration field, motor and pathway (Fig. 1). Concentration

field module describes the concentration of target chemical in each

location. We simulate the movement of bacteria on plate, so the

positions of E. coli are described by 2 dimensional vectors. The shape

of the field can be set in each simulation. In most of the experiments,

we use mountain-shaped field ([L] = L0exp(2(x/r)2)). In other cases,

a peak-shaped ([L] = L0exp(2(x2+y2)/r2)) field is employed. We

apply a Markov chain with states 0 (tumble) and 1 (run) to represent

the working state of molecular motor impelling E. coli. The state of

molecular motor is approximated constant in a short time scale

(0.5 s here, which is selected according to the research done by

Ishihara et al. [31]). The state in the next time scale is determined by

current state and [CheY-P]. The correlation between [CheY-P] and

transition probability matrix of the Markov chain is calculated and

checked basing on the research completed by Cluzel et al. in 2000

[32] (see Text S1). Pathway module in our program is a set of

standard differential equations expressing the dynamic relationship

between [L] and [CheY-P] (Eq. 7).

In each simulation, all the bacteria start at the same initiation

position but their orientations are randomly selected. The initial

concentrations of molecules in the pathway are set at equilibrium. In

each time scale, if the motor state is 1, the cell runs forward at a speed

0.02 mm/s [33]; otherwise, it tumbles and reorients, and distribution

of direction deflection follows the finding of Liu et al [33]. At the end

of each time scale, the [CheY-P] is calculated and this value

influences motor state in the next time scale. This cycle is repeated to

see notable chemotactic behavior. We also derive a partial differential
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equation group to describing the evolvement of the bacteria

distribution (see Text S1). This is the first equation group combining

the distribution of bacteria and molecular mechanism of chemotaxis,

and it is equivalent to the above simulation.

Systematic Design a Pathway Basing on Defined Transfer
Function

To design the pathway systematically, we use a universal

pathway model similar to the one described by Soyer O.S. et al

[18,21]. This model assumes that a pathway consist of n

molecules, all of which can switch between deactivated or

activated state. The active form of each molecule is able to

activate or deactivate of other molecules. The first molecule u

works as a receptor whose activity is determined by [L] (receptor

occupancy u = [L]/([L]+KL)), while last molecule is CheY and the

concentration of its active form influences motor rotation bias.

The biochemical dynamics for all concentration of activated

molecules are described by following equations:

dyi=dt~(Ciiz
X
j=i

CijyjzCiu)(yit{yi){(Diiz
X
j=i

DijyjzDiu)yið10Þ

Where yit is the total concentration of other molecules in the

pathway except the receptor, and yi is the concentration of

activated molecule i. Cij (Dij) is the rate at which activated

molecule j activates (deactivates) molecule i, Cii (Dii) is molecule i’s

self-activation (deactivation) rate, Ci (Di) represents the rate at

which the receptor activates (deactivates) the molecule i. Transfer

function describing the correlation between u and [CheY-P] can

be derived through the method described above (see Text S1).

This model enables us to find out which pathway topology can

generate the transfer function we need, and how to regulate the

parameters in the pathway to achieve the design targets.

Supporting Information

Text S1 Supplemental materials. Exposition and derivation of

transfer function of pathway near equilibrium and the model for

molecular motor in E. coli.

Found at: doi:10.1371/journal.pone.0009182.s001 (0.52 MB

DOC)

Figure S1 Chemotaxis behaviors of cells guided by low-pass

filter with various parameters (v0, A, whose values are shown

above each subfigure) in a mountain-shaped concentration field.

The concentration field is mountain-shaped (L = L0exp(2x2/r2),

L0 = 2 mM, r = 2 mm). In each subfigure, 100 bacteria start at

(1.4 mm, 0 mm) and their movement in 1000s is recorded. The

distribution of their local ligand concentrations is shown by box

plots at each time point. Each box has three lines, which from low

to high indicate the lower quartile, median, and upper quartile

ligand concentration values ([L]) of bacterium population at a

given time. Whiskers extend from the box out to the most extreme

data value within 1.5 folds of the height of the box. [L] values

beyond whiskers are marked by points. Solid line shows the

average of [L] against time.

Found at: doi:10.1371/journal.pone.0009182.s002 (2.11 MB TIF)

Figure S2 Chemotaxis behaviors of cells guided by band-pass

filter with various cut-off frequencies (v1, v2, whose values are

shown above each subfigure) in a mountain-shaped concentration

field. The max amplification of the filter is fixed at 16. The

concentration field is mountain-shaped (L = L0exp(2x2/r2),

L0 = 2 mM, r = 2 mm). In each subfigure, 100 bacteria start at

(1.4 mm, 0 mm) and their movement in 1000s is recorded. The

distribution of their local ligand concentrations is shown by box

plots at each time point. Each box has three lines, which from low

to high indicate the lower quartile, median, and upper quartile

ligand concentration values ([L]) of bacterium population at a

given time. Whiskers extend from the box out to the most extreme

data value within 1.5 folds of the height of the box. [L] values

beyond whiskers are marked by points. Solid line shows the

average of [L] against time.

Found at: doi:10.1371/journal.pone.0009182.s003 (2.33 MB TIF)

Figure S3 Effect of variations of v1, v2 on the final average

ligand concentration. Each data point represents the movement of

100 bacteria in 1000 s and their average ligand concentration in

the last 50 s are calculated as a measurement of chemotactic

effects. The transfer function, and max amplification (A), shape

and parameters of the concentration field, and initial point of

bacteria, are shown in Table S1.

Found at: doi:10.1371/journal.pone.0009182.s004 (2.35 MB TIF)

Figure S4 CheY-P level changes caused by a step-wise signal in

the band-pass filter. The parameters of the pathway are the same

as that in Figure 3B. Attractants are removed at t = 0. The plot of

[CheY-P] clearly indicates that the [CheY-P] reaches a high level

in a short time (response time t2 = 0.16 s) and recovers to the basal

level gradually (adaptation time t1 = 40 s).

Found at: doi:10.1371/journal.pone.0009182.s005 (0.73 MB TIF)

Figure S5 Designed dynamics of positive, negative and pseudo-

chemotaxis pathway and their block diagrams. (A) Positive

chemotaxis pathway. Ligand quickly binds to molecule u to

activate it. Activated u can dephosphorylate CheY-P and activate

molecule v. Molecule v phosphorylates CheY-P. (B) Negative

chemotaxis pathway. Ligand quickly binds to molecule u to

activate it. Activated u can phosphorylate CheY-P and activate

molecule v. Molecule v dephosphorylates CheY-P. (C) Pseudo-

chemotaxis pathway. Ligand quickly binds to molecule u to

activate it. Activated u can activate molecule v. Molecule v

dephosphorylates CheY-P.

Found at: doi:10.1371/journal.pone.0009182.s006 (0.57 MB TIF)

Table S1 Parameters of each subfigure in Figure S3.

Found at: doi:10.1371/journal.pone.0009182.s007 (0.04 MB

DOC)
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