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Abstract

Background: Thymic epithelial cell (TEC) microenvironments are essential for the recruitment of T cell precursors from the
bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell
repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these
critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of
several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and
thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis
of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus.

Methodology/Principal Findings: Here we demonstrate that tetracycline-regulated expression of the canonical Wnt
inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration
characterized by a loss of DNP63+ Foxn1+ and Aire+ TECs, loss of K5K8DP TECs thought to represent or contain an immature
TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal
of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the
differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial
microenvironments.

Conclusions/Significance: Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is
required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC
progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these
TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the
premature thymic degeneration associated with cancer therapy and bone marrow transplants.
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Introduction

The thymus serves two functions essential for a properly

functioning adaptive immune response. These are the generation

of new T cells from hematopoietic stem cells (HSC) and the

selection of T cells expressing a functional self-tolerant T cell

receptor (TCR) repertoire. These critical processes are controlled

by the unique epithelial microenvironments found in the thymic

stroma [1]. The stroma is broadly divided into two distinct regions,

called the cortex and the medulla, containing epithelial cells that

are functionally and phenotypically distinct. Epithelial cells in the

thymic cortex are responsible for the attraction of T cell

precursors, commitment to the T cell lineage, expansion of

immature double negative (DN) thymocytes and positive selection

of double positive (DP) thymocytes [2]. The proper formation of

this key thymic microenvironment is dependent on interactions

between developing thymocytes and thymic epithelial cells called

thymic crosstalk [3,4]. Mesenchymal cells are also required for the

initial development and subsequent maintenance of a functional

thymic microenvironment [5,6]. The thymic medulla is composed

of a heterogeneous population of epithelial cells that provide a

microenvironment for newly positively selected CD4 and CD8

single positive (SP) thymocytes. Proper organization and develop-

ment of mature mTECs requires Rank and CD40 mediated

crosstalk from Lymphoid Tissue inducer cells (LTi) [7] and mature

SP thymocytes [8,9,10,11,12] as well as c/d T cells [13].

Medullary thymic epithelial cells (mTECs), acting together with

MHC class II+ dendritic cells, function to negatively select
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thymocytes that bear high affinity self-reactive TCRs [14].

MTECs also express a wide array of tissue restricted antigens

(TRAs), so called ‘‘promiscuous gene expression’’ [15,16,17], some

of which appear to be under the control of the AIRE transcription

factor [18]. These TRAs represent a pool of self-antigens, which

are used to negatively select auto-reactive thymocytes to induce

self-tolerance or differentiation of regulatory T cell subsets. In

addition to their critical role in tolerance induction, mTECs may

also regulate post selection differentiation events including up-

regulation of early T cell activation markers, as well as expansion

of SP thymocytes prior to their export from the thymus [19]. The

complexity of the thymic structure together with the need for cell-

to-cell interactions in both the development and maintenance of

the TEC microenvironments has hindered efforts to identify the

molecular signaling pathways required for TEC development and

function in vivo.

The Wnts represent a highly conserved family of 19 lipid-

modified secreted glycoproteins in humans (18 in mice), thought to

be critical to the development and maintenance of several organ

systems [20,21]. Wnt signaling regulates cell fate, establishment of

the dorsal axis, asymmetric cell division, progenitor-cell prolifer-

ation and survival during embryonic, as well as postnatal

development [22]. Appropriate regulation of Wnt signaling has

also been shown to be important in the maintenance of

hematopoietic [21] and epithelial stem cells [23,24]. There are

both canonical and non-canonical signaling pathways, driven by

different combinations of the Wnt/Frizzled (Fz) complex. The

most studied canonical Wnt pathway leads to stabilization of b-

catenin by inactivating the ‘‘destruction complex’’ consisting of

adenomatous polyposis coli (APC), Axin and glycogen synthase

kinase 3b (GSK3b). In the absence of Wnt signaling, casein-

kinase1a (CK1a)) and GSK3b phosphorylate b-catenin, which

leads to the degradation of b-catenin. Binding of Wnt to its

receptor Fz and co-receptor, low-density lipoprotein receptor

related protein (LRP), releases Axin from the destruction complex,

allowing amino-terminally dephosphorylated b-catenin to accu-

mulate in the cytoplasm. This stabilized b-catenin then translo-

cates to the nucleus where it engages with the lymphoid enhancer

factor (LEF)-1, as well as the T-cell factors (TCF)-1, TCF-3 or

TCF-4. The binding of b-catenin to LEF or TCF initiates

transcription of genes such as axin, cyclin D1 and c-MYC (for review

see [25]). However, in most cases the specific targets of Wnt

signaling remain elusive. Wnt receptor binding is highly regulated

through association with diverse secreted proteins including Wnt

inhibitory factor (Wif)-1, soluble frizzled (sFz), Dickkopf (Dkk) [26],

Frzb-1 or Cerberus [27], as well as Kremen1 and 2 [28]. Wif-1

and sFz compete with Fz by binding available Wnts.

There are four Dickkopf-related protein (Dkk) family genes in

the human genome, and three in that of the mouse. Dkk family

members (DKK1 to DKK4) are secreted proteins with two

cysteine-rich domains, separated by a linker region. DKK1,

DKK2, and DKK4 function as antagonists of canonical Wnt

signaling by binding to LRP5/6, preventing LRP5/6 interaction

with Wnt-Frizzled complexes. DKK1, 2, and 4 also bind cell

surface Kremen1 or 2 and promote the internalization of LRP5/6.

Antagonistic activity of DKK3 has not been demonstrated [29].

DKK proteins have distinct patterns of expression in adult and

embryonic tissues and have a wide range of effects on tissue

development and morphogenesis. DKK1 is involved in a variety of

craniofacial developmental processes and behaves as a strong head

inducer and limb regulator [30]. DKK1 knockout mice are

embryonic-lethal as they lack anterior head structures [31]. The

expression of DKK1 is associated with sites of programmed cell

death during limb development, while the loss of DKK1

expression results in the fusion of digits and formation of ectopic

digits similar to mice with mutations in other proteins that regulate

programmed cell death in the limb [31,32,33]. However, a direct

relationship between DKK1 inhibition of the Wnt/b-catenin

pathway and the induction of apoptosis has not been demonstrat-

ed. Transgenic keratin 14 (K14)-driven DKK1 over-expression

blocked hair follicle development, as well as tooth and mammary

gland development before the bud stage [34]. Tetracycline-

inducible expression of DKK1, in lung epithelium, resulted in

disruption of distal airway development and expansion of proximal

airways through an N-myc, BMP-4 and FGF dependent

mechanism [35]. Ectopic expression of DKK1 in K5-expressing

epithelium, blocked taste papilla development as well as

innervation of the tongue [36]. Recently, the same inducible

transgenic model was used to inhibit Wnt signaling in wounded

skin, resulting in a complete block in the development of new hair

follicles derived from resident epithelial stem cells, while ectopic

expression of Wnt7a driven by the K14 promoter lead to a 50%

increase in the number of hair follicles that developed [37]. Taken

together these studies demonstrate the importance of canonical

Wnt signaling in regulating development of a number of epithelial

tissues and organs as well as validating the use of ectopic Dkk1

expression to inhibit Wnt signaling.

We and others have demonstrated that both thymocytes and

TECs express Wnt proteins, as well as their receptors and

associated regulatory molecules and that TEC lines and primary

TECs are capable of responding in vitro to Wnt proteins

[38,39,40,41]. A key role for the Wnt signaling cascade in

controlling thymocyte cellularity and differentiation is apparent

from studies using Tcf-1/LEF-1 knockout mice, as well as a

number of complementary gain-of-function and loss-of-function

studies [42,43,44,45,46]. Wnts secreted by both TECs and

thymocytes were shown to regulate Foxn1 expression, which is

the transcription factor critical for thymic epithelial development

and responsible for the athymic nude phenotype when mutated in

mice and humans [38]. Deletion of APC, mediated by a K14-cre

transgene, resulted in severe defects in thymic architecture marked

by an increase in immature TECs expressing both K14 and K8.

However, premature death of these mice, due to loss of APC in

other epithelia, prevented analysis of the role of Wnt signaling in

TEC maintenance in adult mice [47]. Evidence from our earlier

characterization of Kremen1 KO mice, which exhibit increased

canonical Wnt signaling in TECs, due to the lack of Wnt inhibitor

Kremen1, suggests that canonical Wnt signaling may contribute to

the maintenance of a less differentiated K5K8DP TEC progenitor

population [39]. This is not surprising, as Wnt signaling is known

to be important in progenitor/stem cell self-renewal [48]. These

data were difficult to attribute solely to increased Wnt signaling in

TECs, as the general loss of Kremen1 expression also affects

lymphoid and mesenchymal cells in the thymus. Most recently,

expression of a stabilized form of b-catenin, directed to TECs by a

Foxn1 promoter, blocks the initial commitment of endodermal

epithelia to a thymic fate, subsequently interfering with thymocyte

recruitment and preventing normal thymic function [49]. These

results clearly demonstrate that precise regulation of Wnt signaling

within the epithelial primordium is critical for normal TEC

development and function, however, the early block in thymic

development observed in this system precluded study of the role of

canonical Wnt signaling in TEC maintenance in adult mice.

In this study we examined the effect of inhibiting Wnt signaling

in TECs by crossing mice expressing the potent canonical Wnt

inhibitor DKK1, controlled by a tetracycline-responsive regulato-

ry element (TetO-DKK1) [50] with mice harboring a K5 promoter-

driven tet inducer-VP16 transgene (K5rtTA) [51]. The resulting
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double transgenic tetO-DKK1;K5rtTA (tetO-Dkk1) mice produce

high levels of DKK1 in both cortical and medullary TEC subsets,

in the presence of doxycycline, leading to inhibition of canonical

Wnt signaling [35,36,37,50]. The advantage of the use of this

transgenic model is that it allowed direct assessment of the

contribution of canonical Wnt signaling to the maintenance of

adult thymic epithelial architecture without affecting the initial

development and organization of the thymus or other epithelial

organs requiring Wnt signaling during fetal development. The

effect of increasing Wnt signaling was also examined in a

transgenic mouse expressing Wnt7a driven by a human K14

promoter [37] as well as fetal thymic organ cultures treated with

Wnt3a conditioned medium. Since in situ hybridization revealed

more abundant DKK1 expression in the cortex, including the

K5K8DP TEC subset thought to contain a TEC progenitor

population, we reasoned that driving expression of the potent

canonical Wnt signaling inhibitor DKK1, would have a profound

effect on TEC development if Wnt signaling or its proper

regulation were important in the maintenance of the postnatal

TEC architecture. Inhibition of canonical Wnt signaling in adult

mice through Tet-driven DKK1 expression resulted in a reduction

in the number of all TEC subsets, a loss of K5K8DP TECs and a

dramatic premature thymic degeneration.

Methods

Mice
Dr. Adam Glick (Penn State University) generously provided

K5rtTA mice. TetO-Dkk1 K5rtTA and K14-Wnt7a mice have been

described previously [37,50,51], as well as their use to inhibit Wnt

signaling during epithelial development in other organs and tissues

[36,37,50,52]. C57BL/6J mice were obtained from the Jackson

Laboratory (Bar Harbor, ME). K5rtTA mice were bred to tetO-

Dkk1 mice to generate tetO-Dkk1;K5rtTA double transgenic (DT)

animals for study. Adult tetO-Dkk1;K5rtTA DT and littermate

heterozygous control animals were fed mouse diet containing

doxycycline (Dox) (2 g/kg, BioServe, NJ) for 4–8 weeks beginning

at 6 weeks-of-age, unless otherwise indicated. For recovery

experiments mice were fed Dox for 4 weeks and then food was

changed to normal mouse chow for 2–4 weeks to allow recovery of

thymic architecture. All mice were bred and maintained at the

City College of New York animal facility and all experiments were

performed with approval from the City College of New York

institutional animal care and use committee.

Antibodies
The following primary antibodies were used for experiments:

anti CD45-PE Cy7 (clone 30-F11, BD Biosciences), I-A/I-E-PE

(clone M5/114.15.2, BD biosciences), I-A/I-E-FITC (clone M5/

114.15.2, eBioscience), I-A/I-E-APC (clone M5/114.15.2,

eBioscience), Ulex europaeus agglutinin-1 (UEA1)-Biotin (Vector),

UEA1-PE (Vector), cytokeratin 5 (MK-5, Covance), cytokeratin

14 (MK-14, Covance), Troma I (Developmental Studies Hybrid-

oma Bank, IA), Troma III (Developmental Studies Hybridoma

Bank, IA), MTS10 (kindly provided by Dr. Richard Boyd from

Monash University, Australia), DNp63 (clone N-16, Santa Cruz),

Aire (clone M-300, Santa Cruz), EpCAM-PerCP (clone G8.8,

Santa Cruz), Ki67-FITC (clone B56, BD Biosciences), Ki67 (clone

SP6, LabVision), CD4-PE Cy7(clone RM4-5, BD Biosciences),

CD8-PerCp Cy5.5 (clone 53–6.7, BD bioscience), CD25-PE (clone

PC6I, BD Biosciences) and CD44-APC (clone IM7, BD

Biosciences). The following secondary reagents were used for

experiments: donkey anti rabbit IgG-TRITC, donkey anti rabbit

IgG-Cy5, donkey anti rat IgG-TRITC, donkey anti goat IgG-

FITC, goat anti rat IgM-TRITC (Jackson ImmnoResearch),

donkey anti rabbit IgG-FITC (Santa Cruz), anti rat IgG2a-FITC,

anti rat IgM-FITC, stretavidin-APC, stretavidin-APC Cy7 (BD

Biosciences) and stretavidin-TRITC (Southern Biotechnology

Associate).

Thymic Stromal Cell Preparation
Embryonic thymi were digested with collagenase D (1.2 mg/ml,

Roche Diagnostics), DNase I (1.5 mg/ml, Roche Diagnostics), and

Dispase (1.25 mg/ml, Invitrogen) at 37uC for 15 minutes with

occasional gentle agitation with a glass pasture pipette. The

resulting single cell suspension was washed with PBS and passed

through 100 mm strainer (BD Biosciences) to remove any

remaining undigested tissue. Adult thymi were cut into small

pieces and majority of thymocytes were released by gentle

agitation using a glass pasture pipette. The resulting tissue

fragments were digested with collagenase D (1.2 mg/ml, Roche

Diagnostics) and DNase I (1.5 mg/ml, Roche Diagnostics) for 15

minutes at 37uC followed by collagenase D (1.2 mg/ml, Roche

Diagnostics), DNase I (1.5 mg/ml, Roche Diagnostics) and Dispase

(1.25 mg/ml, Invitrogen) for 5 minutes at 37uC with occasional

agitation using a glass pasture pipette. The single cell suspension

was washed with PBS and passed through a 100 mm strainer (BD

Biosciences).

DKK1 In Situ Hybridization and K5 K8
Immunofluorescence Staining to Demonstrate Transgene
Expression

In situ hybridization to detect DKK1 expression was performed

as previously described [53]. Briefly, TetO-Dkk1 double trans-

genic mice and ST littermate control animals were fed Dox for 5

days prior to tissue harvest to allow DKK1 transgene expression

while minimizing DKK induced thymic architecture defects.

12 mm frozen sections were prepared, air dried and fixed in 4%

paraformaldehyde. In situ hybridization was then performed using

anti-sense and sense probe templates for Dkk1 synthesized by PCR

of E14.5 mouse cDNA, using primers containing T7 RNA

polymerase binding sites to amplify Dkk1: NM_010051. Following

hybridization with DIG-labeled probes, bound probe was detected

with anti-DIG Alkaline Phosphatase (AP) conjugate (Roche)

followed by NBT/BCIP AP substrate (Roche). Following devel-

opment of in situ signal, sections were counterstained with anti-K5

and anti-K8 antibodies followed by fluorochrome conjugated

secondary reagents to allow co-localization of in situ signal with

particular TEC subsets.

Flow Cytometry
Cells were suspended in 100 ml of FACS staining buffer (FSB-

1% fetal bovine serum, 5 mM EDTA and 0.02% NaN3 in PBS)

with appropriately diluted primary antibodies for 20 minutes on

ice in the dark. Secondary antibodies appropriately diluted in FSB

were added cells were incubated for an additional 20 minutes on

ice in the dark. After washing, cells were resuspended in 500 ml of

FSB for data acquisition. Intracellular staining for Ki67 was

performed using the FoxP3 staining kit (eBioscience) according to

the manufacturer’s instructions. TUNEL assays were performed

using the In Situ Cell Death detection kit (Roche Diagnostics)

according to the manufacturer’s instructions. Live/dead discrim-

ination was applied using ToPro3 (Invitrogen). Data acquisition

was performed using an LSRII analyzer complete with three lasers

(BD Biosciences) and cell sorting was performed using a FACS

Aria (BD Biosciences). FACS data was analyzed using Flow Jo

software (Tree Star).
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Immunohistochemistry and Confocal Microscopy
Fresh tissues were embedded in OCT medium (Fisher); snap

frozen and sectioned (8 mm) using a Leica CM1950 Cryostat.

Sections were air dried on bond-rite slides and then fixed in 4%

paraformaldehyde or 100% ice-cold acetone. Sections were

washed with PBS and blocked with blocking buffer (1% BSA,

0.1%Triton-X, 5% normal serum in PBS) for 10 min. Sections

were incubated with appropriately diluted primary antibodies in

blocking buffer in a humidified chamber for 1 hour at 37uC
followed by incubation with secondary reagents diluted in blocking

buffer in humidified chamber for 30 minutes at 37uC, then

mounted with ProLong gold anti-fade reagent with DAPI

(Invitrogen). Isotype control staining was performed for all primary

antibodies to ensure specificity of staining. Images were acquired

using Zeiss LSM510 confocal microscope and analyzed using

LSM software (Zeiss).

Quantification of Foxn1 Protein Expression In Vivo Using
Confocal Microscopy

Frozen sections of thymic tissue were prepared and stained as

described above. Confocal images were prepared by scanning each

fluorochrome independently with a 40X lens with an optical slice

thickness of 1.1 mm using a Zeiss LSM510 microscope. Cortical

and medullary areas were defined by staining with anti-DEC205

and anti-K14, respectively, as well as TEC morphology in

transitional zones. Thymic sections derived from control ST

littermate and TetO-Dkk1 mice were placed on the same slide and

stained with the same diluted antibody mix. Comparative analysis

was always performed on sections in the same relative position on

the slide and using identical laser power and detector voltage

settings to ensure differences in Foxn1 fluorescence intensity were

reflective of differences in protein expression. The Zeiss LSM

software package was utilized to determine the Foxn1 fluorescence

intensity of individual nuclei within either the cortex or medulla

based on counterstaining. A total of 85 individual cells were

scanned for each region of the thymus in both ST control and

TetO-Dkk1 thymic tissues, following a 4-week induction of DKK1

with Dox. Tissues were derived from 3 independent experiments.

Mean Foxn1 MFIs were determined for each condition and

region. A students T test was performed to determine the

significance of differences in Foxn1 fluorescence intensities

calculated for each strain and TEC subset.

Quantification of the Relative Area of K5K8DP TECs as
well as the Numbers of DNp63+ TECs and Aire+ TECs
Using Confocal Microscopy

Frozen sections of thymic tissue were prepared and stained as

described above. Confocal images were prepared by scanning each

fluorochrome independently with a 20X lens with an optical slice

thickness of 2 mm using a Zeiss LSM510 microscope. The line

scan tool provided in the LSM software (Zeiss) was used to scan

several areas of sections that were not stained with the appropriate

antibodies to determine the background thresholds used for the co-

localization tool in the calculation of the relative area of K5K8DP

TECs. A mean background plus 5% was used as the minimum

threshold for each specific fluorochrome. After calculating the

thresholds the co-localization tool was set to colorize all cells

within the entire scan which co-expressed both K5 and K8

proteins blue. The scan frame was always identical for ST control

and TetO-Dkk1 sections and scans were oriented to have the

cortico-medullary junction bisect the scan. Comparative analysis

was performed on control and experimental sections on the same

slide and stained with the same antibody preparation. The relative

area of each section which co-expressed both K5 and K8 was

calculated using the Zeiss LSM image analysis software. The mean

relative area and standard deviation were calculated using a

minimum of 6 sections of each thymus taken from various regions

within each thymic lobe and derived from 5 independent

experiments.

For calculations of the number of Aire+ and DNp63+ TECs,

sections were scanned as described above for Aire, DNp63 and

UEA1. UEA1 and Aire staining were used to define the limits of

the thymic medulla. An overlay box enclosing 10 mm2 of thymic

area was then sequentially moved over the entire image and the

number of Aire+ and DNp63+ nuclei was counted within each

10 mm2 area for both the cortex and medulla. Sections were

prepared from the central area of the thymus to ensure inclusion of

both cortical and medullary areas. A minimum of 6 sections from

each thymus derived from at least 5 independent calculations was

used to calculate the mean and standard deviation of the number

of Aire+ and DNp63+ TECs. DAPI staining was used to confirm

that each fluorescent spot counted was indeed a nucleus, as partial

nuclei were often encountered in the sections.

RNA Isolation and Real-Time PCR
Total RNA was isolated from sorted thymic epithelial cells using

Trizol reagent (Invitrogen). RT-PCR was performed using

SuperScript III first-strand synthesis system (Invitrogen). Real-

Time PCR was performed using the TaqMan gene expression

assay system with primer and probe sets for DKK1 and GAPDH

on a 7500 real-time PCR system (Applied Biosystem). Relative

expression values for each sample were normalized against

endogenous control GAPDH and the 22DDCt method was used

to calculate the relative level of target mRNA.

Fetal Thymic Organ Cultures
15.5 day-old fetal thymic lobes were dissected from C57BL/6

timed pregnant females, and incubated in 100 ml RPMI1640

complete media containing 10% fetal bovine serum supplemented

with 100 ml Wnt3a conditioned medium harvested from L-cells

transfected with a Wnt3a construct. Controls consisted of thymic

lobes cultured in 100 ml of RPMI1640 complete medium

supplemented with 100 ml of conditioned medium harvested from

control non-transfected L-cells. FTOC cultures were performed in

V-bottom 96-well plates (BD) in a high oxygen (70% O2, 25% N2,

5% C02) chamber at 37uC. After 72 hrs, thymi were washed in

10% complete RPMI and lobes were embedded in OCT and snap

frozen for sectioning.

Statistical Analysis
Data comparison was performed using the Student’s t-test

function on the Excel software. A P-value of ,0.01 was considered

significant.

Results

Inhibition of Canonical Wnt Signaling with DKK1 in TECs
Results in Rapid Thymic Degeneration in Adult Mice

Several previous studies have demonstrated a role for canonical

Wnt signaling in regulating early T cell development [46,54], as

well as the development of the thymic epithelium [38,39,47,49]

however, due to early death of the mice or early blocks in thymic

development, analysis of a role for Wnt signaling in the

maintenance of adult TEC microenvironments was not possible.

In an effort to specifically address the contribution of canonical

Wnt signaling in the maintenance of postnatal thymic epithelial

microenvironments, mice containing the potent canonical Wnt

DKK1 and Thymic Degeneration
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inhibitor DKK1, controlled by a tetracycline-responsive regulato-

ry element (TetO-Dkk1) [53] were crossed with mice harboring a

K5 promoter-driven tet inducer-VP16 transgene (K5rtTA) [51].

We hypothesized that the resulting double transgenic tetO-

Dkk1;K5rtTA mice would produce high levels of DKK1 in the

K5-expressing TEC subsets in response to the Dox, including the

dominant K5+ mTEC subset and the K5K8DP cTECs. To

demonstrate that the Tet-inducible double transgenic system

resulted in increased expression of the canonical Wnt signaling

inhibitor within TECs, tetO-Dkk1;K5rtTA (TetO-Dkk1) and tetO-

Dkk1-;K5rtTA+ single transgenic (ST) littermate mice were fed Dox

for 4 weeks beginning at 6-weeks-of-age. Real-time PCR

performed on FACS sorted TECs (CD452MHCII+EpCAM+)

revealed a dramatic 25 fold increase in DKK1 expression within

the TECs in the TetO-Dkk1 mice, when compared to TECs

derived from littermate ST controls (Figure 1A).

To determine the specificity and spatial orientation of

transgenic DKK1 expression within the thymus, in situ hybridiza-

tion with a DKK1 specific probe was performed on thymic

sections derived from either control ST or TetO-Dkk1 mice

following 5 days of Dox induction. Following in situ hybridization,

immunofluorescence staining was also performed with anti-

Keratin 8 and anti-Keratin 5 antibodies to allow localization of

the in situ signal with particular TEC subsets. The short induction

time was utilized to ensure that the assessment of DKK1 transgene

expression was performed before significant changes in TEC

subsets or thymic epithelial organization were apparent. In situ

hybridization of thymic sections derived from ST mice with a

DKK1 specific probe, revealed a very low level endogenous

expression of DKK1, with no apparent pattern of distribution

within the K8 dominated cortex or K5 dominated medulla when

viewed at 100x (Figure 2A–D) or 400x (Figure 2E–H). In contrast,

in situ hybridization of thymic sections derived from TetO-Dkk1

mice revealed a distinct pattern of DKK1 transgene expression

within both cortical and medullary areas of the thymus, with a

greater abundance of DKK1 expression within the thymic cortex

Figure 1. Relative expression of Dkk1, Wnt target genes and Foxn1 in sorted TECs (CD452 MHCII+EpCAM+) as well as TECs in vivo. 4-
week old tetO-Dkk1;K5rtTA and tetO-Dkk1-ST littermate mice were fed Dox food for 4 weeks prior to harvest and enzymatic dissociation of thymic
tissue. Viable CD452MHCII+EpCAM+ TECs were sorted to .98%purity by FACS. Subsequent to mRNA isolation, real-time PCR was performed using
primer and probe sets specific to Dkk1, Axin2, c-Myc, Foxn1 and GAPDH. Relative Dkk1, Axin2, c-Myc and Foxn1 expression were normalized against
endogenous GAPDH expression. (A) Relative expression of the Dkk1 transgene following 4-week Dox induction in TECs. (B) Relative expression of the
Wnt target genes Axin2, c-Myc and Foxn1 in sorted TECs following 4-week Dox induction of the Wnt inhibitor Dkk1. (C) Representative 400X confocal
scans of the thymic cortex of ST (left) and TetO-Dkk1 (right) thymus following a 4-week Dox feeding to demonstrate the reduced Foxn1 protein
expression resulting from DKK1 transgene induction. Sections were stained with K14 (pink) Foxn1 (green) and DEC205 (not shown for clarity of Foxn1
analysis). Red arrow in each scan shows the position and direction of a line scan used to generate the quantitative analysis of Foxn1 protein
expression shown in the histograms below each image. White arrows show the edge of the thymic section. (D) Histogram comparing mean Foxn1
fluorescence intensity in cTECs vs. mTECs. The mean Foxn1 fluorescence intensity was calculated from both cTECs and mTECs derived from 4-week
Dox treated ST or TetO-Dkk1 mice (based on their location within DEC205+ and K14+ regions of the thymus). Means for each location and strain were
calculated from a total of 85 individual cells from 3 independent experiments. Error bars in the histograms represent standard deviation. **Statistical
significance was determined using a T test and P,.001.
doi:10.1371/journal.pone.0009062.g001
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Figure 2. Doxycycline-regulated expression of the DKK1 transgene is evident in both cTECs and mTECs in the adult thymus.
Following a 4-week Dox induction, 12 mm frozen thymic sections were prepared from ST control and TetO-Dkk1 mice and subjected to in situ
hybridization with a DKK1 specific probe followed by detection with Sections were then counterstained with anti-Keratin 8 and anti-keratin 5
antibodies to allow localization the DKK1 expression to specific thymic regions and to cortical and medullary TEC subsets. Each row of photos shows
in situ hybridization with a DKK1 specific probe followed by Immunofluorescent staining with K8 (green), K5 (red) and a merge of all three. K5rtTA-ST
control lobes show little endogenous DKK1 expression at 100X (A–D) or 400X (E–H). In contrast, Dox induction resulted in widespread transgenic
expression of DKK1 in the TetO-Dkk1 mice with positive TECs being more abundant in the K8 dominated cortex than the K5 dominated medulla
when examined at 100X (I–L). High magnification examination of the thymic cortex of TetO-Dkk1 mice revealed that a high percentage of K5K8DP
and a smaller number of K8+ cTECs exhibited strong DKK1 transgene expression. White arrows in all panels identify DKK1-expressing TECs, thus
allowing characterization of the keratin profile (M–P). Surprisingly, more limited transgenic DKK1 expression was evident in the medulla, with a small
percentage of the K5-expressing mTECs and a higher frequency of the K5K8DP TECs at the cortico-medullary junction expressing DKK1 (Q–T).
doi:10.1371/journal.pone.0009062.g002
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and cortico-medullary junction (Figure 2I–L). When viewed at

higher magnification, it is clear that DKK1 transgene expression is

restricted to keratin+ TECs; however, DKK1 expression is not

restricted to K5-expressing cells. More abundant DKK1 expres-

sion was observed in the cortex within primarily K5K8DP cells

however; expression was also detected within K8 expressing

cTECs (Figure 2M–P). More limited expression of the DKK1

transgene was apparent within K5-expressing TECs in the

medulla and within K5K8DP TECs at the cortico-medullary

junction (Figure 2Q–T).

Confirmation that transgenic expression of the Wnt inhibitor

DKK1 resulted in a decrease in canonical Wnt signaling within

the TECs was evident from the 30–60% decrease in the expression

of the Wnt target genes Axin2 and c-Myc observed in TECs sorted

from TetO-Dkk1 mice, when compared with identical populations

sorted from Dox treated ST controls (Figure 1B). Similar

reductions in Foxn1 expression were also observed (Figure 1B),

supporting previous reports of a role of Wnt signaling in regulating

Foxn1 expression in TECs in vitro [38].

Immunofluorescent staining of thymic sections with Foxn1

antibody allowed assessment of the level of Foxn1 protein

expression within distinct TEC subsets in response to a 4-week

Dkk1-mediated inhibition of Wnt signaling. Counterstaining these

sections with anti-DEC205 and anti-K14 to define cortical and

medullary areas of the thymus, respectively, revealed a lower

Foxn1 staining intensity in both cTECs (Figure 1C) and mTECs

(Figure S1). Quantitative confocal analysis was performed utilizing

the Zeiss LSM software to scan individual CTEC and mTEC

nuclei to determine the mean fluorescence intensity of Foxn1

antibody staining in ST control and TetO-Dkk1 sections.

Representative scans shown for cortical areas in figure 1C (red

arrow represents scan), together with the histograms showing the

reduced Foxn1 staining intensity in the Dox treated TetO-Dkk1

thymus. A total of 85 cTEC and mTEC nuclei were scanned for

each strain from 3 independent pairs of ST and TetO-Dkk1 mice

and the resulting mean fluorescence intensities of Foxn1 were

graphed in figure 1D. A significant reduction (P,0.001) in mean

Foxn1 fluorescence intensity was detected in both cTECs and

mTECs, with the most pronounced decrease apparent in cTECs

which changed from a mean of 181 (ST) to a mean of 112 (TetO-

Dkk1) representing a 40% decrease in Foxn1 expression. MTECs

showed a more modest but still highly significant 20% reduction in

Foxn1 expression. This difference could reflect a differential effect

of DKK1 on cTECs and mTECs or might reflect the higher level

of DKK1 transgene expression observed in the cortex.

Analysis of thymus size in response to Dox-driven DKK1

expression revealed a dramatic reduction in overall thymic size

(Figure 3, A–C) with the most significant reduction in male mice

(82% based on weight) while a 42% reduction was observed for

females. This difference in size was representative of similar results

obtained in 4 different experiments performed when Dox feeding

was initiated at 6 weeks of age and carried out for a total of 4

weeks. Longer feeding of Dox, up to 8 weeks, resulted in almost a

complete loss of the thymus, with the residual thymus remaining

resembling a severely atrophied thymus that might be found in a

mouse older than 1 year-of-age and making isolation of intact

thymic tissue for analysis difficult.

To examine if DKK1-mediated inhibition of canonical Wnt

signaling in TECs, impacted T cell development, total thymocyte

numbers were counted. In addition, FACS analysis of thymocytes

Figure 3. Effect of DKK1 expression on thymus size. Upper row shows photographs of intact thymic lobes to demonstrate the dramatic thymic
involution observed after 4 weeks of doxycycline driven Dkk1 expression. (A) Control Male K5rtTA-ST, (B) Male TetO-Dkk1 and (C) Female TetO-Dkk1.
Lower row demonstrates the recovery of thymic size of doxycycline treated lobes following a 4 weeks chase period. (D) Control Female K5rtTA-ST, (E)
Male TetO-Dkk1, (F) Female TetO-Dkk1. Female K5rtTA-ST mice exhibited a similar thymic size to male controls after Dox feeding, as did Male K5rtTA-
ST mice after 4 weeks Dox feeding and 4 weeks chase (data not shown).
doi:10.1371/journal.pone.0009062.g003
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derived from TetO-Dkk1 and K5rtTA-ST mice following 4 weeks

of Dox feeding using antibodies against CD4, CD8, TCRb, CD25

and CD44 was used to assess differences in thymocyte subset

frequency. FACS profiles representative of 4 independent

experiments are shown in Figure 4A. Total thymocyte numbers

were reduced by more than 50% in both male and female TetO-

Dkk1 mice when compared with identically treated K5rtTA-ST

littermate controls (Figure 4B). FACS analysis of thymocytes

revealed no significant differences in the frequency of any

thymocyte subsets (Figure 4C), suggesting that expression of

DKK1 in TECs does not lead to stage specific blocks in T cell

development but rather a general loss of thymic capacity maintain

sufficient numbers of T cells, possibly due to a loss of epithelial

niches.

To determine the effect of DKK1-mediated inhibition of

canonical Wnt signaling in TECs, on TEC development and

organization, histological analysis of thymic sections derived from

adult Dox treated TetO-Dkk1 mice and ST control mice, was

performed with a panel of antibodies used to define thymic

architecture. K8 is expressed in the majority of cTECs and a

subset of mature mTECs, while K5 expression is found

predominantly in immature mTEC subset as well as more rare

cells scattered in the cortex. Cells that co-express both K5 and K8

are thought to contain a subset of TEC or cTEC progenitors

[55,56] and are primarily localized to the cortico-medullary

junction (CMJ) with additional cells scattered through the medulla.

Comparative analysis of female DKK1 transgenic mice stained

with K8 and K5 antibodies at low magnification revealed a

dramatic loss of both cortical and medullary TECs, with a

pronounced thinning of the K8 expressing cTECs (Figure 5, F–I)

when compared with Dox fed ST littermates (Figure 5, A–D). Both

the control K5rtTA-ST and TetO-Dkk1 mice show abundant

keratin negative areas in the medulla, which is a characteristic of

CD1 background mice not normally found in inbred strains like

C57BL/6. Similar K8 and K5 histological analysis of sections

derived from Dox-treated male TetO-Dkk1 mice revealed almost

a complete loss of normal cTEC organization and an abundance

of aberrant cystic structures (Figure 5, J *), while identically

treated ST male littermate mice showed a normal distribution and

morphology of both cTECs and mTECs (Figure 5, E).

Figure 4. Effect of DKK1 on total thymocyte number and subset frequency. A. Thymocyte FACS profiles representative of 4 independent
experiments showing the frequency of thymocyte subsets including the DN1-SP subsets. No apparent differences in profile between Dox fed TetO-
Dkk1 male and female when compared with similarly treated K5rtTA littermate controls. B. Total thymocyte number is dramatically reduced in both
male and female TetO-Dkk1 mice following 4 weeks of Dox feeding, when compared with Dox fed ST littermate controls. C. Following 4 weeks of Dox
feeding, FACS analysis of thymocytes derived from either male or female TetO-Dkk1 mice showed no changes in the frequency of individual
thymocyte subsets. (The frequency of individual DN subsets represents the frequency of the total number of CD4-CD8- cells) Means for each subset
were determined from 4 independent experiments with at least 3 mice of each sex and genotype.
doi:10.1371/journal.pone.0009062.g004
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Figure 5. Effect of Dkk1 expression on the distribution of TEC subsets defined by K5 and K8 expression. Frozen thymic sections
prepared from K5rtTA-ST and TetO-Dkk1 mice after 4 weeks of doxycycline feeding to induce DKK1 expression. Low magnification images of thymic
sections derived from female K5rtTA-ST mice (A–D) and TetO-Dkk1 mice (F–I) stained with anti-K8 (green) to identify the cortex and anti-K5 (red) to
identify the medulla as well as DAPI. Merged images of K5 and K8 staining (D vs. I) reveal K5K8DP TECs thought to contain progenitors (yellow).
Similar images of merged K5 and K8 staining from male K5rtTA-ST (E) and TetO-Dkk1 mice (J) reveal a more dramatic loss of cortical architecture and
altered cTEC morphology. * -Identify cystic structures and abundant keratin negative areas (KNA) in the TetO-Dkk1 mice. Higher magnification images
of female K5rtTA-ST mice stained with K5 and K8 antibodies reveal abundant K5K8DP TEC progenitors at the CMJ as well as within the medulla (K–N,
yellow arrows). (White arrows show K8SP thought to be mature mTECs) Similar sections derived from littermate TetO-Dkk1 mice reveal an absence of
the K5K8DP TEC progenitors at both the CMJ and within the medulla (O–R). Further evidence of the hypoplastic cortex and loss of the reticular cTEC
network is revealed when TetO-Dkk1 mice with severe phenotypes are stained the cTEC specific DEC205 antibody (green) and UEA1 (red) to define
medullary areas. (S). Compared with similar staining of K5rtTA-ST littermate mice (T). A dramatic loss of cortical area and the typical reticular cTEC
morphology is apparent in the TetO-Dkk1 thymus. White arrows show the outer edge of the thymus.
doi:10.1371/journal.pone.0009062.g005
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Examination of thymic sections derived from Dox-treated female

mice at higher magnification revealed almost a complete loss of

K5K8DP TEC progenitors in TetO-Dkk1 mice, including cells at

both the CMJ and within the medulla (Figure 5, O–R). Yellow

arrows in identical positions within the individual color panels

allow identification of K5K8DP TECs. The remaining K8SP

TECs in the medulla of DKK1 mice (see white arrows) were

primarily the mature UEA1 bright cells (data not shown).

Comparative analysis of sections derived from Dox-treated

K5rtTA-ST mice revealed abundant K5K8DP TEC progenitors

at the CMJ as well as within the medulla (yellow arrows, Figure 5,

K–N). Male mice showed similar reductions in K5K8DP TECs but

more severe reductions in cTEC and mTECs and a more

significant disruption of cTEC morphology.

Staining with the cTEC specific DEC205 antibody revealed a

severely hypoplastic cortex in Dox-treated TetO-Dkk1 mice. This

is apparent from the reduced cortical area evidenced by the close

proximity of the medulla, defined by the red UEA1+ mTECs, to

the edge of the thymus (white arrow, Figure 5S). The cTECs also

appear to have lost the normal reticular morphology and more

expansive cortex, which are apparent in the control Dox-treated

ST mice (Figure 5T). At 4006magnification, no UEA1+ medulla

was visible when photographs were taken at the outer cortex of

control mice. The reduced cortical area and loss of typical

reticular morphology is similar to the phenotype described for the

involuted thymus of aged mice [57,58]. Low magnification

DEC205 staining of TetO-DKK1 and K5rtTA-ST controls is

provided in supplemental Figure 1 similarly demonstrating the

reduced cortical area and disrupted cTEC organization in

response to DKK1 expression.

In an effort to quantify the effect of transgenic expression of

DKK1 on the frequency of total TECs and specific TEC subsets,

thymic lobes from TetO-Dkk1 and K5rtTA-ST littermate mice

were dissociated using Collagenase/Dispase/DNase digestion

following 4 weeks of Dox feeding. A total of 5 thymi from each

strain were pooled for each experiment to yield sufficient

numbers of TECs for analysis and 3 independent experiments

were performed. CD45 magnetic beads were then used to

partially deplete CD45+ hematopoietic cells from the resulting

single cell suspension, prior to staining with antibodies against

CD45, MHCII, EpCAM, and CD80 together with UEA1 lectin.

CD452 MHCII+ EpCAM+ cells are defined as TECs, while

immature and mature TECs within this population are defined

as MHClow EpCAM+ and MHChiEpCAM+ subsets, respectively.

After gating on TECs further analysis with EpCAM versus

UEA1 allowed separation of EpCAM+ UEA1+ mTECs and

EpCAM+ UEA12 cTECs. Analysis of the mTEC population

with anti-CD80 allowed separation of the mature CD80hi and

immature CD80 lo/neg mTEC subsets. A representative FACS

TEC profile derived from 4-week Dox fed female TetO-Dkk1

and littermate ST mice is shown in Figure 6A. A total cell count,

following CD45 depletion, was used together with the TEC

subset frequencies to analyze the effect of DKK1 on total TEC

and TEC subset numbers/thymus (Figure 6B). Following Dox

feeding, TetO-Dkk1 mice showed a dramatic decrease in the

frequency of CD452 EpCAM+ MHCII+ TECs (mean 2.48+/
20.68%, representative freq. Figure 6A, upper left panel) when

compared with K5rtTA-ST controls (8.3+/21.94%, upper

right panel) suggesting a loss of TECs within the smaller thymus.

To confirm that this difference in TEC frequency was

representative of an actual reduction in TEC numbers, the

frequencies of TECs in each subset were used to calculate and

compare absolute TEC numbers. Analysis of total TEC numbers

revealed a significant decease (P,.005) in the number of TECs

present in Dox treated TetO-Dkk1 mice (mean = 3.43+/2

0.356105/thymus) when compared to littermate ST controls

(mean = 14.44+/20.566105/thymus). Similar significant reduc-

tions in the number of all other TEC subsets analyzed was

apparent in the Dox-treated TetO-Dkk1 mice, including cTECs,

mTECs, total immature MHCloTECs, total mature MHChi-

TECs, as well as both mature CD80hiUEA1+ and immature

CD80lo/negUEA1+ mTECs (Figure 6B). While no other signif-

icant differences in the frequency of the various TEC subsets

defined by differences in the expression of MHCII, UEA1 and

CD80 were apparent, analysis of the CD452EpCAM+ TECs

using the mTEC specific lectin UEA1 revealed a small but

repeatable reduction in the frequency of EpCAM+ UEA12

cTECs in the Dox treated TetO-Dkk1 mice (23.3+/22.12%)

when compared with ST controls (31.4+/25.3%) (Figure 6A,

second set of panels). When the absolute numbers of cTECs and

mTECs in Dox-treated TetO-Dkk1 mice were compared with

identically treated ST littermate controls the ratio of mTEC to

cTECs showed a moderately significantly decreased (P = .025)

from 3.05+/2 0.52 in TetO-Dkk1 mice to 1.96+/20.18 in ST

controls (Figure 6C). A repeatable but not significant reduction

in the ratio of immature EpCAM+MHClo to mature Ep-

CAM+MHChi TECs was also observed in Dox-fed TetO-Dkk1

mice. Taken together these results suggest that K5 promoter-

driven DKK1 expression in postnatal TECs leads to a

dramatically reduced frequency and absolute number of TEC

characterized by significantly reduced numbers of all TEC

subsets with a slightly more significant reduction apparent in the

cTECs. Given the higher expression of the DKK1 transgene

within the cortex and specifically within the K5K8DP TEC

subset, as well as the loss of K5K8DP TECs observed in Dox-fed

TetO-Dkk1 mice in histology, we wanted to quantify the loss of

K5K8DP TECs.

Co-localization analysis of confocal images was utilized to

quantify the decline in K5K8DP TEC, thought to contain or

represent TEC progenitors, evident following 4 weeks of DKK1-

mediated inhibition of canonical Wnt signaling. Male and female

TetO-Dkk1 mice exhibited a 40% and 60% reduction in the

mean relative area of K5K8 co-localization, respectively, when

compared with littermate ST controls (Figure 7E, left two pairs of

bars). These relative K5K8 co-localization values were means

calculated based on the analysis of a minimum of 6 sections of

each thymus derived from 5 independent experiments (N = 30).

Representative sections used for analysis are shown in Figure 7A–

B. The relative area of TECs exhibiting K5 and K8 co-

localization in confocal images (blue colored cells) is shown in the

lower left corner of each panel. This relative area was determined

by setting an independent threshold for K5 and K8 staining at

5% above background fluorescence intensity. The Zeiss LSM

image analysis software then colorizes all pixels, which exhibit

fluorescence intensities above that threshold for both the K5 and

K8 channels blue to indicate co-localization. The relative area of

K5K8DP pixels is determined as a percentage of the total thymic

area in the image. Note that the TECS co-expressing K5 and K8

and colorized blue that are affected by DKK1 expression, include

a dominant population at the cortico-medullary junction, as well

as a fairly large number of TEC within the medulla as well.

Taken together these histological analyses suggest that canonical

Wnt signaling is required to maintain the K5K8DP TEC subset

thought to contain a TEC progenitor population or to control its

development from an as yet undefined TEC stem cell population

and that inhibition of Wnt signaling with DKK1 results in a

premature thymic involution resulting in dramatic cortical

defects.

DKK1 and Thymic Degeneration

PLoS ONE | www.plosone.org 10 February 2010 | Volume 5 | Issue 2 | e9062



The Number of DNp63+ TECs Is Reduced following
Tet-Regulated DKK1 Induction

The P53 family member, P63, is required for proper

development of thymic stroma and appears to influence epithelial

stem cells, or TECs early in ontogeny as P63 KO mice exhibit a

hypoplastic non-functional thymus, lacking in mature TEC subsets

[59,60]. In stratified epithelium, the N-terminal truncated isoform

DNp63 is an early marker of epithelial fate and is expressed in

stem cells in the basal layer, as well as the proliferating transit

amplifying progeny, but is lost in more mature epithelial

populations [60,61,62,63,64,65]. While epithelial ontogeny in

the thymus is less clearly defined, Aire and CD80 expression

appear to be restricted to more mature mTEC subsets. Ontogeny

of cTECs remains undefined, although evidence from fetal mice

suggests that either bipotent TEC progenitors or cTEC progen-

itors are found within the K5K8DP TEC subset. In the thymus

DNp63 expression is extremely abundant, however similar to

stratified epithelium DNp63 is rarely co-expressed with Aire in the

mature mTEC subset (see Figure 8F and [66]), suggesting that at

least with respect to mTEC ontogeny, DNp63 expression follows a

similar pattern in the thymus with expression dominating

immature subsets. Since DKK1 inhibition of Wnt signaling

appears to affect TEC subsets defined by K5 and K8 co-

expression, the effect of tet-induced DKK1 expression on the

Figure 6. FACS Analysis of TEC profile and quantification of TEC numbers in response to DKK1 mediated inhibition of Wnt
signaling. Following a 4-week Dox induction of DKK1 expression, thymic lobes from TetO-Dkk1 and K5rtTA-ST littermate mice were dissociated
using Collagenase/Dispase/DNase digestion. CD45 magnetic beads were used to partially deplete CD45+ hematopoietic cells from the resulting
single cell suspension, prior to staining with antibodies against CD45, MHCII, EpCAM, and CD80 together with UEA1 lectin. TetO-Dkk1 mice showed a
dramatic decrease in the frequency of EpCAM+ MHCII+ CD452 TECs (A, upper left) when compared with K5rtTA-ST controls (A, upper right panel).
Further analysis of the CD45-EpCAM+ TECs using the MHCII and EpCAM to distinguish the MHCIIlo immature and MHChi mature TEC subsets, revealed
no differences in the frequency of these subsets (A, third set of panels) Similarly, separation of the UEA1+ mTECs into UEA1+CD80hi mature and
UEA1+CD80lo/neg immature mTEC subsets, revealed no affect of DKK1 induction on the frequency of mTEC subsets (A, lower set of panels). (B)
Comparison of the mean total CD452MHCII+EpCAM+ TEC numbers and the mean number of each TEC subset including EpCAM+UEA12 cTECs,
EpCAM+ UEA1+ mTECs, EpCAM+MHChi mature TECs, EpCAM+MHClo Immature TECs, UEA1+CD80lo immature mTECs and UEA1+CD80hi mature mTECs,
following 4-weeks Dox feeding. Means represent the total cell number/thymus, calculated from 3 independent experiments utilizing 5-pooled
dissociated thymi from each strain. Error bars show standard deviation. * P,.005 demonstrating significant reductions in TEC number for all subsets
analyzed (C) Dox treatment of TetO-Dkk1 mice results in an increase in the mean mTEC/cTEC ratio (blue bar) when compared to identically treated
K5rtTA-ST mice (red bar). Means calculated based on 3 independent experiments as described above. Error bars = standard deviation. P = .025.
doi:10.1371/journal.pone.0009062.g006
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Figure 7. Inhibition of Wnt signaling leads to a decline in the number of K5K8DP TECs thought to contain a TEC progenitor
population. A dramatic reduction in the abundance of K5K8DP TECs is apparent in confocal images of thymic sections derived from TetO-Dkk1 (A)
when compared with K5rtTA-ST littermate animals (B) following 4 weeks of doxycycline feeding. These K5K8DP TECs reappear in 4-wk Dox treated
TetO-Dkk1 mice following a 4 weeks chase of doxycycline withdrawal (C) possessing a similar frequency of K5K8DP TECs to that of similarly treated
K5rtTA-ST mice (D). TECs, which exhibited fluorescence intensities 5% above the mean fluorescent background for K5 and K8 and co-expressing both
keratins, are colored blue using the Zeiss LSM image analysis software. The relative percentage of TECs co-expressing K5 and K8 is shown by the
white numbers in the lower left corner of each image. (Magnification = 2006) (E) The mean relative area of K5K8DP TECs in male and female K5rtTA-
ST mice (White bars) and TetO-Dkk1 mice (Gray bars) following 4 weeks of Dox feeding and in female mice following a 4 weeks Dox chase
experiment. Error bars show standard deviation. * - P value ,.005. ** - P value no longer significant following recovery period. Means were calculated
based on 5 independent experiments, which analyzed a minimum of 6 sections cut from various locations within the thymus of each strain (TetO-
Dkk1 versus ST littermate) and each sex (N = 30).
doi:10.1371/journal.pone.0009062.g007
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number of potentially immature DNp63+ TECs, as well as the

frequency of mature Aire+ mTECs was examined using Immu-

nofluorescent staining of thymic sections. Low magnification

images derived from Dox-treated TetO-Dkk1 mice revealed loss of

DNp63+ TECs throughout the thymus (Figure 8A) when

compared with Dox-treated ST controls (Figure 8B). Higher

magnification images of distinct thymic functional microenviron-

ments clearly reveal both a reduced number of DNp63+ TECs and

a reduced expression level within both the cortex (Figure 8C) and

the medulla (Figure 8E) of TetO-Dkk1 animals when compared

with ST controls (Figure 8D, cortex & F, medulla). The frequency

of mature mTECs defined by Aire expression (red nuclei) was also

reduced in Dox-treated TetO-Dkk1 mice when compared to

control ST animals. To quantify the changes in both DNp63+

immature and Aire+ mature TECs resulting from DKK1

inhibition of Wnt signaling, the number of TECs expressing

DNp63 and Aire were counted in 10 mm2 areas within confocal

images prepared from either Dox-treated TetO-Dkk1 or ST

control animals. Means were calculated from 4 independent

experiments utilizing 3 animals from each strain and sex. The

number of Aire+ or DNp63+ TECs was counted in a minimum of

50 (10 mm2) areas in sections derived from multiple thymic lobes

for each mean. In male TetO-Dkk1 mice, the mean number of

DNp63+ in the cortex was significantly reduced by .50% to 1.6

(+/20.6) cells/10 mm2, when compared with ST controls

containing 3.4 (+/20.5) DNp63+ cTECs/10 mm2. Female

TetO-Dkk1 mice showed a similar 50% reduction in the frequency

of DNp63+ cTECs after Dox treatment (Figure 9A). The medulla

of the thymus contains a higher density of DNp63+ TECs. Dox-

treated TetO-Dkk1 female mice exhibited a 33% reduction in the

mean number of DNp63++ mTECs (11.4+/23.8 cells/10 mm2)

when compared to ST controls (16.8+/25.1 cells/10 mm2)

(Figure 9B middle bars). Male TetO-Dkk1 mice exhibited an

even more significant 49% reduction in the frequency of

DNp63+mTECs from 19.8+/22.5 in ST controls to 10.1+/25.0

in TetO-Dkk1 animals (Figure 9B, left bars). This more significant

effect of inhibition of Wnt signaling on the number of DNp63+
TECs in male mice might contribute to the more pronounced

thymic degeneration observed in male mice in response to DKK1

(see Figure 3 and 5). Similar ,50% reductions in the frequency of

mature Aire+ mTECs were also observed in TetO-Dkk1 mice

when compared with ST controls in response to Dox feeding

(Figure 9C). Again, the difference in the frequency of mature

mTECs in males was slightly greater than that observed in

females.

Both immature and mature TEC subsets appear to be reduced

after Dox-mediated DKK1 expression, suggesting that Wnt

signaling may lead to reduced proliferation of TECs or death to

TECs at an immature stage. Proper regulation of Wnt signaling

has been shown to be necessary for maintenance of the

regenerative capacity of stem cell populations as well as stem cell

to TA cell transition in other epithelial tissues [23,24,48,66,67,68].

Whether a similar stem cell mechanism is responsible for initial

development and maintenance of adult TECs is yet to be

determined.

DKK1 Induced Thymic Atrophy Is Reversible
To investigate whether progenitor cells in the thymus were

permanently lost or simply blocked in development when Wnt

signaling was inhibited, TetO-Dkk1 mice were treated with Dox

for 4 weeks and then Dox food was withdrawn and replaced with

normal mouse chow for a 4 week chase. The thymus size returned

to normal in both male and female TetO-Dkk1 animals after a 4-

week recovery period, when compared to similarly treated ST

controls (Figure 3, lower row). This increase in total thymic size

was accompanied by an expansion of the K5K8DP TEC subset at

both the cortico-medullary junction and within the medulla

(Figure 7C). A similar recovery of TECs was observed in male

mice (data not shown). Quantitative analysis of TetO-Dkk1 mice

showed that following a 4-week recovery period, the mean relative

area of K5K8DP TECs recovered from the post-treatment 1.1+/

2 0.2% to 2.8+/2 0.8%, which was no longer significantly

different than identically treated ST controls, which contained a

mean of 3.5+/21.2% (Figure 7E). The frequency of both DNp63+

TECs (Figure 9, A&B) and mature Aire+ mTECs (Figure 9C) also

Figure 8. DKK1 Expression results in reduced DNp63+ and Aire+

TECs. Thymic sections derived from female TetO-Dkk1 (left column) and
K5rtTA-ST mice (right column) stained with Anti-DNp63 (green), Anti-Aire
(red) and UEA-1 (blue). A–E show thymic sections derived following 4
weeks of doxycycline feeding. Low magnification images of a large area
of thymus from TetO-Dkk1 mice (A) compared with the K5rtTA-ST (B).
Higher magnification images of the cortex (C & D) and medulla (E & F) in
TetO-Dkk1 and K5rtTA-ST, respectively. Low magnification images of 4
week Dox treated thymic tissue derived from TetO-Dkk1 (G) or K5rtTA-ST
animals following a 4-week recovery period.
doi:10.1371/journal.pone.0009062.g008
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returned to levels comparable with ST controls or non-Dox fed

TetO-Dkk1 mice (data not shown). Representative fluorescent

micrographs used for the quantitative analysis of TEC numbers,

following the 4 weeks recovery period, are shown in Figure 8, G

and H. The number of DNp63+ and Aire+ TECs clearly increases

dramatically compared with TetO-Dkk1 sections obtained follow-

ing 4 weeks of DKK1 mediated inhibition of Wnt signaling.

Expression of the Wnt signaling inhibitor DKK1 in TECs

localized primarily in the cortex leads to a rapid involution of

the adult thymus. This involution is characterized by the loss of

K5K8DP TECs as well as the loss of both DNp63+ and Aire+

TECs. This involuted thymus maintains the capacity to recover

from the inhibition of Wnt signaling, as the thymus returns to a

normal size with a normal distribution of TECs following

inactivation of DKK1 expression (Figure 3D–F & Figure 7C–E).

DKK1 Expression Leads to a Reduction in Proliferation of
Immature TECs but Has No Effect on Apoptosis

In an effort to understand the role of Wnt signaling in

maintaining adult thymic epithelial microenvironments and to

identify the mechanism responsible for the dramatic decrease in

thymic size in response to transgenic expression of DKK1, both

the number of cycling TECs and the frequency of apoptosis were

examined. Immunofluorescent staining of thymic sections, derived

from Dox-treated TetO-Dkk1 mice, revealed a significant

reduction in total Ki67+ cells in both male and female animals

(Figure 10A&B) with the most dramatic reduction in cycling cells

and the most significant disruption in normal epithelial organiza-

tion (detected with Pan-keratin staining), observed in male mice

(Figure 10A). Normal TEC organization was apparent in

identically Dox-treated ST control animals, which showed a

typical pattern of abundant Ki67+ cells in the cortex (primarily

thymocytes) and proportionally lower numbers of cycling cells in

the medulla (Figure 10C). Due to the close association of TECs

with the more abundant thymocytes and the complex three-

dimensional organization of the thymic stroma, it is difficult

ascertain whether the reduced frequency of cycling cells in the

TetO-Dkk1 thymus observed by histology was limited to

thymocytes or also included TECs.

To specifically examine the impact of Tet-mediated DKK1

expression on the proliferation of TECs, flow cytometry was used

to analyze Ki67 expression in dissociated thymic tissue derived

from female mice after 4 weeks of Dox feeding. Female mice were

chosen over male since the phenotype was less severe, ensuring the

presence of all TEC subsets for analysis. Following enzymatic

dissociation and partial magnetic depletion of CD45+ cells for

TEC enrichment, cells were stained with CD45 EpCAM, MHCII

and Ki67. Cells were initially gated for CD452EpCAM+ TECs

followed by separation of mature MHCIIhiEpCAM+ and imma-

ture MHCIIlowEpCAM+ subsets, as shown in Figure 6. Analysis of

mature TECs derived from Dox-treated TetO-Dkk1 animals

revealed only a slight but repeatable reduction in the frequency of

Ki67+ cycling cells within CD452MHCIIhiEpCAM+ TECs, when

compared with Dox-treated ST animals (Figure 10D upper

panels). In contrast, analysis of Ki67 expression within the

immature MHCIIlow EpCAM+ subset of TECs revealed a greater

than 50% reduction in the number of cycling TECs derived from

TetO-Dkk1 mice. The FACS profiles provided in Figure 10D are

representative of the results obtained in 3 independent experi-

ments.

Given the association between endogenous DKK1 expression

and sites of apoptosis during limb development [31,32,33] it was

reasonable to predict that the premature thymic involution

observed in response to Tet-induced DKK1 expression in TECs

Figure 9. Effect of inhibition of Wnt signaling in the adult
thymus on the number of DNp63+ and Aire +TECs. (A) The mean
number of DNp63+ nuclei/10 mm2 area of cortex, calculated for K5rtTA-
ST (white bars) and TetO-Dkk1 (gray bars) following 4 weeks of Dox
feeding and after a 4 weeks Dox chase. (B) The mean number of
DNp63+ nuclei/10 mm2 area of medulla, calculated for K5rtTA-ST (white
bars) and TetO-Dkk1 (gray bars) following 4 weeks of Dox feeding and
after a 4 weeks Dox chase. (C) The mean number of Aire+ nuclei/
10 mm2 area of medulla, calculated for K5rtTA-ST (white bars) and
TetO-Dkk1 (gray bars) following 4 weeks of Dox feeding and after a 4
weeks Dox chase. *-P value ,.01, **- no longer significant.
doi:10.1371/journal.pone.0009062.g009
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could also result from an increase in apoptosis of TECs. To

determine if inhibition of Wnt signaling by DKK1 was leading to

increased apoptosis, a TUNEL assay was performed on dissociated

thymic tissue derived from Dox-treated TetO-Dkk1 and ST mice

after Dox treatment. No difference in the frequency of TUNEL+

cells was observed in the CD452 EpCAM+ TEC subset (Figure 11).

TUNEL and active caspase-3 staining of thymic sections

counterstained to detect TECs confirmed that no difference in

apoptosis of TECs in response to DKK1 expression was observed

(data not shown).

Taken together these results suggest that inhibition of canonical

Wnt signaling, through Tet-induced DKK1 expression within the

majority of cTECs and a minor population of mTECs, results in a

reduced number of cycling TECs, contributing to a decrease in

frequency of K5K8DP putative TEC progenitors and premature

involution of the thymus.

Discussion

Previous studies have demonstrated a clear role of Wnt signaling

and its soluble regulators in the development of thymocytes

[41,69,70] as well as the initial development of the thymic

epithelial cells [39,47,49] however, the lack of an inducible model

and the subsequent early blocks or changes in development of the

thymus seen in these systems, precluded analysis of the role of Wnt

signaling in the maintenance of adult thymic epithelial microen-

vironments. In this study a transgenic model, which targeted

expression of the potent canonical Wnt signaling inhibitor DKK1

to the majority of cTECs including the K5K8DP population at the

CMJ and a minor population of mTECs (Figure 2), through the

action of a tetracycline dependent regulatory protein expressed

under the control of the K5-promoter, was used to demonstrate a

requirement for canonical Wnt signaling in the maintenance of the

adult thymus. Simply feeding the tetracycline analogue, doxycy-

cline, to TetO-Dkk1 mice, allowed for conditional control of

DKK1 expression, leading to a.25 fold increase in DKK1

mRNA levels within the TECs of adult mice following 4 weeks of

Dox induction (Figure 1A). In situ hybridization of thymic sections,

derived from Tet-ODkk1 mice fed Dox for 5 days, with DKK1

specific probe demonstrated that DKK1 expression was restricted

to keratin + TECs with higher expression in the cortex than the

medulla (Figure 2). The resulting inhibition of Wnt signaling

within sorted TECs was confirmed by the expected decline in

expression of known Wnt target genes including Axin 2 and c-Myc,

although a decline in Wnt target genes could also be explained by

a loss of specific TEC subsets that differentially express these

Figure 10. Inhibition of canonical Wnt signaling through
transgenic expression of DKK1 leads to reduced proliferation
of TECs. Sections of thymus derived from (A) Male,TetO-Dkk1 (B)
Female TetO-Dkk1 and (C) Male K5rtTA-ST littermate control animals
stained with anti-Pan-keratin antibody (red) and anti-Ki67 antibody after
4 weeks of Dox feeding. FACS analysis of dissociated thymic tissue
derived from similarly treated female TETO-DKK1 and control ST mice
revealed only a slight reduction in Ki67+ cells within the mature CD452

MHCIIhi EpCAM+ TEC subset in TetO-Dkk1 mice (D, upper panels). In
contrast, a greater than 50% reduction in the frequency of cycling Ki67+

TECs was observed in the immature CD452 MHCIIlow EpCAM+ TEC
subset in TetO-Dkk1 mice, when compared with Dox-treated ST
littermate controls (D, lower panels). Positive gates for Ki67 staining
within each sample were determined using rabbit isotype control
antibody. The FACS data presented in D is derived from 5-pooled mice
of each strain and the results are representative of 3 independent
experiments.
doi:10.1371/journal.pone.0009062.g010

Figure 11. TEC TUNEL Assay: The effect of DKK1-mediated
inhibition of canonical Wnt signaling on apoptosis in TECs. The
gating strategy used to analyze total CD452EpCAM+ TECs derived from
TetO-Dkk1 female mice (A) and K5rtTA-ST littermate female control
mice (B) after 4 weeks of Dox feeding to induce DKK1 expression. An
overlay of the TUNEL staining for TECs from TetO-Dkk1 and K5rtTA-ST
mice, as well as TetO-Dkk1 TECs, stained in the absence of TDT as a
negative control (C), reveals no difference in apoptosis with the TECs.
doi:10.1371/journal.pone.0009062.g011
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genes. Interestingly, a 50% reduction in the expression of foxn1 was

also detected (Figure 1B). Foxn1 is a key transcription factor

required for proper epithelial morphogenesis and the capacity of

thymic epithelial cells to attract lymphoid precursors from the

bone marrow [72]. Foxn1 expression was previously shown to be

positively regulated by Wnt signaling in TECs [38], however in a

recent study thymic epithelial development was blocked and foxn1

expression was down-regulated in a transgenic mouse model that

used the foxn1 promoter to drive expression of stabilized b-catenin

[49].

Expression of DKK1 in the postnatal thymus resulted in a

dramatic premature involution of the thymus with male mice

exhibiting the most significant decrease in thymic size compared

with the reduction observed in females (Figure 3). This difference

between the effects of DKK1 on male versus female mice might be

attributed to the added burden of androgen receptor mediated

involution observed in male mice [71,72,73]. In support of this

idea, Kwack et al. showed that DKK1 expression was dramatically

up regulated in response to dihydotestosterone in dermal papilla

cells derived from balding skin. This increase in DKK1 lead to

increased apoptosis in vivo, as well as decreased in vitro growth

potential of keratinocytes [74]. The androgen driven increase in

endogenous DKK1 expression in males together with the tet-

mediated transgenic expression, may have contributed to the

increased response observed in males. When male TetO-Dkk1

mice were surgically castrated prior to initiating Dox feeding,

more modest reductions in thymic size comparable to TetO-Dkk1

females were observed (data not shown), supporting a synergy

between androgen driven thymic involution and the degeneration

induced by DKK1 expression in TECs.

The reduction of thymic size in TetO-Dkk1 mice following Dox

treatment was associated with a greater than 50% decrease in the

total number of thymocytes found in both male and female TetO-

Dkk1 mice (Figure 4B). Analysis of thymocyte subsets by FACS

revealed no significant differences in subset frequency (Figure 4A

& C), suggesting that the inhibition of Wnt signaling in TECs does

not lead to blocks in T cell development. Previous studies have

demonstrated a requirement for Wnt signaling in T cell

development at DN1 and DN3 and then again at DP stage

[43,44,45,46]. The decline in T cell number in TetO-Dkk1 mice

appears to be the result of the loss in epithelial niches required to

support thymocyte development, rather than a direct effect of

DKK1 on the thymocytes themselves. The lack of an apparent T

cell block also suggests that the defects in thymic architecture

observed in TetO-Dkk1 mice are more likely the result of a direct

effect of DKK1 on the TECs, rather than an indirect effect due to

crosstalk. Regardless of the outcome of future studies aimed at

understanding the differential effect of DKK1 on male versus

female mice, the results of this study demonstrate for the first time

a requirement for Wnt signaling in the maintenance of adult

thymic epithelial microenvironments.

Histological analysis of thymic sections utilizing cortical and

medullary specific markers following Tet-regulated DKK1

expression, revealed a hypoplastic cortex, marked by a loss of

the normal reticular organization of cTECs (Figure 5) and an

abundance of cystic structures (Figure 5J), however both cortical

and medullary areas were reduced in size and were deficient in

specific TEC subsets (Figures 6 & 7). Particularly apparent was a

loss of K5K8DP cells at the cortico-medullary junction (CMJ) and

scattered in the medulla (Figure 7). Age associated thymic

involution is marked by a loss of a defined CMJ, a reduction in

cortical area and an increase in epithelial free areas. Additionally,

in humans there is an infiltration of the perivascular spaces by fat

cells [57,58,75,76]. Some aspects of the involuted thymic

phenotype observed in TetO-Dkk1 mice following Dox-treatment

resemble that observed in the aging thymus, including a reduced

thymic size, reduced TEC and thymocyte cellularity, cortical

degeneration and increased epithelial free areas. One distinction

seems to be the decrease in K5K8DP TECs, thought to represent

or contain a progenitor population [55,56]. In contrast to the

phenotype in TetO-Dkk1 mice, K5K8DP TECs have been

reported to increase in the aging thymus [57,58,75]. The increase

of K5K8DP cells in the aging thymus might be explained by the

reported increase in senescent TECs with age [57] that then results

in decreased proliferative potential of the immature TEC subsets,

blocking their differentiation into more mature TECs. Alterna-

tively, inhibition of canonical Wnt signaling may act on an

undefined progenitor/stem cell population upstream of the

K5K8DP subset in TEC ontogeny, although it is not clear

whether the thymus is maintained by a stem cell mechanism or

proliferation of more mature TEC subsets. Canonical Wnt

signaling has been shown to be required for the initiation of hair

follicle development from bulge stem cells [53], as well as de novo

hair follicle regeneration during wound healing in skin, mediated

by epithelial stem cells recruited from non-bulge areas. Ectopic

Dkk1 expression completely blocked the development of these hair

follicles as well as new stem cells within the hair follicle bulge [37].

Canonical Wnt signaling has also been shown to regulate Foxn1

expression in TECs, the gene defective in nude mice [38].

Following Dox treatment sorted TECs exhibit a greater than 50%

reduction in the level of Foxn1 mRNA (Figure 1B) and a reduction

in the both the frequency and intensity of Foxn1 staining in both

cTECs and mTECs by histology (Figure 1C & D). A reduction in

Foxn1 mRNA expression could be explained by a loss of TEC

subsets that express higher levels of Foxn1, given that Foxn1 is

differentially expressed within TEC subsets. However, the 40 &

20% reduction in Foxn1 protein expression observed in cTECs

and mTECs, respectively, in response to transgenic DKK1

expression provides support for a direct effect of Wnt signaling

on Foxn1 expression. Loss of Foxn1 results in aberrant epithelial

morphogenesis and the inability of TECs to attract hematopoietic

progenitors to the thymus. Recently, a very similar premature

thymic degeneration phenotype observed in postnatal mice was

linked to the dose of Foxn1 expressed by TECs resulting from

expression of an altered Foxn1 allele [79]. Similar to the

phenotype observed when Wnt signaling was inhibited by

DKK1 older mice expressing the Foxn1lacZ allele also exhibited

reduced proliferation in the MHCIIlo TEC subset. The phenotype

observed in response to DKK1-mediated inhibition of Wnt

signaling may be the result of loss of Foxn1 expression contributing

to a block in TEC development and/or altered TEC proliferation

in progenitor subsets. Due to the high turnover of TECs recently

reported [77], loss of the capacity of progenitor populations to

maintain epithelial homeostasis then may contribute to the thymic

degeneration observed, regardless of whether these progenitors

represent true stem cells or simply less mature TEC subsets with

the capacity to proliferate and maintain adult TEC microenvi-

ronments.

Cortical and medullary compartments of the thymus are

typically defined by the expression of K8 and K14, respectively.

Keratin 5 is often co-expressed with K14, however its distribution

within the thymus is more extensive to include cells scattered

throughout the cortex, as well as a more abundant population of

K5K8DP TEC found at the cortico-medullary junction. Support

for this population being a multi-potent progenitor is based on a

similarity with fetal TECs, abundant in the E12 thymus, which

have been shown to give rise to both cTECs and mTECs in clonal

assays [78]. However, no direct lineage relationship has been
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demonstrated in the adult thymus. A strong circumstantial case

has also been made to support the hypothesis that the K5K8DP

population represents the immediate precursor to K8+ cTECs

[55,56]. The relationship between K5K8DP TECs and mTECs is

less clear, primarily due to the widely accepted notion that the

medulla is composed of a dominant K5+K82 mTEC subset and a

less abundant K8+K52 mTEC subset thought to be the mature

mTECs. Several recent studies and our own data presented here

(Figures 5 & 7) have demonstrated that K8K14DP and K8K5DP

TECs are more abundant in the medulla than previously thought

[79,80,81] and might represent precursors to the mature K8SP

mTECs.

The disappearance of the K5K8DP TEC population in

response to DKK1-mediated inhibition of canonical Wnt signaling

and their subsequent reappearance following inhibitor withdrawal

demonstrate the requirement for Wnt signaling in the mainte-

nance of K5K8DP TEC in both the cortex and medulla. Recovery

following removal of Dox suggests that Wnt signaling either drives

expansion of the K5K8DP population or regulates their

differentiation from an undefined precursor cell. A role for Wnt

signaling in the maintenance or expansion of the K5K8DP TEC

population was supported by our previous study, where loss of the

Wnt signaling inhibitor Kremen1 (a co-receptor for DKK1 with

LRP) leads to increased Wnt signaling within TECs and an

abundance of K5K8DP TECs together with cortical defects [39].

In another study, deletion of the APC gene in TECs, through

expression of K14 driven Cre, resulted in a hypoplastic non-

functional thymus with an abundance of K14K8DP TECs. These

cells also exhibited increased b-catenin localization in the nucleus,

a hallmark of canonical Wnt signaling [47]. In our own hands,

Immunofluorescent staining of thymic sections derived from 6-

week-old transgenic mice that express Wnt7a under the control of

the human K14 promoter [37], known to drive transgene

expression specifically in cTECs [82,83] revealed an abundance

of K5K8DP TECs scattered throughout the thymus including

most of the cortex (Figure S2, A–D), while littermate control mice

showed a normal distribution of K5+ TECs dominating the

medulla with most K5K8DP TECs localized to the cortico-

medullary junction (Figure S2, F-I). Visualization of the cortico-

medullary junction at 400X revealed a less defined boundary and

abundant K5K8DP TECs in the K14-Wnt7a mice with almost no

K8 SP mature mTECs (Fig. S2E). In contrast, thymic sections

from control mice had a defined cortico-medullary junction, fewer

K5K8DP TECs and abundant K8SP mature mTECs (Fig. S2J,

white arrows show K8SP mTECs). A similar abundance of

K5K8DP TECs and loss of defined cortical and medullary areas

were observed in thymic sections derived from E15.5 FTOCs

following 72 hrs of culture in Wnt3a conditioned medium (Fig.

S2K, upper row). Littermate E15.5 FTOCs cultured in FTOC

medium in the absence of Wnt3a exhibited fewer K5K8DP TECs

and more defined cortical and medullary areas (Fig. S2K, lower

row). Most recently, Zuklys et al demonstrated that expression of

stabilized b-catenin, under the control of the Foxn1 promoter, led

to TECs following an altered epithelial fate or being halted very

early in development with most of the TECs in the E13 thymus

expressing both K5 and K8 [49], Unfortunately, the early blocks

in thymus development Foxn1 promoter-driven stabilized b-

catenin mice and the early demise of the conditional APC KO

mice prevented analysis of adult TEC maintenance or compar-

isons with fetal development. However these studies, together with

the data we present here showing that K5 promoter-driven DKK1

expression leads to thymic degeneration, identifies canonical Wnt

signaling as an important target for future therapeutic strategies

designed to counteract thymic involution.

Quantitative analysis of both mature Aire+ mTECs and cycling

DNp63+ TECs in both the cortex and medulla showed that loss of

Wnt signaling leads to a general loss of TECs with a more dramatic

effect on immature DNp63+ cells (Figures 8 and 9) or an inhibition

of p63 expression within TEC subsets. P63 deficient mice exhibit a

severely hypoplastic non-functional thymus [59,60] and appears to

show the effect in early TECs development. P63 expression has

been reported to identify epithelial stem cells [84] however, the

abundance of p63-expressing cells in the thymus (Figure 8 &

[79,85,86,87,88]) and other tissues like bladder epithelium indicates

that p63 expression is maintained in the immediate progeny of the

stem cells as well. In the skin, p63 expression is associated with K14+

progenitor cells in the basal layer and is lost as the cells lose

proliferative potential and differentiate [62]. Differentiation is

associated with expression of miRNA 203 which down-regulates

p63 expression [89,90]. The disappearance of DNp63+ TECs

following DKK1 expression could then represent a loss of TEC

subsets with proliferative potential. This could explain the

involution of the thymus in TetO-Dkk1 mice following Dox

induction of DKK1 expression. Alternatively, DNp63 has been

shown to influence TEC development by regulating fibroblast

growth factor receptor 2-IIIb (FgfR2-IIIb) and the Notch signaling

component Jag2 [59], both of which have been shown to be critical

to TEC proliferation or development.

Loss of DNp63+ cells in both the cortex and medulla coupled

with the disappearance of the putative K5K8DP TEC progenitor

population supports a common lineage or a common role for Wnt

signaling in the maintenance or expansion of multiple TEC

progenitors. Removal of DKK1 expression allowed for a full

recovery of the thymus within 4 weeks including a return to

normal thymic size (Figure 3), recovery of the cortex as well as the

K5K8DP progenitor population (Figure 7), and a normal

frequency of both immature and mature TEC subsets defined

by DNp63 and Aire expression, respectively (Figure 8 and 9). The

ability of the thymus to recover suggested that inhibition of Wnt

signaling did not lead to death of the progenitor population but

rather reduced cycling of either the progenitors themselves or their

progeny. This was confirmed by the lack of TUNEL staining

within the TECs (Figure 11), as well as decreased numbers of

cycling Ki67+ TECs following DKK1 induction (Figure 10). The

most pronounced decrease in cycling cells was observed in the

MHCIIlow EpCAMlow subset resembling the recently identified

cTEC progenitors [91], and supporting a role for Wnt signaling in

maintaining TEC progenitor/stem cell populations or promoting

the development of their immediate progeny.

The decision, to remain a stem cell or to differentiate is thought

to be controlled by competition for limited quantities of growth

factors such as BMP, Hedgehog, FGF and Wnt within the stem

cell niche, thereby maintaining a balance between stem cell self-

renewal and differentiation [92]. Our results might suggest that the

thymic degeneration observed in response to transgenic DKK1

expression results from a loss of TEC stem/progenitor cell

maintenance or proliferation of an immature TEC subset. This

idea is supported by a number of studies demonstrating the

importance of Wnt signaling and Wnt proteins in the maintenance

of stem cells of a variety of lineages. In the colon crypts, loss of

Tcf4 leads to depletion of epithelial stem cells required for normal

tissue homeostasis [24]. Inhibition of Wnt signaling through

transgenic expression of DKK1 results in a complete loss of colon

crypts in adult mice [66,68]. In vitro stimulation of HSCs with

Wnt3A leads to increased Bcl2 (B-cell lymphoma 2) expression and

increased self-renewal capacity, while inhibition of the canonical

Wnt signaling through ectopic expression of Axin1 or with a

truncated form of Frizzled resulted in decreased in vitro
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proliferation and in vivo repopulation capacity [48]. Wnt3A

deficiency results in decreased numbers of HSCs in fetal liver

and decreased self-renewal capacity [67]. Expression of constitu-

tively active b-catenin in lymphoid or myeloid progenitors

generated uncommitted cells with multilineage differentiation

potential [93], suggesting that Wnt signaling has a role in

maintaining an undifferentiated state. Most recently, analysis of

mice engineered to express DKK1 in the osteoblastic HSC niche,

indicated that the self-renewal of HSCs is negatively affected when

Wnt signaling is inhibited by DKK1 [23].

The results of this study demonstrate for the first time that

canonical Wnt signaling within TECs is required for the

maintenance of epithelial microenvironments in the postnatal

thymus. Loss of Wnt signaling within TECs results in a decrease in

the K5K8DP subset localized at the cortico-medullary junction

and a decline in the number of cycling TECs primarily within the

immature subsets. Loss in TEC cycling then contributes to rapid

thymic degeneration characterized by the loss of both TECs and

developing thymocytes dependent on TEC niches for survival.

The ability of the thymus to recover from this degeneration,

following removal of the Wnt signaling inhibitor DKK1, suggests

that Wnt signaling may be required for the expansion of the subset

of TEC progenitors found within the K5K8DP population or their

development from and as yet unidentified progenitor population.

Loss of Wnt signaling does not appear to lead to their death,

although the extremely efficient scavenger mechanisms active in

the thymus make quantification of apoptotic cells difficult in the

thymus. These results also provide further evidence to support the

previously identified link between Wnt signaling in TECs and

regulation of Foxn1 expression [38] and further suggest that the

thymic degeneration observed in response to Wnt signaling

inhibition may be mediated by a reduction in Foxn1 dosage.

Thymic involution and the subsequent loss of capacity to generate

sufficient functional T cells represents a central aspect of the

ageing immune system which at least in part contributes to an

increased susceptibility to infection, development of autoimmune

diseases, and cancer in the aging population. Future studies should

address the downstream targets of Wnt signaling, which are

responsible for maintenance of TEC progenitors and thymic

epithelial microenvironments as they may provide useful targets

for therapies aimed at counteracting age associated thymic

involution or the premature thymic degeneration associated with

cancer therapy and bone marrow transplants.

Supporting Information

Figure S1 Decreased Foxn1 protein expression in both cTECs

and mTECs in response to DKK1. Immunofluorescent staining of

thymic sections derived from 4 week Dox fed TetO-Dkk1

transgenic mice revealed a dramatic decrease in FoxN1 protein

expression (green nuclei) within both DEC205+ cortical areas (red)

and K14+ medullary areas (blue) (A–D) when compared with

identically treated K5rtTA-ST littermate controls. (E–H) Magni-

fication = 2006. Scale bars = 100 mm.

Found at: doi:10.1371/journal.pone.0009062.s001 (2.57 MB

TIF)

Figure S2 Increased K5K8DP TECs in response to Wnt

stimulation in vivo and in vitro. Immunofluorescent staining of

thymic sections derived from 6-week-old K14Wnt7a transgenic

mice revealed an abundance of K5K8DP potential TEC

progenitors scattered throughout the thymus including most of

the cortex (A–D), while littermate control mice showed a normal

distribution of K5+TECs dominating the medulla with most

K5K8DP TECs localized to the cortico-medullary junction (F–I).

Visualization of the cortico-medullary junction at 400X revealed a

less defined boundary and abundant K5K8DP TECs in the

K14Wnt7a mice with almost no K8SP mature mTECs (E). In

contrast, thymic sections from control mice had a defined cortico-

medullary junction, fewer K5K8DP TECs and abundant K8SP

mature mTECs (J, white arrows show K8SP mTECs). A similar

abundance of K5K8DP TECs and loss of defined cortical and

medullary areas was observed in sections derived from E15.5

FTOCs following 72 hrs of culture in Wnt3a conditioned medium

(K, upper row). Littermate E15.5 FTOCs cultured in FTOC

medium in the absence of Wnt3a exhibited fewer K5K8DP TECs

and more defined cortical and medullary areas (K, lower row).

Found at: doi:10.1371/journal.pone.0009062.s002 (4.90 MB TIF)
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