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Abstract

Gene inactivation often has little or no apparent consequence for the phenotype of an organism. This property—enetic (or
mutational) robustness—is pervasive, and has important implications for disease and evolution, but is not well understood.
Dating back to at least Waddington, it has been suggested that mutational robustness may be related to the requirement to
withstand environmental or stochastic perturbations. Here I show that global quantitative data from yeast are largely
consistent with this idea. Considering the effects of mutations in all nonessential genes shows that genes that confer
robustness to environmental or stochastic change also buffer the effects of genetic change, and with similar efficacy. This
means that selection during evolution for environmental or stochastic robustness (also referred to as canalization) may
frequently have the side effect of increasing genetic robustness. A dynamic environment may therefore promote the
evolution of phenotypic complexity. It also means that ‘‘hub’’ genes in genetic interaction (synthetic lethal) networks are
generally genes that confer environmental resilience and phenotypic stability.

Citation: Lehner B (2010) Genes Confer Similar Robustness to Environmental, Stochastic, and Genetic Perturbations in Yeast. PLoS ONE 5(2): e9035. doi:10.1371/
journal.pone.0009035

Editor: Michael Polymenis, Texas A&M University, United States of America

Received November 15, 2009; Accepted January 15, 2010; Published February 3, 2010

Copyright: � 2010 Ben Lehner. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the European Research Council, Institució Catalana de Recerca i Estudis Avançats, Ministerio de Ciencia e Innovación
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Introduction

A general property of biological systems is that, despite their

complexity, they are often little affected by mutations that

inactivate genes. This property, termed mutational (or genetic)

robustness, is widespread [1,2], but only poorly understood [3].

Mutational robustness has important implications for both

disease and evolution, as it reduces the phenotypic expression of

genetic change. For example, differences in robustness may alter

the outcome of a disease mutation. During evolution, increased

mutational robustness will decrease the short-term potential for

phenotypic change. However, mutational robustness can also

increase the long-term potential for evolution, because it facilitates

the exploration of genotype space, expanding the ‘phenotypic

neighborhood’ available to an organism [4,5,6].

Insights into mutational robustness have come from large-scale

synthetic lethal screens in model organisms [7,8,9,10,11]. In these

screens, pairs of mutations are systematically combined, and the

effects on viability are determined. These screens have shown that

for nearly all genes robustness to mutation depends on the

continued presence of multiple additional gene products

[7,8,9,10,11,12]. That is, a strong mutation often has no apparent

phenotypic effect only if multiple other genes remain functional.

Synthetic lethal screens globally define the abilities of genes to

mask (or buffer) the effects of mutations in many other loci [13,14].

A further important conclusion from synthetic lethal screens has

been the realization that certain genes protect an organism from

the effects of mutations in many different loci with diverse

functional roles [8,11,13,14]. These genes, termed genetic hubs,

tend to encode components of chromatin remodeling complexes

and molecular chaperones [8,11,15,16,17].

Despite its implications for ‘evolvability’, it is not clear how

mutational robustness itself can evolve, as the conditions under

which it can be directly selected are rather limited [18,19]. In

addition to genetic change, organisms are also subject to changes

in external conditions (the environment). Further, even in a

common environment there is normally extensive stochastic

variation among individuals, for example in the concentrations

of proteins [20]. Dating back to at least Waddington it has been

suggested that mutational robustness may be related to the need to

withstand these environmental or stochastic changes [21].

Waddington’s idea was based on the intuition that environmental

change, stochastic variation, and mutation are likely to have

similar effects on an organism, because they act through the same

underlying molecular processes [21,22,23].

Support for coupling among robustness to different types of

perturbations comes from in silico experiments using ‘toy-cell’

networks. Here a frequent observation for evolved networks is a

correlation in the robustness to different types of perturbation

(genetic, stochastic or environmental) [24,25,26]. Similarly, simu-

lations suggest a correlated robustness of macromolecules to

changes in temperature and to mutation [27,28]. In addition, the

chaperone Hsp90 is known to confer robustness to both environ-

mental and genetic change [16], and the inhibition of genetic hub

genes in C. elegans (genes with many genetic interactions) produces

highly variable phenotypic outcomes [8]. However, it is not known

how generally this coupling among the requirement of genes for

genetic, stochastic and environmental robustness applies.
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In previous work, Levy and Siegal noted a correlation between

the number of genetic interactions known for a Saccharomyces gene

deletion strain, and the phenotypic variance of the strain [29]. We

had also noted this relationship, and in this study I use further

global quantitative genetic data to extend this observation, and to

show that Waddington’s intuition of a coupling among genetic,

environmental, and stochastic robustness is well-supported by

recent genomic experiments. Across a genome, I find that genes

are similarly required for robustness to mutational, stochastic and

environmental perturbations.

Results

Overview of Datasets
The yeast gene deletion collection provides an excellent

resource for globally determining the relationships among

environmental, genetic, and stochastic robustness (Figure 1). In

each strain a single gene is deleted, and these strains have been

tested for growth under diverse environmental conditions. The

number of conditions in which a strain shows debilitated growth

provides a quantification of its environmental robustness [30,31].

Further, each strain has been used in synthetic lethal screens, and

the proportion of tested mutations which are synthetic lethal or

sick in a strain quantifies the strain’s genetic robustness [9,11].

Finally, the overall phenotypic variance of a strain can be

quantified from morphological measurements made on large

numbers of individual cells [32]. This provides a measure of the

stochastic robustness (or phenotypic stability, sometimes referred

to as ‘canalization’ [21,33]) of a strain. These measures, and the

data that they derive from, are further explained in the materials

and methods section, and allow the effects of mutations on

environmental, genetic and stochastic robustness to be compared

on a genome-wide scale.

Gene Deletions Have Correlated Effects on Genetic and
Environmental Robustness in Yeast

First, this data allows the relationship between the effects of

gene deletions on genetic and environmental robustness to be

examined. Comparing across over 4000 different gene deletions

shows that mutations that strongly reduce environmental robust-

ness also generally reduce mutational robustness (Figure 2). That

is, if the inactivation of a gene reduces fitness in many different

environmental conditions, then it is also very likely to be synthetic

lethal with mutations in many different loci. Further, the effects of

gene deletions on environmental and genetic robustness are

strikingly correlated across all genes (Spearman rank correlation

coefficient ( r) = 0.39, p,2.2610216, n = 4656 genes).

The Coupling Between Genetic and Environmental
Robustness Is a General Result

The correlation between the effects of mutations on genetic and

environmental robustness is a general result that is observed using

independent datasets derived from multiple laboratories (Table 1).

In Figure 3 the strength of correlation among the effects of

mutations on multiple measures of genetic and environmental

robustness are presented as a heat map. Comparing the strength of

correlation between different measures of genetic or environmen-

tal robustness shows that these are of similar strength to the

correlations between different measures of the same type of

robustness (i.e. comparing between different measures of either

genetic or environmental robustness, Figure 3, Table 1). This

shows that much of the discrepancy among measures is likely due

to experimental noise (false positive and false negative data points).

Further, strong coupling is still observed if all environmental

conditions involving small molecule inhibitors are removed from

the environmental robustness dataset (r= 0.34, p,2.2610216,

small molecules may act analogously to gene deletions).

Taken together, these data indicate that in general genes are

similarly important for buffering environmental and genetic

change in yeast.

Genetic and Environmental Robustness Are Both Also
Coupled to Stochastic Robustness

The stochastic robustness of a yeast strain is more difficult to

quantify. However, the data from Ohya et al. (2005) provide one

Figure 1. Using global quantitative genetic datasets in yeast to
examine the relationships among genetic, environmental and
stochastic robustness. The effects of deletions in nearly all non-
essential genes on environmental, mutational and stochastic robust-
ness can be estimated using global experiments performed with the
haploid gene deletion collection (see materials and methods). This
allows one to ask whether gene deletions tend to have similar (i.e.
correlated) consequences for the three measures of robustness, or
whether they tend to affect genetic, environmental or stochastic
robustness independently.
doi:10.1371/journal.pone.0009035.g001

Figure 2. The correlated affects of gene deletions on genetic
and environmental robustness in yeast. The effects of mutations
on environmental robustness (the number of different environmental
conditions in which a gene is required for growth [31]) and mutational
robustness (the number of synthetic lethal interactions made by a
mutation [9,11]) are compared across 4656 gene deletions in yeast.
Data are plotted for ten equally sized bins of genes. Error bars are +/2
one standard error. Spearman rank correlation coefficient (r) = 0.39,
p,2.2610216.
doi:10.1371/journal.pone.0009035.g002
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measure of this–quantifying the inter-individual variance in a large

number of cell morphology parameters, also referred to a the

phenotypic stability or canalization [32]. Here I adopt the metric

of Levy and Siegal which corrects for mean-dependencies in the

coefficient of variation measures for each morphological pheno-

type, and uses the residual variance in the top 35 out of 70

independent phenotypes to provide an overall quantification of the

phenotypic stability of a deletion strain [29]. However, using

different measures of inter-individual morphological variation does

not change the conclusions presented here (data not shown).

As noted by Levy and Siegal, comparing across all gene

deletions, there is a striking correlation between the phenotypic

variance of a strain and the number of synthetic lethal

interactions known for that strain (Figure 4). Further, phenotypic

variance is also related to the robustness of a strain to

environmental change (Figure 4). These relationships are

confirmed using multiple different genetic and environmental

robustness datasets (Table 1).

Taken together, we can say that deletions in non-essential genes

in yeast tend to have correlated effects on mutational, environ-

mental, and stochastic robustness. This means that genes that

protect the organism from environmental or stochastic change also

buffer the harmful effects of mutations, and to a similar extent.

Discussion

A Global Coupling Among Genetic, Environmental, and
Stochastic Robustness

Mutational robustness is a general property of biological

systems, but how and why it evolves is unclear [18,19,22,34].

Here I have shown that inactivating mutations in yeast generally

have correlated effects on mutational, environmental, and

Table 1. Genes confer correlated robustness to genetic, environmental and stochastic perturbations in yeast.

Genetic Environmental Stochastic

Tong-baits Pan-targets Pan-baits Hillenmeyer Dudley Levy/Ohya

Genetic Tong-targets r= 0.56 0.41 0.25 0.28 0.27 0.18

P = 1.32610210 ,2.2610216 0.040 ,2.2610216 ,2.2610216 ,2.2610216

n = 117 4718 71 4656 4718 4680

Tong-baits 0.46 0.85 0.51 0.29 0.48

4.6261027 9.8561026 1.7761028 0.0021 1.1661027

117 20 114 117 117

Pan-targets 0.75 0.37 0.35 0.21

2.20610213 ,2.2610216 ,2.2610216 ,2.2610216

71 4656 4718 4680

Pan-baits 0.34 0.52 0.30

0.0056 7.6161026 0.014

71 71 71

Environmental Hillenmeyer 0.39 0.22

,2.2610216 ,2.2610216

4656 4653

Dudley 0.18

,2.2610216

4680

Spearman Rank Correlation coefficients (r), P-values (P) and number of genes considered (n) comparing different measures of genetic, environmental, and stochastic
robustness for gene deletions in yeast. Datasets are referred to by first author–Tong [11], Pan [9], Hillenmeyer [31], Dudley [30], Levy/Ohya [29,32].
doi:10.1371/journal.pone.0009035.t001

Figure 3. The correlation between the requirement of genes for
mutational and environmental robustness is confirmed using
multiple different datasets. Correlation coefficients between the
effects of mutations on measures of robustness are represented as a
heat-map. Datasets: genetic robustness–proportion of synthetic lethal
interactions from Tong [11], Pan [9]; environmental robustness–number
of environmental conditions in which a strain is required for growth
from Hillenmeyer [31], and Dudley [30]. ‘1’–synthetic lethal degree for
‘target’ genes, ‘2’–synthetic lethal degree for ‘bait’ genes. See Table 1
for P-values.
doi:10.1371/journal.pone.0009035.g003
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stochastic robustness. This result, which uses quantitative data

from deletions in nearly all non-essential genes, is in striking

agreement with the ideas of Waddington and others from the pre-

molecular era of biology [21,22]. Waddington envisaged that

organisms would be similarly resistant to environmental,

stochastic, and genetic change, because each type of perturbation

would act through the same (at that time unknown) underlying

molecular processes [21,33]. The global quantitative data for

yeast shows that, as a general principle, Waddington’s idea was

correct.

The Evolution of Mutational Robustness
The coupling among genetic, environmental and stochastic

robustness means that during evolution selection for adaptive

increases in one type of robustness may frequently also increase

robustness to the other two types of perturbation. Theoretical

work suggests that the conditions in which mutational robustness

can be a direct target of natural selection are rather limited

[18,19]. In contrast, selection for increased environmental

resilience is straightforward as this can have immediate fitness

benefits. During evolution, therefore, mutational robustness may

generally evolve as a byproduct of selection for environmental

resilience, or possibly for stochastic phenotypic stability

[18,19,22,34]. This effect is seen in in silico evolution experiments

[24,25,26], and suggests that evolution in a dynamic environ-

ment may promote the emergence of phenotypic complexity

(Figure 5).

Genetic Hubs Are Genes That Buffer Environmental and
Stochastic Change

Finally, the coupling among genetic, environmental and

stochastic robustness also helps to rationalize one important result

from synthetic lethal screens. In these screens, a subset of genes–

termed ‘genetic hubs’–are found to buffer the effects of mutations

in many functionally diverse loci [8,11]. Given the results

presented here, we can say that these ‘hub’ genes in genetic

interaction networks tend to be genes that buffer the effects of

environmental and stochastic change. Similar to hsp90, therefore,

their behavior as genetic hubs is most likely to be a byproduct of a

primary evolved function to confer environmental and stochastic

robustness.

Most importantly, the results presented here show that, in

general, genes that confer robustness to environmental or

stochastic perturbations also confer robustness to genetic change,

and with similar efficacy. This has important implications for

understanding how mutations combine to cause disease, and how

the potential for evolution (evolvability) itself evolves.

Materials and Methods

Mutational Robustness
Genes required to buffer the phenotypic consequences of

mutations in other loci were identified using synthetic lethal

genetic interaction screens. A synthetic lethal interaction occurs

when the combination of two mutations has a synergistic effect on

viability. In these screens a strain carrying a loss-of-function

mutation in a single gene is crossed into a panel of strains each

carrying a deletion in a single non-essential gene. Double mutant

combinations showing synthetic growth or viability defects then

identify loci that are buffered by expression of the test gene. Two

datasets are used that are derived from different experimental

protocols (competitive and parallel growth) performed in different

laboratories [9,11]. In each dataset ‘bait’ and ‘target’ genes are

considered separately, because in each case a different number of

possible interactions is tested.

Environmental Robustness
Genes required for growth in different environmental conditions

were identified in two systematic genetic screens [30,31] using the

complete set of viable haploid gene deletion strains [1]. For the

Hillenmeyer dataset a z-score P-value cut-off of 1025 is used to

identify growth defective strains, as recommended [31].

Stochastic Robustness
The robustness of the same haploid gene deletion strains to

stochastic perturbation is quantified using the variance of

morphological phenotypes in a single environment [32] quantified

with the metric of Levy and Siegal. Here mean-dependencies of

coefficient of variation measures are accounted for, and the

residual variance in the top 35 out of 70 independent phenotypes

provides a measure of the overall decrease in phenotypic stability

of a strain [29].
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Figure 4. The effects of mutations on mutational and
environmental robustness are also correlated with reductions
in stochastic robustness. Stochastic robustness is quantified as the
variability of cellular morphology among individuals, as described in
materials and methods [29,32]. The correlation of each measure of
environmental or genetic robustness across mutant strains with
morphological variability is shown. See Table 1 for P-values. Datasets
used are as described in Figure 3.
doi:10.1371/journal.pone.0009035.g004

Figure 5. A model for the evolution of mutational robustness.
The coupling between the requirement of genes for genetic (‘G’) and
environmental (‘E’) robustness means that during evolution, selection
for adaptive increases in environmental resilience may often have the
side-effect of increasing mutational robustness.
doi:10.1371/journal.pone.0009035.g005
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