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Abstract

The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions,
which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily
mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP)
recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law
distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous
statistical analyses such as the Kolmogorov–Smirnov test. Similar power-law scaling is observed for surrogate signals,
suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this
problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the
presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations,
and does not survive more rigorous analysis such as the Kolmogorov–Smirnov test. The same analysis was also performed
on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the
rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that
logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon.
This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by
more stringent statistical tests.
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Introduction

Many natural complex systems, such as earthquakes or sandpile

avalanches, permanently evolve at a phase transition point, a type

of dynamics called self-organized criticality (SOC) [1,2]. SOC

states are potentially interesting for neural information processing

because they represent a state consisting of ‘‘avalanches’’ of

recruitment of units as opposed to oscillations or waves. One of the

signatures of such critical states is that the size of the avalanches is

distributed as a power law, which is particularly interesting for the

scale invariance it presents (more precisely, if the probability of

observing value x for a given variable is a power-law, p(x)~ax{a,

then scaling x by a constant factor yields to a proportional law:

p(cx)~ac{ax{a). Another notable property is the universality of

power-laws in physical phenomena such as phase transitions. In

these cases, the exponent is called the critical exponent. Diverse

systems show the same critical exponent as they approach

criticality, indicating the same fundamental dynamics.

In neuroscience, it is of obvious interest to determine if the

recruitment of activity in neural networks occurs in power-law

distributed avalanches. This would be evidence that the brain

may function according to critical states, rather than the usual

wave-type, oscillatory or stochastic dynamics. Moreover, power-

law relations are often associated with long-lasting correlations

in the system, as with the behavior near critical points. Indeed,

the presence of self-organized criticality was inferred for several

biological systems, including spontaneous brain activity in vitro

[3] which displays spontaneous bursts of activity – or ‘‘neuronal

avalanches’’ – separated by silences (see also [4] for spontaneous

activity in the retina). The distribution of such events was

identified to scale as a power law, which was taken as evidence

for self-organized criticality in this system (see also review

by [2]).

To investigate if criticality is important for brain function, the

same type of analysis was also investigated in vivo, and in

particular in awake animals. However, the difficulty with such

analyses is that the activity in awake animals is much more

intense compared to in vitro [5], with often no visible ‘‘pause’’ in

the firing activity, which complicates the definition of avalanches.

In a first study on awake cats [6], it was shown that although

macroscopic variables such as the extracellular local field

potential (LFP) show 1=f scaling in power spectra, the underlying

neuronal activity does not show signs of criticality. In a second,

more recent study on awake monkeys [7], power-law scaling was

apparent from LFPs when considering the statistics of negative

peaks, which are known to be related to neuronal firing. This

scale-invariant behavior was taken as evidence for self-organized

criticality.
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In the present paper, we attempt to resolve these contradictory

observations by first performing the same analysis on negative LFP

peaks in cats, and using different statistical tests and models to

explain these observations. We study the statistical distribution of

avalanche sizes, as well as the distribution of the amplitude of

negative peaks in the LFPs (linked to neuronal firings), positive

peaks, and surrogate data. We then study similar stochastic

problems, and investigate whether the results obtained by the

experimental data analysis can also be observed in purely

stochastic systems without the presence of underlying self-

organized criticality. Eventually, we compare the results obtained

to the analysis of avalanche data produced by a neural network

known to present self-organized criticality [8,9].

Material and Methods

Experimental Data
The experimental data used in the analysis consist of

simultaneous recordings of multisite local field potentials (LFPs)

and unit activity in the parietal cortex of awake cats (see Fig. 1),

which were obtained from a previous study [10]. A linear array of

8 bipolar electrodes was chronically implanted in the gray matter

of area 5–7 of cat cerebral cortex, and the state of the animal was

monitored to insure that all recordings were made in awake

conditions (quiet wakefulness with eyes-open). Signals were

recorded on an eight-channel digital recorder (Instrutech,

Mineola, New York) with internal sampling rate of 11.8 kHz

per channel, and 4-pole Bessel filters. For LFPs, data were

digitized off-line at 250 Hz using the Igor software package

(Wavemetrics, Oregon; A/D board from GW Instruments,

Massachusetts; low pass filter of 100 Hz). Units were digitized

off-line at 10 kHz, and spike sorting and discrimination was

performed with the DataWave software package (DataWave

Technologies, Colorado; filters were 300 Hz high-pass and 5 kHz

low-pass). The data was transferred to LINUX workstations for

analysis.

LFP Analysis
Peak detection. Negative or positive peaks were detected

from the LFPs as follows. Signals were mean-subtracted and

divided by their standard deviations to obtain comparable

amplitude statistics. To avoid artifactual peak detection because

of occasional slow components or drifts, the signals were digitally

filtered below 15 Hz (high-pass), and the peaks were detected

using an adjustable fixed threshold. The peak was defined as the

extremum of the ensemble of data points that exceeded the

threshold. The detected peaks were then repositioned in the intact

original signal (see Fig. 2). The same method was also used for

detecting positive peaks.

Avalanche analysis. Avalanches were defined by binning the

raster of negative peaks of the LFP (nLFPs) into time bins of size Dt
(varied between 4 and 16 ms), and by defining avalanches as

clusters of activity among electrodes, separated by silent periods

(time bins with no activity), in accordance with previous studies

[3,7]. The ‘‘size’’ of each avalanche was defined as the sum of the

amplitudes of all LFP peaks in the avalanche. Similar results were

obtained when avalanche size was defined as the total number of

peaks within each avalanche (not shown).

Surrogate signals. Surrogate signals were generated from

the nLFP data sets by shuffling the occurrence times of the

different peaks, while keeping the same distribution of peak

amplitudes. The occurrence times were replaced by random

numbers taken from a flat distribution. The avalanche analysis was

then performed on this shuffled data set. Note that, because

shuffling changed the timing of the peaks, the whole set of

avalanches changed.

Artificial Data
The results of neuronal avalanche analysis recorded in the cat

cerebral cortex will be compared to two types of artificial data sets.

From the nature of the LFPs and the links between unit firing and

LFP peaks above a certain threshold (see the Results section), we will

compare the results of the avalanche analysis of cortical data with two

7

Figure 1. Simultaneous multisite LFP and unit recordings in awake cats. Eight pairs of tungsten electrodes (placement illustrated on top)
were inserted in cat cerebral cortex (area 5–7, parietal) as described in detail in [10]. The system simultaneously recorded LFPs (left) and multi-unit
activity (right) at each pair of electrode.
doi:10.1371/journal.pone.0008982.g001

Stochastic Power Laws
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simple stochastic processes (not at criticality) in order to see if the

results observed in the avalanche analysis of cortical data can be

linked with the stochastic nature of the LFPs. We will also compare

the results of the avalanche analysis on experimental data to the

avalanche analysis of a network that presents self-organized criticality.

Stochastic models. The stochastic processes studied are

based on the following two simple models: the shot noise and the

Ornstein-Uhlenbeck model.

The first stochastic model considered is a high-frequency shot-

noise process consisting of exponential events convolved with a

Poisson process. This process, Vt, satisfies the equation

tmdVt~{Vt dtz
XP

i~1

qi dN
(i)
t ð1Þ

where tm is the characteristic decay time constant of each

exponential event, qi is the jump amplitude of each event, and N
(i)
t

are independent Poisson processes. The solution of Eq. (1) can be

written as:

Vt~V0 exp {
t

tm

� �
z
XP

i~1

X
ti times of N(i)

exp {
t{ti

tm

� �
: ð2Þ

Here, the stochastic variable Vt represents the LFP as the

summation of a large number of randomly-occurring synaptic

events, each described by a decaying exponential.

In the limit of a high number of Poisson processes with

summable intensities (or in the limit of a finite number of Poisson

process with high firing rate and suitable scaling on the jump

amplitude), the solution of equation (1) converges in law towards

the solution of the equation:

tmdVt~(m{Vt)dtzsdWt ð3Þ

where Wt is a Wiener process, m is related to the variables qi and

to the rates of the Poisson processes. This convergence can be

proved using for instance Donsker’s theorem (see e.g. [11,12]) and

is generally called diffusion approximation. The process solution of

equation (3) is an Ornstein–Uhlenbeck process, given by:

Vt~V0e{t=tmzm(1{e{t=tm )z
s

tm

ðt

0

e(s{t)=tm dWs ð4Þ

Self-organized critical neural network. We finally

performed the statistical avalanche size analysis in a situation

Figure 2. Detection of negative peaks in local field potentials and their relation with neuronal activity. Top: detection of negative LFP
peaks. The LFP signal is shown together with the detected nLFPs (circles). Middle: nLFP-based wave-triggered average (WTA) of unit activity, showing
that the negative peaks were associated with an increase of neuronal firing. Bottom: rasters of nLFP activity. The same procedure is compared for
high threshold (left panels) and low threshold (right panels).
doi:10.1371/journal.pone.0008982.g002
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where self-organized criticality was known to be present. We used

a model proposed by Levina and colleagues, which consists of a

network of spiking neurons with dynamical synapses, in which the

neuronal avalanches are characterized by a typical and robust self-

organized critical behavior [8,9]. The network is composed of N
so-called perfect integrate-and-fire neurons that integrate random inputs

without linear effects such as the cell membrane’s leak and without

nonlinear effects due to the channels dynamics, and that fire a

spike when the membrane potential reaches a fixed threshold. The

spike is transmitted with a fixed delay to all postsynaptic neurons

with a connectivity weight that varies according to the available

reserve of neurotransmitter. This type of network with such

dynamic synapses self-tunes to criticality [8].

Identifying Tail Distributions
Power-law and exponential distributions. Mathematically, a

continuous random variable X is said to present a power-law

distribution if it is drawn from a probability distribution with density:

P(xƒXƒxzdx)~ax{a dx ð5Þ

where a is a constant parameter of the distribution known as the

exponent or scaling parameter, and a is a normalization parameter. A

discrete power-law random variable has a similar, discretized version

of the probability, that can be written P(X~k)~ak{a. In practice,

few empirical phenomena obey power laws for all values of X , and in

general power laws characterize the tail of the distribution, i.e. the

probability distribution of values of X greater than some value xmin.

In such cases, we say that the tail of the distribution follows a power

law. Moreover, the data often show a truncated power law

distribution, i.e. power-law behavior only over a limited range,

xminƒxƒxmax.

In this paper, we are interested in discriminating power-laws

from another type of distribution: the exponentially-tailed

distribution. Random variables with such distributions are

characterized for x§xmin by an exponential probability density,

that in the continuous case is given by:

P(xƒXƒxzdx)~Ce{lx dx ð6Þ

where l is the parameter of the exponential law and C is a scaling

parameter. The discrete law can be written in a similar fashion

P(X~k)~Cl{k. Given some experimental data, the problem is

to identify the parameters of the power-law or exponential law that

best fits, which means estimating the parameter x̂xmin, and the

power-law exponent âa or the exponential-law intensity l̂l.

Parameter evaluations. Taking the logarithm of the

probability density of a power-law random variable, we obtain

log(p(x))~{a log(x)zlog(a). The histogram of the power-law

therefore presents an affine relation in a log-log plot. Similarly, the

exponential distribution’s histogram is characterized by an affine

relation in a log-linear plot. For this reason, power-laws in

empirical data are often studied by plotting the logarithm (in this

paper, when we word logarithm and the notation log correspond to

the natural –neperian– logarithm function) of the histogram as a

function of the logarithm of the values of the random variable, and

doing a linear regression to fit an affine line to through the data

points (usually using a least-squares algorithm). This method dates

back to Pareto in the 19th century (see e.g. [13]). The evaluated

point x̂xmin corresponding to the point where the data start having

a power-law distribution is mostly evaluated visually, but this

method is very sensitive to noise, and is highly subjective (see e.g.

[14] and references herein). This widely used technique (and

similar variations) generate systematic errors under relatively

common conditions (see e.g. [15]). Moreover, there is not any

evaluation of the goodness of fit obtained under the power-law

assumption. In this paper, we prefer to use a maximum likelihood

estimator, which is considered the most reliable of usual estimators

(see [15] for a comparison of different estimators). It is known to

provide an accurate parameter estimate in the limit of large

sample size (see [16,17]).

Assume that xmin, the starting value above which the tail of the

distribution, is known, expressions giving the maximum likelihood

estimator and maximal likelihood are well known. For the

continuous power-law distribution, the maximum likelihood

estimator of the exponent parameter a corresponding to n data

points xi§xmin is:

âa~1zn
Xn

i~1

log
xi

xmin

 !{1

:

For the continuous exponential distribution, the maximum

likelihood estimator of the parameter l is:

l̂l~ SxT{xminð Þ{1
,

where SxT~ 1
n

Pn
i~1xi is the average value of the observations xi.

For the continuous power-law distribution the log-likelihood of

the data for the estimated parameter value is:

L âajXð Þ~n log
âa{1

xmin

� �
{âa

Xn

i~1

log
xi

xmin

� �

and for the continuous exponential law:

L l̂ljX
� �

~n log l̂l
� �

{l̂l
Xn

i~1

xi{xminð Þ:

For the discrete exponential distribution, the maximum likelihood

estimator has exactly the same expression as that for the

continuous exponential law. The exponent estimator for the

discrete power-law (truncated or otherwise) has a more complex

form than that for the continuous power-law, and cannot easily be

expressed as a function of the data (see e.g. [18]). The log

likelihood of a sample (xi; i~1, . . . , n) [Nn is:

L(a)~{a
Xn

i~1

log(xi){n log
Xkmax

k~kmin

k{a

 !
,

and the estimated value âa is given by the unique value of a that

maximizes the above likelihood function.

Therefore, given the samples (xi) and the value of xmin (and

possibly xmax), we have expressions for the estimated power-law or

exponential parameter. The parameter x̂xmin is evaluated then by

minimizing the Kolmogorov–Smirnov distance:

KS~ max
x§xmin

jS(x){P̂P(x)j

where S(x) is the cumulative distribution function CDF of the data

and P̂P(x) is the CDF of the theoretical distribution being fitted for

the parameter that best fits the data for x§xmin), as proposed by

Clauset and colleagues in [19].

Stochastic Power Laws
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Goodness-of-fit and p-value validation. For a given data

set, we now know how to evaluate the best power-law and best

exponential-law fits. But is either fit plausible and accurate? In

order to answer this question, we use a standard goodness-of-fit

test which generates a p-value quantifying the likelihood of

obtaining a fit as good or better than that observed, if the

hypothesized distribution is correct. This method involves

sampling the fitted distribution to generate artificial data sets of

size n, and then calculating the Kolmogorov–Smirnov distance

between each data-set and the fitted distribution, producing the

distribution of Kolmogorov–Smirnov distances expected if the

fitted distribution is the true distribution of the data. A p-value is

then calculated as the proportion of artificial data showing a

poorer fit than fitting the observed data set. When this value is

close to 1, the data set can be considered to be drawn from the

fitted distribution, and if not, the hypothesis might be rejected.

The smallest p-values often considered to validate the statistical

test are taken between 0:1 and 0:01. These values are computed

following the method described in [15], which in particular

involves generating artificial samples through a Monte-Carlo

procedure.

Direct comparison of models. The methods described

above provide the better possible fit for a data set with different

probability laws and and the statistical relevance of the model

fitted to explain the data set. However, in the case where neither

model is rejected by the p-value test, these procedures do not allow

to quantify which model provides the better fit.

Several methods have been proposed to directly compare

models, such as cross validation [20], fully bayesian approaches

[21], minimum description length [22] and the classical log

likelihood ratio [23,24]. The latter, our method of choice, is of

particular interest because of the Neyman–Pearson lemma

establishing its optimality in certain conditions [25]. This method

compares the likelihood of the fit for each model, and selects the

model with the greater likelihood. The sign of the log likelihood

ratio gives an indication of the model that best fits the data (note

that its amplitude in absolute value does not have a direct

interpretation), but as other statistical quantities, it is sensitive to

noise. The significance of this test therefore needs to be evaluated,

and depends on the size of the sample and on the empirical

standard deviation of the difference between the log likelihoods of

each model (see [24]). This significance test gives a scalar value

(also called p-value) between 0 and 1. If this value is close to zero,

then it is unlikely that the sign of the log likelihood ratio is a result

of fluctuations. In that case, it is considered that the sign of the log

likelihood ratio is a reliable indicator of which model is the better

fit to the data. If it is close to one, the sign is not reliable and the

test does not favor either model over the other.

Note that this method compares fits on a given same data set,

which requires in particular the use of the same xmin in both

models. For this test, we fix xmin to the mean of the two xmin

estimated for each law, thereby giving an advantage to the model

that fits more of the data.

Results

Avalanche Analysis of LFPs from Cat Cerebral Cortex
We start by analyzing the power-law scaling from experimental

data. To analyze the power-law relations from LFP activity, we

exploited the well-known relation between negative LFP peaks and

neuronal firing. We identified the negative peaks of the LFPs

(nLFPs), corresponding to events exceeding a fixed threshold, as

shown in Fig. 2. The detection was done numerically using a fixed

threshold, after digital filtering of the low-frequency components of

the signal and the detected peaks were then repositioned in the

intact original signal (see Methods). The results of this detection for

two different thresholds are displayed in Fig. 2 (top). The detected

LFP negative peaks are clearly related to neuronal firing, as

evidenced by the wave-triggered average (WTA) of the unit

activity. Indeed, the average unit activity presented a clear

increase of the discharge probability related to the presence of

negative peaks of the LFP (Fig. 2, middle). The same procedure

was repeated for all channels, leading to rasters of nLFP activity

(Fig. 2, bottom).

We next performed an avalanche analysis based on the

occurrence of nLFPs. Similar to previous studies [3,7], avalanches

were defined by detecting clusters of activity across all electrodes,

separated by silent periods (see Methods). Fig. 3 shows the

distribution of avalanche size (summed amplitudes of all LFP

peaks within each avalanche) in log-linear and log-log represen-

tations and for two different detection thresholds. For high

threshold, the avalanche distribution was better fit by a power-law,

whereas for low threshold it was better fit by an exponential

distribution. Similar results were obtained when the avalanche size

was defined as the total number of events (peaks) within each

avalanche (not shown). This shows that the exact functional form

of the distribution highly depends on the peak detection threshold.

Using a high detection threshold may give the impression of a

power-law relation, but lowering the threshold makes the system

tend more to an exponential distribution, consistent with the

exponential scaling of avalanches calculated from unit activity in

the same experimental data [6].

To assess the significance of this result, we performed a

Kolmogorov- Smirnov test to the same data. The results of this test

are presented in Table 1 for avalanche size defined by the

cumulated peak amplitudes. We observe that the distribution of

avalanche size is globally well fit by an exponential distribution,

which is valid for a large proportion of the data. Indeed, an

exponential fit yields significant p-values for both low and high

threshold. Moreover, the estimated parameters for exponential fit

hardly change when the threshold is varied, again suggesting that

the observed exponential fit is meaningful. In contrast, the

estimated power-law parameters change significantly when

changing the detection threshold, and the low Kolmogorov–

Smirnov distance and high p-value obtained for low thresholds

correspond to fits of only a small percentage of the data. Thus,

although the power-law distribution seems to provide a good fit

when only assessed by a linear regression in a log-log

representation, this apparent good fit is not supported by the

statistical analysis. Instead, the large negative value of the log

likelihood ratio, and the very high statistical significance of this test

on these data, reveals that the avalanche-size distribution is

globally better fit by an exponential distribution.

The statistical avalanche analysis performed when the ava-

lanche size was defined as the total number of events (peaks) within

each avalanche give an even more ambiguous result. Indeed, both

the exponential and the power-law distributions provide a good fit

to the data, and the log likelihood indicates that the exponential

law provides a better fit but it has a null significance, so does not

give any information on the law that best fits the data (see Table 2).

While these findings suggest that the the nLFP avalanches may

also be exponentially distributed, this exponential scaling may be

artifactual. Although the underlying neural activity may follow a

power-law distribution, the low-threshold condition could add

spurious peaks unrelated to neuronal activity, and that would give

an exponential trend to the distribution. This increased ‘‘noise’’ is

evident in the WTA in Fig. 2, which shows a weaker relation to

spiking activity at low threshold compared to high threshold.

Stochastic Power Laws
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Thus, additional analyses are needed to determine which of the

power-law or exponential scaling is the more closely related to

neural activity.

To further test the dependence on unit activity, we have

repeated the same avalanche analysis, but using positive peaks of

the LFP (pLFP; Fig. 4A). In this case, as expected, the peaks are

not related to unit firing (Fig. 4B). Unexpectedly, however, the

scaling relations observed in graphical representations for pLFPs

are similar to those observed for nLFPs (Fig. 4C): the low-

thresholded data fits both a power-law and an exponential law and

the high-thresholded data only fits an exponential law. The

statistical analysis reveals a power-law for low-threshold pLFPs

and an exponential law for high threshold pLFPs. Interestingly,

there are also some regions where both the high and low threshold

pLFPs distributions display exponential scaling (Fig. 4C, dotted

lines). Here, the Kolmogorov–Smirnov test gave results very close

to the case of negative peaks. Thus, similar to negative peaks, the

apparent good fit of the power-law distribution is not supported by

the statistical analysis, as confirmed by the log likelihood ratio

test.

Another essential test is to generate surrogate data sets. These

were produced by taking the nLFP data sets, and randomly

shuffling the occurrence times of the different peaks, while keeping

the same distribution of peak amplitudes (see Methods). The

avalanche analysis was then repeated using these randomized

events, and the result is shown in Fig. 5. The shuffling ensures that

there is no correlation between these peaks and unit activity, but

interestingly, the same relations observed for the nLFPs and pLFPs

still persist. In particular, it is quite unexpected that this stochastic

system seems to give power-law distributed avalanche sizes. This

power-law scaling was seen mostly in the high threshold, while the

low-threshold condition behaved more exponentially. The oppo-

site scaling was also seen in restricted regions (Fig. 5C, dotted

lines). The statistical tests realized on these surrogate data gave

similar results as above (not shown).

The power-law scaling of nLFP size distributions was also

apparent when representing graphically the peak distributions

from single LFP channels, as illustrated in Fig. 6. To assess the

significance of this result, we performed a Kolmogorov–Smirnov

test to these data (results are provided in Table 3). For most

channels, although graphically we were able to fit the data with a

power-law and an exponential distribution, the statistical tests

shows that in neither case the fit is statistically significant. For some

channels (namely channels 1, 2 and 6), the peak distribution

analysis shows, similarly to the multi-electrodes case, that both

power-law and exponential distributions provide a good fit to the

data, and the log-likelihood ratio test indicates with a high

significance level that the data are better fit by an exponential

law.

These results suggest that the power-law scaling seen in log-log

representations is not necessarily related to neuronal activity, but

could rather represent a generic property of these signals. To test

this hypothesis, we now turn to the analysis and simulation of

stochastic processes.

Peak Size Distributions from Stochastic Processes
We first investigate computationally whether a power-law

relation can be obtained from the peak size distribution of a

purely stochastic process. To this end, we generate a high-

frequency shot-noise process (as described in Methods), consisting

of exponential events convolved with a Poisson process.

The peaks were detected on the shot noise process Vt defined by

Eq. (2) using a high threshold, in order to mimic the experimental

paradigm in Fig. 6A. As for the experimental LFP data, this

procedure yielded power-law amplitude distributions, but the

same distributions also scaled exponentially (Fig. 7B–C).

Figure 3. Avalanche analysis of nLFPs in the awake cat. The nLFP avalanche size distributions were computed according to an avalanche
analysis (see text). For a high detection threshold, the avalanche distribution is better fit by a power-law (left panels); for a low detection threshold, it
is better explained by an exponential distribution (right panels).
doi:10.1371/journal.pone.0008982.g003

Stochastic Power Laws
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Peak distribution in the shot noise model. We now

investigate this problem analytically. We treat the case where the

number of independent Poisson processes P is equal or reducible to

one. The case Pw1 can be treated in the same fashion and yields

similar results. In the case P~1, let us denote t(i) the event times of

the Poisson process. T he integrated process (2) simply reads:

Vt~V0e{t=tmzq
X
t(i)

ƒt

e{(t{t(i))=tm ð7Þ

We are interested in the probability that the supremum of this

process reaches a certain threshold value h during an interval of

times ½0,T �. In order to compute this probability, we condition on

the number of jumps of the Poisson process in this interval of time,

N (½0,T �). Since the events are disconnected, we have:

P max
½0,T �

Vt§h

� �
~
X
N[N

P max
½0,T �

Vt§h\N (½0,T �)~N

� �

~
X
N[N

P max
½0,T �

Vt§hjN (½0,T �)~N

� �
P N (½0,T �)~Nð Þ

~e{lT
X
N[N

(lT)N

N!
P max

½0,T �
Vt§hjN (½0,T �)~N

� �
ð8Þ

The maxima of this process occur at the event times of the

Poisson process, t(i), and have the values:

t~0 V0

t~t(1) V1 :~V0e{t(1)=tm zq

t~t(2) V2 :~V0e{t(2)=tm zq e{(t(2){t(1) )=tm z1
� �

. . .

t~t(N) VN :~V0e{t(N)=tm zq(e{(t(N){t(1))=tm ze{(t(N){t(2))=tm z . . .

ze{(t(N){t(N{1) )=tm z1)

~e{t(N)=tm V0zq
PN

i~1 et(i)=tm

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

Furthermore, conditionally onN (½0,T �) the number of jumps of

the Poisson process in the time interval ½0,T �, the instants of these

jumps are uniformly distributed in the interval ½0,T �. Therefore,

the probability that a local maximum is greater than the threshold

h can be written as the following integral:

P max
½0,T �

Vt§hjN (½0,T �)~N

� �
~

ðT

t(1)~0

ðT

t(2)~0

. . .

ðT

t(N)~0

1 Ak[ f1,...Ng such that Vk§hf g
dt(1) . . . dt(N)

TN

ð10Þ

where 1A is the indicator function of the set A. Therefore, the peak

distribution we are searching for has the expression:

P max
½0,T �

Vt§h

� �
~e{lT

X
N[N

(lT)N

N!

ðT

t(1)~0

ðT

t(2)~0

. . .

ðT

t(N)~0

1 Ak[ f1,...Ng such that Vk§hf g
dt(1) . . . dt(N)

TN

ð11Þ

This integral cannot be simplified further, but can be accurately

approximated using a numerical integration method and truncat-

ing the series. The approximation error is proportional to the rest

of the exponential series R(N)~
P?

k~Nz1 (lT)k=k!.
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Let us now consider the distribution of the maxima of the

process (7) given that the process does an excursion above a certain

threshold. This case can be treated in a similar fashion, but

considering the distribution of local minima also. These local

minima are reached at times t(k){ just before the jumps of the

Poisson process, and their value are Vt(k){q. The probability of an

excursion above h and exceeding m (event denoted A
m
h ) can

therefore be written as:

Figure 4. Avalanche analysis of positive LFP peaks in the awake cat. A. Detection of positive LFP peaks using identical procedures as for
nLFPs. B. The WTA indicates no relation between pLFPs and unit activity. C. Scaling of avalanche size distribution, showing similar behavior as
observed for nLFPs (compare with Fig. 3).
doi:10.1371/journal.pone.0008982.g004

Table 2. Results of the avalanche size analysis (number of LFP peaks).

Data Type and
threshold Exponential fit Power-Law fit Log-Likelihood ratio

l KS p-val % a KS p-val % LLR p-val Result

Neg. Low 0.19 0.023 0.64 54 1.26 0.020 0.83 18 277 1.0 ? (Exp)

Neg. High 0.27 0.045 0.27 29 1.74 0.009 0.97 100 261 1.0 ? (Exp)

Pos Low 0.23 0.030 0.19 70 1.20 0.021 0.60 54 2232 1.0 ? (Exp)

Pos. High 0.36 0.067 0.14 50 1.54 0.012 0.91 100 2110 1.0 ? (Exp)

Results of avalanche analysis for avalanche size defined as the number of LFP peaks within the avalanche, for both positive and negative events. Table headers are the
same as in Table 1. The ? indicates that the fit is not statistically significant.
doi:10.1371/journal.pone.0008982.t002

Stochastic Power Laws

PLoS ONE | www.plosone.org 8 February 2010 | Volume 5 | Issue 2 | e8982



Figure 5. Avalanche analysis of shuffled negative LFP peaks. A. Shuffled peaks obtained from randomizing the timing of nLFP peaks. B. The
WTA indicates that shuffling removes the relationship between nLFPs and neural activity C. Scaling of avalanche peak size distribution, showing
similar behavior as for nLFPs (compare with Fig. 3).
doi:10.1371/journal.pone.0008982.g005

Figure 6. Avalanche-size distributions of negative LFP peaks from single channels. The peak distribution is shown on log-linear (A) and
logarithmic scale (B).
doi:10.1371/journal.pone.0008982.g006
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P A
m
h

� �
~
X
N[N

P A
m
h\N (½0,T �)~N

� �

~e{lT
X
N[N

(lT)N

N!
P A

m
h jN (½0,T �)~N

� �

and the probability P A
m
h jN (½0,T �)~N

� �
can be easily evaluated

numerically using the following representation:

P A
m
h jN (½0,T �)~N

� �
~

ðT

t(1)~0

ðT

t(2)~0

. . .

ðT

t(N)~0

1fAk[f1,...Ng and l[fkz1,...Ng such that Vk§m, Vl ƒhg
dt(1) . . . dt(N)

TN

ð12Þ

Simulation results of these distributions are presented in Fig. 8

and predict the results obtained by numerical simulations in Fig. 7:

both exponential and power-law distributions give a good model

for the peak amplitude distribution. The results of the statistical

analysis are in accordance with this observation, and are provided

in Table 4. Indeed, we observe that the exponential distribution

gives a good model in both the single barrier and the excursion

case, and the power-law distributions provide a good agreement

with the computed theoretical distributions only in the excursion

case. Note that we did not use the log-likelihood ratio because this

statistical test is defined through the computation of the likelihood

of a given probabilistic model on a data set, and here we do

not have data sets but we directly compute the probability

distributions.

Figure 7. Peak-size distributions for the thresholded Poisson shot-noise process. A. Sample of the stochastic process and detected peaks.
B. Peak size distribution on a log-linear scale. C. Same distribution on a log-log scale. Straight lines indicate the best fit obtained using linear
regression.
doi:10.1371/journal.pone.0008982.g007

Table 3. Results of avalanche-analysis for single-electrode LFP peaks.

Data Type and
threshold Exponential fit Power-Law fit Log-Likelihood ratio

l KS p-val % a KS p-val % LLR p-val Result

Neg. Low 2.39 0.029 0.055 39 6.17 0.056 0.00 33 247 0.0 Exp

Neg. High 2.82 0.030 0.68 80 9.05 0.048 0.53 34 24.4 0.04 Exp

Pos. Low 2.07 0.022 0.25 98 6.15 0.041 0.06 26 237.7 0.0 Exp

Pos. High 2.21 0.038 0.29 56 6.85 0.044 0.10 100 21.29 0.66 ? (Exp)

Results of avalanche-analysis for avalanches defined from single-electrode LFP peaks, positive and negative, with low and high threshold. Table headers are the same as
in Table 1.
doi:10.1371/journal.pone.0008982.t003

ð12Þ
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Peak distribution in the Ornstein-Uhlenbeck model. In

the case of the Ornstein-Uhlenbeck model, the stochastic

process modelling the LFP has the same regularity as the

Brownian motion, and therefore is is nowhere differentiable,

and has a dense countable set of local maxima. In that case,

peaks are no more defined as local maxima of the process, and

the problem is reduced to determining the probability that the

process exceeds a certain value. This probability can be

deduced from the law of the first hitting time of the Ornstein–

Uhlenbeck process. Indeed, let us denote by ta the first hitting

time of the threshold a for the Ornstein-Uhlenbeck process

given by equation (4). The probability that the process exceeds a

certain level a, given that it exceeds the threshold h, is given

by:

Figure 8. Peak amplitude distribution for the Shot-Noise model. Single-barrier case (A,B) on a log-linear scale (A) and on a log-log scale (B)
show a globally linear trend. Excursions (C,D) show exactly the same profile. Simulation parameters: intensity of the process l~4, tm~2, V0~0,
T~10, h~10, maximal value of peaks considered 25 (see text).
doi:10.1371/journal.pone.0008982.g008

Table 4. Results of avalanche-analysis for thresholded stochastic processes.

Data type Exponential fit Power-Law fit

l KS p-val a KS p-val

Shot-Noise 0.70 0.103 0.12 10.08 0.185 0.00

single-barrier

Shot-Noise 0.72 0.014 1.00 15.00 0.094 0.28

excursion

Ornstein–Uhlenbeck 2.40 0.042 0.97 44 0.077 0.62

single-barrier

Ornstein–Uhlenbeck 2.42 0.0051 1.00 48.00 0.012 0.92

excursion

Results of avalanche-analysis for avalanche-sizes analytically determined for four stochastic processes. Table headers are the same as in Table 1. The estimated power-
law is large because we considered the tail of the distribution, and since the data present an exponential trend, the estimated power-law exponent becomes larger
when thresholds are high. Even if the p-value is high, the fit is not realistic and the does not hold for larger intervals. We do not use the log-likelihood ratio since it is
defined for samples and does not really make sense for distributions.
doi:10.1371/journal.pone.0008982.t004
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P sup
s[½0,t�

Vs§aj sup
s[½0,t�

Vs§h,V0

 !
~P sup

s[½0,t�
Vs§ajV0

 !

~P taƒtjV0ð Þ

ð13Þ

The excursion case continuous equivalent consists in considering

the probability of exceeding a certain quantity a before going back

under the excursion threshold h. This probability can be written as:

P sup
s[½0,t�

Vs§a, inf
t[½ta ,t�

Vsƒhj sup
s[½0,t�

Vs§h,V0

 !
~P sup

s[½0,t�
Vs§a, inf

t[½ta ,t�
VsƒhjV0

 !

~

ðt

s~0

P thƒtjVs~að ÞP ta[dsjV0ð Þ

ð14Þ

Therefore, the repartition function of the maxima, and that of

the maxima above a certain threshold, can be deduced from the

repartition function of the first hitting time of the process V . As

reviewed in [12,26], there is no closed form solution for the

probability distribution of these hitting times, but they can be

efficiently numerically computed. The most convenient solution

involves solving a Volterra integral equation to obtain the law of

the first hitting time variable (see e.g. [12,27,28]).

In this case again, the same remarks apply: we observe (see

Fig. 9) for both the single-barrier and the excursion problems that

the peak-amplitude distribution is fit equally well by either a

power-law or exponential distribution. This is supported by the

more rigorous statistical analysis (see Table 4): both the

exponential and the power-law distributions provide a good

agreement with the distributions computed numerically form the

formulas derived.

Avalanche Size Distribution in a Neural Network at
Criticality

We finally performed the above statistical analysis on the

avalanche data generated by the artificial network in the critical

state of Levina and colleagues [8,9] (data kindly provided by Anna

Levina). The avalanche size distributions obtained are plotted in

Fig. 10, and the results of the statistical analysis show very clearly

that the data are very well fitted by a power-law in this case (see

Table 5). We conclude that in the case of a neural network at

criticality, the ambiguity observed in the experimental data is not

present, even when using the same number of avalanches as in our

data. Thus, this analysis brings another argument to support the

absence of robust power-law scaling in the experimental data.

Discussion

In this paper, we have provided an analysis of multisite LFP

recordings in awake cats, using the detection of negative LFP

Figure 9. Peak amplitude distribution for the Ornstein-Uhlenbeck process. (A,B): single-barrier peaks, on a log-linear scale (A) and on a log-
log scale (B), and excursions (C,D), on a log-linear scale (C) and on a log-log scale (D). Both case present the same profile and a globally linear trend for
both axis. Simulation parameters: intensity of the process l~4, tm~2, V0~0, T~10, h~10, maximal value of peaks considered: 25 (see text).
doi:10.1371/journal.pone.0008982.g009
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peaks (nLFPs), as done in a previous study [7]. The analysis shows

that the occurrence time and amplitudes of nLFPs can show

power-law distributions, but in a manner that depends on the

detection threshold. High thresholds, which select events of

exceptionally large amplitude, tend to give power-law relations.

In contrast, low thresholds, which select many events, give rise to

exponential distributions, similar to stochastic processes. The

application of more rigorous statistical tests, such as the

Kolmogorov–Smirnov test, shows that the power-law relations

are not supported by solid statistical grounds. The dependence on

the threshold is much weaker in the statistical data analysis, as we

can clearly see in Tables 1 and 2.

Because the exponential scaling could be interpreted as a

spurious result due to the addition of a large number of peaks

unrelated to neuronal activity, we considered two controls: first,

positive LFP peaks, which are not related to neuronal activity, and

randomly shuffled peak times, which makes the system equivalent

to a stochastic process with the same peak amplitude distribution

as the data. The two cases show similar apparent power-law

scaling and dependency to threshold as for nLFPs.

These results suggest that the spurious power-law scaling could

be a generic property of thresholded stochastic processes. To

investigate this point in more depth, we studied a similar peak

detection paradigm applied to two simple stochastic models, one

corresponding to LFPs arising from a linear summation of spikes

arriving at the times of a Poisson process (a shot-noise process) and

the diffusion limit of this phenomenon (an Ornstein–Uhlenbeck

process). The former case can be solved in a closed integral form

while the latter case is solved using the laws of the first hitting times

of the Ornstein-Uhlenbeck process. Both models demonstrate the

same ambiguity: when only looking at the log-linear and log-log

plots, and both power-laws and exponential laws can be fitted.

However, the application of the more rigorous Kolmogorov–

Smirnov test demonstrated that some apparent power-law scaling

(as seen from log-log representations) is not based on solid

statistical grounds, in real data as well as in the theoretical laws

computed, in agreement with previous studies (see e.g. [15]).

This analysis therefore confirms that thresholded stochastic

processes can display power-law scaling, but only when perform-

ing simple line fitting in log-log representations. Indeed, we

observe that it is always possible to fit a power-law distribution to

the tail of the distribution with a quite good agreement, but these

fits do not hold for large threshold values (see Table 4). The

estimated laws yielded high values of the exponent which is not

very realistic in general. This is consistent with the findings

reported above for LFPs: the power-law scaling of LFP peaks

displays very similar properties to that of stochastic processes,

which supports the idea that experimentally observed power-law

scaling is not necessarily related to neuronal activity, but may be

explained by a generic property of thresholded stochastic

processes.

The same analysis applied to a network presenting self-

organized criticality confirms with no ambiguity that the

distribution of avalanche size presents a clear power-law

distribution, whereas in cortical LFPs the power-law scaling in

log-log representations was not supported by statistical analyses.

We conclude that power-law scaling, particularly when deduced

from log-log representations, does not constitute a proof of self-

organized criticality, but should be complemented by more

sophisticated statistical analyses.

Thus, contrary to a previous study in monkey [7], where the

same controls were not done, our analysis suggests that, in awake

cats, the power-law scaling is not related to neuronal activity but is

rather an artefact of the thresholding procedure. In agreement

Figure 10. Avalanche analysis of a simulated neural network displaying self-organized criticality. The power-law distribution provides a
very good graphical fit (A), whereas the exponential distribution provides a poor fit (B). Data from ref. [8].
doi:10.1371/journal.pone.0008982.g010

Table 5. Results of avalanche-analysis for the artificial network model [8] at criticality.

Data type Exponential fit Power-Law fit Log-Likelihood ratio

l KS p-val a KS p-val LLR p-val Result

Full data set 0.10 0.2820 0.00 1.44 0.0027 0.85 1645 0.0 PL

2,000 avalanches 0.10 0.2806 0.00 1.42 0.0061 0.80 2483 0.0 PL

Results of avalanche-analysis for avalanche-sizes determined using a sequence of 20,000 avalanches produced by the artificial neural network model, and a smaller set
of 2,000 avalanches corresponding to the typical number of avalanches we have in our experimental simulations. The power-law model provides a very good fit, with
high p-value, whereas an exponential law is not a good statistical model of the data in either case.
doi:10.1371/journal.pone.0008982.t005
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with this, a previous analysis [6] failed to see evidence for power-

law distributions and avalanche dynamics from spiking activity in

the same data set, which rather scaled exponentially. However,

there is still the possibility that these differences arise from other

factors such as the different species, brain areas, or cortical layers

used in these experiments.. Further studies should address these

points.
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