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Abstract

Background: Vulnerabilities to dependence on addictive substances are substantially heritable complex disorders whose
underlying genetic architecture is likely to be polygenic, with modest contributions from variants in many individual genes.
‘‘Nontemplate’’ genome wide association (GWA) approaches can identity groups of chromosomal regions and genes that,
taken together, are much more likely to contain allelic variants that alter vulnerability to substance dependence than
expected by chance.

Methodology/Principal Findings: We report pooled ‘‘nontemplate’’ genome-wide association studies of two independent
samples of substance dependent vs control research volunteers (n = 1620), one European-American and the other African-
American using 1 million SNP (single nucleotide polymorphism) Affymetrix genotyping arrays. We assess convergence
between results from these two samples using two related methods that seek clustering of nominally-positive results and
assess significance levels with Monte Carlo and permutation approaches. Both ‘‘converge then cluster’’ and ‘‘cluster then
converge’’ analyses document convergence between the results obtained from these two independent datasets in ways
that are virtually never found by chance. The genes identified in this fashion are also identified by individually-genotyped
dbGAP data that compare allele frequencies in cocaine dependent vs control individuals.

Conclusions/Significance: These overlapping results identify small chromosomal regions that are also identified by genome
wide data from studies of other relevant samples to extents much greater than chance. These chromosomal regions contain
more genes related to ‘‘cell adhesion’’ processes than expected by chance. They also contain a number of genes that
encode potential targets for anti-addiction pharmacotherapeutics. ‘‘Nontemplate’’ GWA approaches that seek chromosomal
regions in which nominally-positive associations are found in multiple independent samples are likely to complement
classical, ‘‘template’’ GWA approaches in which ‘‘genome wide’’ levels of significance are sought for SNP data from single
case vs control comparisons.
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Introduction

Vulnerability to addictions is a complex trait with substantial

genetic influences that are documented by data from family,

adoption and twin studies [1–4]. Twin studies also document

shared heritable influences on vulnerability to dependence on

addictive substances from different pharmacological classes (eg

nicotine and stimulants) [2,3,5]. In individuals from most

populations, each gene’s variants are likely to contribute modestly

to substance dependence vulnerability. Contributions of nicotinic

receptor gene variants to individual differences in smoking

quantity [6–10] and acetaldehyde dehydrogenase/alcohol dehy-

drogenase variants to risk for alcohol dependence in Asians may

provide larger effects of variants at single loci [11,12]. However,

combined data from linkage and initial genome wide association

studies (GWA) [6,13–17] suggest that most genetic effects on

vulnerability to substance dependence are likely to be polygenic.

GWA is a method of choice for identifying genes whose variants

influence vulnerability to complex disorders. GWA approaches

that we term ‘‘template’’ seek to identify ‘‘genome wide’’ levels of
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significance (ca 1027–1028) for case vs control differences in single

samples of individually genotyped individuals. ‘‘Replication’’ of

GWA results in these ‘‘template’’ GWA analyses is based on

identification of genome wide significance for the same SNP with

the same phase of association in each of multiple independent

samples.

However, with underlying polygenic genetic architectures,

effects of only modest magnitude are likely to be identified in

many single samples of practical size. We and others have

developed ‘‘nontemplate’’ GWA analyses to address highly

heritable complex phenotypes for which there is little evidence

for many genes of major effect. These analyses have focused on

identification of nominally significant case vs control allele

frequency differences at several nearby SNP markers in multiple

independent samples. Identifying ‘‘clustered’’ positive findings at

several nearby SNPs and finding clustered positive results in several

independent samples provide some of the best available controls

for technical errors and for the large numbers of repeated

comparisons that are fundamental to GWA. There is no consensus

concerning criteria for declaring ‘‘replication’’ of GWA results in

the absence of genome wide significance for the same SNP with

the same phase of association in multiple independent samples

[18–23]. Several considerations have prompted differing approach-

es to 1) combining and comparing GWA datasets and 2) declaring

that association between sets of nearby SNPs and a complex

disorder is ‘‘replicated’’ in the absence of genome wide significance

for any result. Underlying functional haplotypes contributing to

disease vulnerability may be tagged differently by different SNP

sets in different samples. Allelic heterogeneity can result in 1)

contributions of different variants within the same gene and 2)

differences in the predominant variants in a gene that influence the

phenotype in different samples. Meta-analyses often combine data

from studies that have examined alleles of different sets of SNPs.

We now report ‘‘nontemplate’’ GWA [24] studies that compare

allele frequencies for almost 870,000 autosomal SNPs in each of

two independent samples (one European-American and the second

African-American) of controls vs polysubstance abusers who report

heavy use and dependence on at least one illegal substance. We

have characterized and collected these case and control samples at

a single site. We use a nontemplate GWA approach with DNA

pooling to study the genetics of this illegal behavior. We analyze

genes that are identified by ‘‘replicated’’ results from these data in

each of two ways that appear to complement each other (though

they are not independent of each other): 1) ‘‘converge then cluster’’,

based on identification of SNPs within a gene that a) display

nominally significant case vs control allele frequency differences in

each of these two samples and b) lie near other SNPs with the same

properties, and 2) ‘‘cluster then converge’’, based on SNPs within

genes that are identified in each of the two samples by clusters of

SNPs that a) display nominally significant case vs control allele

frequency differences and b) lie near other SNPs with the same

properties. Since approach (2) does not require that the identical

SNPs display nominally significant results in each of several

samples, it is especially useful for evaluating concordance between

GWA datasets that use different sets of SNPs. We can thus apply

this approach to examining the concordance between addiction

and co-occurring traits likely to display complex genetic influences

[25] using empirical Monte Carlo statistics to assess the significance

of results. We discuss this work in light of its technical and analytic

limitations and in its similarities and differences with ‘‘template’’

GWA analyses that seek associations that display genome-wide

significance, typically in phenotypes that display oligogenic genetic

architectures and/or in larger samples that are often recruited in

multiple locations. We also describe the ways in which these pooled

genotype data identify a number of the same genomic regions that

are identified by recently available dbGAP datasets that provide

individual genotyping for cocaine-dependent and nondependent

comparison groups.

Results

Variation and Power Calculations
The pooling approach used herein provides evidence for good

assessment of allele frequency differences and variation in these

estimates. SNP allele frequency assessments made herein display

modest variability and good fits between individual and pooled

genotyping with mean correlation of 0.98+/20.002 (standard

error, SEM, Fig. 1). Validating studies with similar arrays add to

confidence in this data [13,14,26–34]. SEM for the variation

among three replicate studies of each DNA pool was +/20.03.

SEM for the variation between the ca. 20 pools studied for each

ethnicity/phenotype group was +/20.02. These estimates of

variability allowed us to estimate 0.8 and 0.9 power to detect 5 and

10% allele frequency differences in the African American sample

sizes described here. We had 0.76 and 0.99 power to detect 5 and

10% allele frequency differences in European American samples.

Corresponding false negative probabilities for approach 1 (converge

then cluster) are thus 0.39 and 0.11, since this approach requires

nominally positive results for the same SNP from both samples.

Statistical power for the analysis of these samples can also be

calculated using ‘‘gene detective’’ [25]; this power rises from 0.1 to

Figure 1. Validation graph of the relationships between
observed (y axis) and expected (x axis) allele frequency data
for Affymetrix 6.0 arrays. ‘‘Expected’’ frequencies come from
individual genotyping of individuals. These individuals were assigned
to three sets of pools each containing 2, 5 and 15 CEPH individuals
(total of 81 individuals). Arctan A/B represent the ‘‘observed’’ measures
of allele frequency and are arctangents of the A/B hybridization ratios
for this set of pools of individuals. In this figure we have only used SNPs
that show at least 10% difference in the expected values across the set
of pools (total of 146,000 SNPs). We have obtained similar data from
studies validating 500k,100k, 10k and HuSNP arrays [14–16]. Note that
DNA used for hybridization is less than that recommended for
individual genotyping (135 vs 225 ng) in order to avoid saturation of
hybridization signals for some array features. Error bars indicate SEM.
doi:10.1371/journal.pone.0008832.g001
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ca. 0.9 as risk to a sib of an affected individual (ls) rises from 1.2 to

2.5 [35].

‘‘Converge Then Cluster’’
In our assessment of allele frequency differences between

abusers and controls 83,202 and 75,327 SNPs displayed

‘‘nominally positive’’ t values with p,0.05 in African- and

European-American samples, respectively. There was substantial

convergence of the results from these two GWA datasets using the

non-template (1) ‘‘converge then cluster’’ GWA analysis approach.

11,037 of the 870,000 tested SNPs displayed ‘‘reproducible’’

results, as defined using this approach. These SNPs thus displayed

nominally significant abuser vs control allele frequency differences

in each of the two samples. This overall convergence was much

greater than anticipated based on chance. None of 100,000 Monte

Carlo simulation trials that each began by selecting 83,202 and

75,327 random SNPs displayed as many as 11,037 nominally

significant results in both samples (p,0.00001). None of 10,000

permutation trials displayed results from permuted datasets that

matched or exceeded the 11,037 SNPs actually observed

(p,0.0001 by permutation analyses). These 11,037 SNPs thus

provide the ‘‘reproducibly positive SNPs’’ for analytic approach (1).

The reproducibly-positive SNPs identified by abuser/control

comparisons in both European- and African-American samples

cluster together in small chromosomal regions (Fig. 2) to extents

much greater than anticipated by chance. 937 of the reproducibly-

positive SNPs from approach (1) lie in 271 clusters of $3 SNPs

that are separated from each other by #25kb. This degree of

clustering was never identified by chance (Monte Carlo

p,0.00001). These clusters of reproducibly positive SNPs from

analytic approach (1) identify 104 genes (Tables 1, 2). Randomly

selected SNPs never cluster by chance within genes to the extent

observed here (Monte Carlo p,0.00001).

We would anticipate the observed, highly significant clustering

of SNPs that display nominally positive results if many of these

reproducibly positive SNPs lay near and were in linkage

disequilibrium with functional allelic variants that distinguished

substance dependent subjects from control subjects, but not if they

Figure 2. Chromosomal distributions of abuser/control t values, clustered positive SNPs, and candidate positive genes (Table 1).
Blue boxes: t values of the abuser control differences from 870,000 SNPs studied here. Values from European-Americans: right side, from African-
Americans: left side. Red circles: Positions of the SNPs whose data yield clustered positive values. Yellow triangles: positions of clustered positive results
that support genes listed in Table 1. Scale bar (grey): 25 Mb.
doi:10.1371/journal.pone.0008832.g002
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represented chance observations. The Monte Carlo p values noted

here are likely to receive contributions from both the extent of

linkage disequilibrium among the clustered, nominally positive

SNPs and the extent of linkage disequilibrium between these SNPs

and the functional haplotype(s) that lead to the association with

substance dependence.

‘‘Cluster Then Converge’’
Non-template analytic approach (2) ‘‘cluster then converge’’

also assessed the significance of the 83,202 and 75,327 SNPs that

displayed nominally positive results in African-American and

European-American samples, respectively. 17,849 SNPs from

African American and 15,779 SNPs from European American

samples provide clusters, within each sample, of at least 4

nominally positive SNPs that lie within #10kb of each other.

2,142 of these SNPs lie within clusters that identify the same genes

in both African- and European-American samples (Tables 1, 2).

The 341 genes that are identified in this way (Table S1) are never

identified by chance, using this approach, in 100,000 Monte Carlo

II simulation trials (p,0.00001)([36] and Materials and Methods).

The genes identified using approach (2) overlap with K of the

genes identified using approach (1) (Table 2).

Controls for Alternative Hypotheses
Controls for occult stratification do not appear to provide

convincing alternative explanations for the data obtained here.

Only 22 of the 937 clustered, reproducibly positive SNPs that we

identify here using approach (1) also display sizable allele

frequency differences based on ethnicity. Since we would have

expected 24 by chance, it appears highly unlikely that stratification

based on racial/ethnic differences between each abuser and

corresponding control samples provides a major basis for the

addiction-associated allelic variants identified herein. Principal

components analyses identify robust principal components that

cleanly separate African-American from European-American

samples and account for about 94% of the variance when both

samples are analyzed together (data not shown). However, there is

significant distinction between substance dependent vs control

pools based on additional principal components that are

orthogonal to those that distinguish individuals with African vs

European heritages. Analyses of the likelihood that substance

dependent samples would be distinguished from control samples

by this principal component based on chance yield p = 0.00003

and p = 0.057 probabilities in European- and African-American

samples, respectively (data not shown).

Assay noise also fails to provide a convincing alternative

explanation for the data reported herein. When we examined the

overlap between the clustered positive SNPs and the 10% of the

SNPs for which the correlations between observed and expected

values in validating studies were poorest, we found about as many

(15) as we would have expected to find by chance (13). The t tests

used for assignment of primary nominal significance also correct

for assay variability. There is thus no indication that assay noise

provides the sole basis for the addiction-associated allelic variants

identified herein.

Overlap between Genes Identified Here and Those
Identified by Other Previously Reported GWA Datasets

The genes identified using approaches (1) or (2) each overlap

with genes identified in several other GWA datasets for substance

dependence, based on Monte Carlo simulations ([36] and

Materials and Methods). There are significant overlaps with data

from: a) 600k GWA studies of a subset of these polysubstance

abusers (p,0.001) [16], b) 500–600k GWA data from studies of

methamphetamine dependent Japanese samples [17] (p = 0.04), c)

100k GWA data from studies of alcohol dependence in European-

Americans [15] (p = 0.0003) and d) 38k data from comparisons

between more frequently nicotine dependent vs less frequently

nicotine dependent groups of smokers [37,38] (p = 0.02). We also

identify substantial overlap with individually genotyped data from

dbGAP samples of cocaine dependent vs control individuals

(Table 2). This overlap is even more impressive when we compare

the genomic regions identified by clustered, nominally significant

results from samples of the same racial/ethnic group (Drgon et al,

in preparation).

Preferential Brain Expression of Genes Identified Here
We evaluated evidence for preferential brain and brain regional

expression patterns of the 104 genes identified in Table 2. Brain

libraries contained at least two expressed sequence tags (ESTs) that

corresponded to 79% (82/104) of the genes in Table 2. These

ESTs came from amygdala (255), adult brain (736), developing

brain (1243), caudate (striatum) (63), cerebellum (375), cerebral

cortex (52), hippocampus (554), hypothalamus (274), medulla

oblongata (31), substantia nigra (43), subthalamic nucleus (38),

thalamus (187), corpus callosum or other white matter (72) and

peripheral nerve (97). Levels of expression for this set of genes

(compared to all genes) displayed nominal significance in

thalamus, hippocampus, amygdala, cerebellum, substantia nigra,

hypothalamus and whole brain (p = 0.002, 0.003, 0.004, 0.005,

0.02, 0.03 and 0.02, respectively). After Bonferroni corrections,

Table 1. Results of ‘‘converge first then cluster’’ (approach 1)
and ‘‘cluster first then converge (approach 2) analytic
strategies applied to substance dependence vulnerability
datasets described herein.

#SNPs Clustered SNPs
Number of
genes

Overlap with
104 genes

clust dist AfAm EuAm converg

CONVERGE FIRST, THEN CLUSTER (1)

3 25,000 937 104 104

3 10,000 299 37 37

4 25,000 328 31 31

4 10,000 86 10 10

CLUSTER FIRST, THEN CONVERGE (2)

3 25,000 55,507 47,614 18,552 1,546 104

3 10,000 29,009 25,523 5,353 802 79

4 25,000 44,881 37,927 12,562 1,015 92

4 10,000 17,849 15,779 2,142 341 52

Columns list the numbers of SNPs that display abuser vs control differences
with nominal p,0.05 (nominally positive) and lie in clusters, the maximal
distance between nominally positive SNPs that is considered to indicate
clustering, the numbers of clustered, nominally positive SNPs in African
American samples, the numbers of clustered, nominally positive SNPs in
European American samples, the numbers of ‘‘convergent’’ SNPs that display
nominally positive results in both samples, the fraction of ‘‘convergent’’ SNPs
that are likely to be true positives, on average, based on comparison with
randomly chosen SNPs that are selected for similar convergence analyses (data
not shown), the numbers of genes identified by the clusters of nominally
positive SNPs and the overlap between the genes in each set and the 104 genes
identified by the preplanned criteria used for primary analysis, using approach 1
with 3 SNP and 25kb intervals (boldfaced). The primary comparison set from
approach (2) is also listed in boldface, based on the similar fraction of true
positives anticipated using these criteria. We summarize these data in Fig. 2.
doi:10.1371/journal.pone.0008832.t001
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Table 2. Genes and classes of genes that contain clustered positive SNPs using the principal, preplanned analyses with criteria
noted in Table 1.

1: converge then cluster 2: cluster then converge dbGAP support

class/gene chr kbp gene description #SNPs p #SNPs AA/EA p # SNPs AA/EA

cell adhesion related

CDCP1 3 45098 CUB dom cont prot 1 3 0.021

FHIT* 3 59710 fragile histid triad 5 0.022 29/62 0.003 38/24

ODZ2 5 166644 odd Oz/ten-m hom 2 3 0.091 21/23 0.011 4/0

CSMD1* 8 2782 CUB Sushi mult dom 1 10 0.004 117/137 0.001 84/55

CSMD3 8 113304 CUB Sushi mult dom 3 4 0.033 4/5

CD274 9 5440 CD274 molecule 5 0.002 7/6 0.013

PCDH15 10 55250 protocadherin 15 3 0.094

CTNNA3* 10 67349 a 3 catenin 3 0.158 29/6 0.059 0/20

NRXN3 14 77939 neurexin 3 3 0.134 18/5 0.110 4/0

SEMA6D 15 45797 semaphorin 6D 7 0.001 14/7 0.005

THSD4 15 69220 thrombospondin I dom 4 3 0.067

CDH13* 16 81218 cadherin 13 3 0.104 76/65 0.001 0/5

DSCAM* 21 40306 Down synd cell adh mol 4 0.026 23/36 0.003 8/0

DNA/RNA handling

CHD1L 1 145180 chrdom h’case DNA bind1L 3 0.018 5/0

DDX1 2 15649 DEAD box polypept 1 3 0.019

PRPF4 9 115077 pre-mRNA proc fact 4 hom 3 0.012

PIWIL1 12 129388 piwi-like 1 3 0.019

POLR1D 13 27094 RNA pol I polypep D 3 0.019

SAMD4A 14 54104 ster a motif dom 4A 3 0.035

RAD51L1 14 67356 RAD51-like 1 3 0.073 4/10 0.112 0/8

enzyme

MKNK1 1 46795 MAP kin interact S/T kin 1 3 0.019

AGBL4 1 48822 ATP/GTP binding protL 4 6 0.008 10/8 0.040 7/0

NME7 1 167368 nucleoside-diP kin 14 0.001 22/25 0.001 0/8

QSOX1 1 178390 quiescin Q6 SH ox’ase 1 3 0.019 7/0

PRKCE 2 45732 protein kinase C epsilon 3 0.059 13/22 0.002 12/0

LASS6 2 169021 ceramide synthase 6 3 0.042

TMPRSS7 3 113236 serine TM protease 7 3 0.018

EHHADH 3 186391 3-OHAc coA dehydrog’ase 3 0.022 4/4

GBA3 4 22303 acidic ß glucosidase 3 6 0.003 5/5 0.042

PDE1C* 7 31795 calmod-dep P-diest’ase 1C 3 0.039

MSRA 8 9949 methionine SO red’ase A 3 0.047

ADARB2 10 1218 RNA-spec A deam’ase B2 3 0.061 5/9

SLK 10 105717 STE20-like kinase 3 0.019

PRKCH 14 60858 protein kinase C eta 5 0.008

XYLT1 16 17108 xylosyltransferase I 3 0.048 4/11 0.043 0/4

ligand

CXCL14 5 134934 chemokine ligand 14 4 0.005 5/5 0.020

protein handling/modification

TSSC1 2 3171 tumor sup subtrans cand 1 4 0.009 6/6 0.034

FKBP15 9 114967 FK506 binding protein 15 4 0.006

HSPA12A 10 118419 HSP 12A 3 0.020 10/15 0.004

BRWD2 10 122600 bromodom WD dom 2 3 0.022

DOCK1 10 128658 ded cytokinesis 1 3 0.051 0/7

PACS1 11 65594 Pfurin sort prot 1 4 0.010 7/9 0.019
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1: converge then cluster 2: cluster then converge dbGAP support

class/gene chr kbp gene description #SNPs p #SNPs AA/EA p # SNPs AA/EA

CCDC91 12 28301 coiled-coil dom 91 10 0.001 5/17 0.012

XPO6 16 28016 exportin 6 4 0.006 12/5 0.011

PMAIP1 18 55718 PMA-induced prot 1 3 0.011 4/4 0.041

receptor

OPRD1 1 29011 d opioid rec 1 6 0.001 10/6 0.011

PLA2R1 2 160506 Pipase A2 rec 1 4 0.006

GRM7* 3 6877 metabo glut rec 7 3 0.083 4/5 0.226 9/34

GRIK2 6 101953 ino glut rec kainate 2 3 0.071 5/4 0.191 10/0

OR51E1 11 4630 olfactory rec 51 E 1 3 0.011

LDLRAD3 11 35922 low dens lipoprot rec A 3 3 0.042 13/6 0.020 6/0

GRM5 11 87880 metabo glut rec 5 5 0.011 20/7 0.015 5/0

GRIA4 11 104986 ino glut rec AMPA 4 3 0.048

COLEC12 18 309 collectin sub-fam 12 3 0.031

INSR 19 7067 insulin rec 3 0.032

signaling

BCAR3 1 93799 br ca anti-est res 3 3 0.025

TTC21B 2 165905 tetratricopept rep dom 21B 4 0.020 8/4 0.118 10/12

TIAM2 6 155453 T-cell lymph inv met 2 3 0.032

FAM126A 7 22949 fam seq similar 126 A 3 0.022 6/4 0.032

ANO4 12 99712 anoctamin 4 3 0.041 0/5

APPL2 12 104091 pY inter PH dom leu zip 2 3 0.021 9/0

structure

INADL 1 61980 InaD-like 3 0.048 0/9

LIMCH1 4 41057 LIM calpon homol dom 1 3 0.045

DNAH8 6 38798 dynein h polypept 8 4 0.012 5/4 0.090 4/0

MYO6 6 76515 myosin VI 3 0.029 4/4 0.091

AKAP7 6 131508 A kinase anchor prot 7 4 0.008 4/7 0.040

SYNE1 6 152484 spectrin rep nuc env 1 3 0.058 26/5 0.007 6/7

CADPS2 7 121746 Ca-dep act prot secret 2 3 0.063

CHCHD3 7 132120 coil-coil-helix dom 3 3 0.039 7/4 0.064

MPP7 10 28382 palmitoyl memb prot 7 3 0.033

ABLIM1 10 116180 actin bind LIM protein 1 3 0.040

PARVA 11 12355 a parvin 4 0.010 4/12 0.018

CSRP3 11 19160 C G-rich prot 3 3 0.016

FARP1 13 97593 FERM RhoGEF pleckst 1 3 0.043

MYO5C 15 50271 myosin VC 3 0.023 4/9 0.027

FHOD3 18 32131 formin homol 2 cont 3 3 0.056 0/12

transcription regulation

PBX1 1 162795 pre-B-cell leukemia TF 1 5 0.005

AFF3 2 99530 AF4/FMR2 3 3 0.063

CSRNP3 2 166137 cys-ser-rich nuclear prot 3 3 0.029 3/3 0.081 6/0

ZNF804A 2 185171 zinc finger protein 804A 4 0.011 4/4 0.141

ZNF385D 3 21437 zinc finger protein 385D 3 0.042 12/4 0.033 0/5

ZNF366 5 71774 zinc finger protein 366 8 0.001 7/11 0.008

ETV6 12 11694 ets variant gene 6 3 0.038 4/25 0.004

KLF12 13 73158 Kruppel-like factor 12 4 0.015 4/7 0.094

ZNF606 19 63180 zinc finger protein 606 3 0.017

LDOC1L 22 43267 L zip down-reg ca 1-L 3 0.012 5/4 0.028

transport

Table 2. Cont.
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values for thalamus and hippocampus (p = 0.032 and 0.045,

respectively) retained significance. Assessments of the ‘‘more

reliable’’ subset of ESTs revealed significant over expression in

hippocampus and whole brain (corrected p ca 0.01 for each).

Discussion

‘‘Replication’’ of Genome Wide Association Results
Genome-wide association data of increasing richness is available

for a number of complex disorders. Several of these GWA datasets

contain relatively robust results at ‘‘oligogenic’’ loci that can also

be identified by linkage-based approaches [39–42]. Even moder-

ately secure GWA identification of ‘‘polygenic’’ influences on

disease, however, is likely to require replicated data from multiple

independent samples.

There have been no unanimous criteria for declaring such

replication in circumstances in which no SNP provides ‘‘genome

wide significance’’ with the same phase of association in

‘‘template’’ GWA analyses of data from multiple independent

samples. Replication of nominally significant associations for the

same SNP (approach (1), here) is among the criteria most used to

date [43,44]. This ‘‘nontemplate’’ GWA analytic approach is likely

to perform best when large association signals are found in each

independent sample, when the same SNP sets are studied in each,

when the disease exhibits little locus heterogeneity and when there

are good matches between the fine patterns of linkage disequilib-

rium of the samples being studied and the reference samples

(commonly, Hap Map) used to infer the underlying patterns of

linkage disequilibrium. Few ‘‘replication’’ samples manifest all of

these features. Although the current European- and African-

American samples were recruited in parallel and evaluated with

the same SNPs, the racial/ethnic differences between the

participants suggest that the samples are likely to manifest

differences in fine patterns of linkage disequilibrium and in phase

of association at many loci. Apparent replication ‘‘failures’’ using

approach (1) could thus relate to sample-to-sample differences in

fine patterns of linkage disequilibrium and/or different amounts of

information provided by markers with population-specific differ-

ences in allele frequencies. Allelic heterogeneities could also make

contributions. Conceivably, genes for which the Monte Carlo p

values determined by approach (2) are much stronger than the

estimates based on approach (1) might provide interesting

candidates for such allelic heterogeneity. Positive findings in the

‘‘cluster than converge’’ approach that are supported by evidence

from other studies might be especially attractive candidates.

NRXN3 and GABBR2 were identified using this approach and

also in linkage studies of opiate dependence [45] and association

studies of nicotine dependence [6,46], for example.

1: converge then cluster 2: cluster then converge dbGAP support

class/gene chr kbp gene description #SNPs p #SNPs AA/EA p # SNPs AA/EA

ATP1B1 1 167342 Na/K transpor ATPase ß 1 4 0.004 4/4 0.053 0/3

SLC45A2 5 33980 solute carrier 45 2 4 0.005 11/0

CFTR 7 116907 ATP-binding cassette C 7 3 0.033 5/0

XKR4 8 56177 Kell blood gp comp 4 3 0.051 8/8 0.043

SLC2A13 12 38435 solute ligand carrier 2 13 6 0.004 17/4 0.019 0/8

ABCC4* 13 94470 ATP-binding cassette C 4 4 0.012 13/4 0.023 23/30

SLC10A2 13 102494 solute ligand carrier10 2 3 0.014 12/7 0.005 0/8

unknown

KIAA1276 4 17242 KIAA1276 protein 3 0.029

FLJ44606 5 126411 FLJ44606 3 0.016 5/4 0.034

FAM184A 6 119322 fam seq sim 184 A 3 0.028

BRP44L 6 166698 brain protein 44-L 3 0.015

FRMD4A 10 13725 FERM dom 4A 3 0.071 4/23 0.021 5/13

C10orf11 10 77212 Ch 10 ORF 11 3 0.077

C10orf82 10 118413 Ch 10 ORF 82 3 0.013 5/6 0.017

C19orf18 19 63161 Ch 19 ORF 18 3 0.013

MACROD2 20 13924 MACRO dom 2 3 0.175 57/22 0.004 6/8

C20orf70 20 31219 Ch 20 ORF 70 3 0.014

RHBDD3 22 27985 rhomboid dom 3 3 0.014

These ‘‘converge then cluster’’ genes thus each contain three or more SNPs that display nominally significant allele frequency differences between both European-
American (EA) and African-American (AA) polysubstance abuser vs control comparisons that cluster within ,25kb of each other and lie within the gene’s exons or
within +/210 kb 39 or 59 flanking sequences. Genes are grouped by the class of the function to which they contribute. The numbers of reproducibly positive SNPs that
lay in clusters within the gene’s exons and in 10 kb genomic flanking regions are noted. Chromosome number and initial chromosomal position for the cluster (bp, NCBI
Mapviewer Build 36.1) are listed. ‘‘Approach 2/Cluster then converge’’ genes that were identified by clusters of at least 4 nominally positive SNPs that lay within 10kb of
each other and lay within the gene for each sample are listed in the column labeled ‘‘2: cluster then converge’’. Asterisk identifies genes also identified in [16]. P
values are based on 10,000 Monte Carlo simulation trials in which the number of times randomly-selected segments of the genome that lie within genes are assessed
for the same features displayed by the actual gene identified. Relevant rs numbers for SNPs are listed in Table S2. dbGAP support lists the numbers of SNPs in the same
genes that display nominally-significant differences between cocaine-dependent and nondependent control AA and EA samples from 1M SNP Illumina individual
genotyping of samples from COGA, FSCD and COGEND samples as described in dbGAP (http://www.ncbi.nlm.nih.gov/sites/entrez?Db = gap).
doi:10.1371/journal.pone.0008832.t002

Table 2. Cont.
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‘‘Converge Then Cluster’’ and ‘‘Cluster Then Converge’’
Approaches

Results from approaches (1) and (2) share a number of potential

strengths. These datasets provide significant concordance with

each other, with previous GWA datasets for substance depen-

dence, and with dbGAP data that has been available only after the

results of the current study were analyzed. The arrays used here

provide power to identify many of the genes, especially genes of

smaller size, which could not have been identified in previous

GWA studies that used analysis (1) and lower density arrays [25].

Monte Carlo methods allow us to test the probabilities of chance

clustering of nominally positive SNPs and the chance of

convergence between clusters identified in one sample with

clusters identified in other samples. Our Monte Carlo approaches

deploy an empirical method that uses the existing dataset as a

source for randomly selected SNPs for each Monte Carlo trial.

The results of these simulations, supported by data derived from

permutation, principal components and other analyses, provide

strong overall confidence that these results are not due to chance.

By contrast, these approaches provide absolutely unequivocal

identification for few individual SNPs. This lack of unequivocal

identification of individual SNPs is consistent with the current

polygenic working models for the genetic architecture of

vulnerability to substance abuse [25,47].

Differences between ‘‘Non-Template’’ and ‘‘Template’’
GWA Approaches

Validation studies provide evidence for excellent correlations

between individually genotyped and pooled allele frequency

assessments. However, the current ‘‘nontemplate’’ approaches and

data do provide a number of differences from the ‘‘template’’

genome wide association approaches used in recent reports from

larger projects that employ individual genotyping in studies of legal

phenotypes, for example the GWA studies of complex phenotypes

currently listed in dbGAP (http://www.ncbi.nlm.nih.gov/sites/

entrez?Db = gap). 1a) The samples for these studies are typically

compiled from recruitments at many sites. The studies typically

combine subjects recruited based on multiple sets of criteria for

selection. There is no indication of the fraction of individuals

approached who consented. Cases are compared to controls who

were almost always recruited and collected at different times and are

either uncharacterized or evaluated using methods different from

those applied to cases. 1b) By comparison, all of the dependent and

control individuals studied in the present sample were collected at

the same site, recruited in ways that result in virtually all candidates

consenting to participation, and assessed using the same instruments.

Controls are thus characterized in such a manner that they each

provide a contrast with the dependent cases. 2a) Genotyping data in

dbGAP typically uses data from single microarrays that are

hybridized with fluorescently-labeled DNAs prepared from DNAs

from single individuals, hybridization intensities assessed, and

genotype calls made based on Bayesian and other algorithms using

data from the ratios of hybridization intensities to probes that are

complementary to alternative allelic forms of each SNP. Quality

control efforts for samples and SNPs use predetermined algorithms

for hybridization signal differences and analyses of Hardy-Weinberg

equilibria. Few studies provide test-retest data to evaluate the

fraction of genotypes that are replicable, however. 2b) The current

approach uses data from three microarrays that are hybridized with

three distinct preparations of fluorescently labeled DNA that are

carefully prepared from pools of DNA from 20 individuals. Quality

control evaluations come chiefly from assessment of the array-to-

array variation in hybridization intensities noted for replicate

experiments, as well as assessments of pool-to-pool variation, as

noted here. These assessments thus do not measure the features that

are assessed by Affymetrix or Illumina software packages, but rely

on estimates of variability in relation to the signals obtained. The

0.98+ correlation between observed and expected allele frequencies

provides a modest difference from a set of perfectly accurate

individual genotypes. 3a) The sample sizes in studies currently listed

in dbGAP are larger, with an average size of 2,155 cases and

controls 3b) The sample size here of 1,620 is divided into two

separate case vs control comparisons, providing, as we note,

moderate power to detect replicable modest-sized effects and lower

power to detect very small effects. True effects that provide nominal

statistical significance in clustered SNPs in only one sample represent

false-negative findings in our first analysis. 4a) Many of the results of

individually-genotyped studies represented in dbGAP are analyzed

based on the assumption that the detailed haplotype structures

identified in data from CEPH and Yoruban individuals will provide

accurate representations of the haplotypes identified in European-

American and African-American samples identified far from Utah.

4b) The approach that we use here is based on distances between

SNP genomic markers, rather than assumptions about the extent to

which the exact haplotype structure of these reference populations

will be maintained in the samples that we have studied. 5a) Dense

individual genotypes provide the opportunity for unequivocal

matching with DNA databases; 5b) Pooled genotypes provide a

much stronger barrier for matching with DNA databases, which is

an enhanced consideration in studies of illegal behaviors. 6a)

‘‘Template’’ analyses focus on strength of association for individual

SNPs; 6b) The current analyses assume that most bona fide

associations that are based on phenotypic differences will be present

at multiple nearby SNPs. In any single sample, many of the clusters

of positive findings at nearby SNPs could be due to stochastic

differences in haplotype frequencies between cases and controls that

are not related to phenotype. As the same chromosomal regions are

identified by more and more independent samples, however, the

likelihood that such identification is due to stochastic differences in

haplotype frequencies that are unrelated to phenotype declines

sharply. Assessment in multiple, independent samples, as we

perform here, provides the best control for stochastic differences

in haplotype frequencies that might be expected, by chance,

between any single case and control samples. 7a) ‘‘Template’’ GWA

analyses that focus on single SNPs may provide modest biases

toward identification of large genes that contain many SNPs; 7b)

The current analyses require nominally significant associations for

multiple SNPs that lie within narrow chromosomal regions. A

number of the smallest genes cannot be identified by this approach

[25], in ways that might lead to an even more prominent bias

toward identification of larger genes in this way; 8a) ‘‘Template’’

GWA approaches focus on metaanalyses as means to evaluate

convergence of data from single SNPs across many independent

samples; 8b) As more such data becomes available, metaanalyses

can be applied to the current results. However, in the relative

absence of other GWA datasets (but see below), metaanalyses are of

more limited utility.

Genes Also Identified in Other Studies of Addiction
Despite the differences in approaches, primary substance of

abuse and/or genetic background, however, there is significant

evidence that, compared to chance, the current results identify

more of the same genes and chromosomal regions that are also

identified by a number of independent datasets that compare

substance dependence phenotypes to controls. These include the

fits between the current nontemplate analyses of data from pooled

African- and European-American samples and previously-report-
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ed pooled results from Asian methamphetamine dependence

samples as well as individual genotyping results that compare

dependent vs nondependent smokers. Analyses of cocaine

dependence vs control data that has become available on dbGAP

after our analyses were completed provide support for 162 of the

clusters of nominally-positive result from the European-American

samples reported herein by clusters of at least 4 SNPs that display

p,0.05 nominal significance in this dbGAP data (Monte Carlo

p,0.0001) (Drgon et al, in preparation). Data for African-

American samples provides support for 147 of the clustered,

nominally significant observations from our current report (Monte

Carlo p,0.0001) (Drgon et al, in preparation).

Our identification of some SNP markers whose allelic frequencies

distinguish controls from addicts of different ethnicities supports

‘‘common disease/common allele’’ genetic architecture for signif-

icant portions of addiction vulnerability [48] based on relatively old

allelic variants. The good fits between results from ethnically-

matched samples from the current data and dbGAP samples also

support the idea that many addiction vulnerability variants are

likely to display substantial differences from one human population

to another (Drgon et al, in preparation). In our current data, the

same phase is not detected for many of the SNP associations noted

in samples of different racial/ethnic backgrounds. Although we

believe that this is a likely consequence of the differences in detailed

linkage disequilibrium between the SNP markers and the actual

pathogenic allelic variants at many of these chromosomal loci, some

of these phase differences are also likely to reflect results that co-

occur in the two independent samples by chance.

The convergent data derived from studies of individuals with

addictions to substances in several different pharmacological

classes support the idea that many of these allelic variants enhance

vulnerability to many addictions. These results do not exclude

additional contributions to addiction vulnerability from genomic

variants that influence vulnerability to specific substances or

variants that are found only in specific populations, however.

Classes of Genes Identified Here
We focus on identification of genes. Although associations in

chromosomal regions that do not contain annotated genes also

provide interesting results, the genes that we identify in the present

work provide a number of interesting views of addiction. 1) More are

represented among cDNAs cloned from brain libraries than is the

case for all human genes. While all do not display at least two

cDNAs in at least one brain library represented in dbEST, it seems

likely that many of the remaining genes are expressed at low levels

and/or in small brain regions that are not adequately represented in

many of these libraries. 2) The results from dbEST studies of the

expression of these genes focus attention on expression in

hippocampus, which manifests interesting roles in mnemonic

processes in ways that may provide clues to the pathophysiology

of human addiction. 3) These genes do not overlap, to extents

greater than expected by chance, with genes listed in the

Knowledgebase for Addiction Related Genes (KARG), a recent

compilation of literature and database information concerning

addiction related genes [49]. 4) Gene ontology searches (BioBase)

reveal ‘‘Biological Process’’ terms that displayed the strongest

trends toward overrepresentation (compared to Bonferroni-

corrected p = 7.861025) among human gene classes: glutamate

signaling pathway (p = 0.00019); auditory receptor cell differen-

tiation (p = 0.0047); endocytosis (p = 0.0065); sex determination

(p = 0.0081); inner ear receptor cell differentiation (p = 0.0081);

endothelial cell proliferation (p = 0.0088); synaptic transmission

(p = 0.01); mechanoreceptor differentiation (p = 0.01); adult locomo-

tor behavior (p = 0.01) and regulation of synaptic plasticity (p = 0.01).

Mouse data for glutamate signaling pathway (p = 8.261026)

provides the strongest p values that do exceed the Bonferroni

correction (data not shown).

Identification of cell adhesion molecule genes, which are

represented in several of the above mentioned gene classes

(Table 2) continues to focus our attention on roles in addiction for

mechanisms for establishing and regulating neuronal connections

[50–52]. These data accord well with prior results that link

substance dependence to 59 NrCAM variants that alter levels of

expression and to 39 NRXN3 variants that alter relative levels of

splicing isoforms [45,53]. It is important to note that these cell

adhesion genes are generally large, providing more opportunities

for allelic variants that could alter their functions in a number of

fashions. It is interesting to note that recent analyses of all reported

genome wide association datasets also identified overrepresenta-

tion of cell adhesion molecule genes [54].

We also identify genes that are likely to be readily targeted and

modulated by drugs, and thus provide potential pharmacothera-

peutic targets for addictions. G protein coupled receptors that

include the d opioid receptor and metabotropic glutamate receptor

5 display rich pharmacologies and substantial ties to addiction

through abundant evidence from pharmacologic, knockout mouse

and other approaches. Glutamatergic systems are also implicated

by identification of ‘‘druggable’’ metabotropic 7, GRIK2 kainate

and GRIA4 AMPA glutamate receptors, as well as several cell

adhesion molecules that are associated with classical synapses.

Known small molecules and/or drugs act at many of the other

receptors, enzymes and transporters listed in Table 2.

Genes Also Identified in Studies of Heritable,
Co-Occurring Phenotypes

A number of the genes identified in this work are also identified

in genome wide association and/or candidate gene datasets for

heritable disorders or phenotypes that co-occur with addictions

[25]. Differences in memory and cognitive systems have long been

identified in addicted individuals; we have identified significant

overlaps between the addiction associated genes listed below and

the results of GWA studies for individual differences in cognitive

abilities. NRXN3 and a number of other genes listed in Table 2

also display associations with the memory-associated neurodegen-

erative disorder, Alzheimer’s disease (Hishimoto et al, submitted).

Frontal lobe volumes are smaller in several studies of substance

dependent individuals or their offspring; there is significant overlap

between GWA results for frontal lobe volumes and addiction [25].

Overall GWA results for bipolar disorder, in which a majority of

individuals may abuse or be dependent on addictive substances,

overlap with addiction GWA data [25]. There is also a significant

overall overlap between addiction vulnerability GWA data and the

genes identified in studies of success in smoking cessation [25].

Conclusions
The findings presented here promise to add to the ongoing

consideration of methods for comparing GWA datasets as they

enhance understanding of genetic underpinnings of human

addiction. For addictions, as for many complex disorders, such

data provides an increasingly rich basis for improved understand-

ing and for personalized prevention and treatment strategies.

Materials and Methods

NIDA Research Volunteers
Research volunteers who came to the NIDA research facility in

Baltimore, Maryland between 1990 and 2007 in response to

advertisements and referrals from other research volunteers
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provided written informed consents, self-reported ethnicity data,

drug use histories via the Drug Use Survey and DSMIII-R or IV

diagnoses and were reimbursed for their time at different rates

during this period (currently about $120 total) as previously

described [13,55,56]. DNA in 81 pools sampled: a) 400 unrelated

European-American ‘‘abusers’’ (mean age and standard devia-

tion = 34 (+/22), 0.79 male) with heavy lifetime use of illegal

substances and, for virtually all, DSMIII-R/IV dependence on at

least one illegal abused substance b) 280 ‘‘control’’ European-

Americans (mean age 32 (+/23), 0.6 male) who reported no

significant lifetime use of any addictive substance, c) 700 African-

American abusers (mean age 34 (+/23), 0.75 male) and d) 240

African-American controls (mean age 35 (+/25), 0.43 male)

[13,14,16]. The modest differences between mean ages of

dependent and control individuals would be expected to yield

virtually no differences in cumulative lifetime probabilities of

developing dependence on one or more illegal substances, based

on data from the National Survey of Drug Use in Households

(http://oas.samhsa.gov/nsduh/2k7nsduh/2k7Results.cfm#TOC).

DNAs were assessed in pools since this: 1) provided us with the

maximal ability to protect the genetic confidentiality of subjects

who volunteered for study of genetics of illegal behaviors, 2)

allowed us to utilize DNAs from individuals who consented to

participation in this study during time periods when consents did

not explicitly describe studies using high densities of DNA

markers, 3) allowed us to utilize DNAs from individuals whose

consents explicitly committed us to use DNA pooling methods

wherever possible to maximize protection of their genetic

confidentiality, 4) allowed us to use methods that we have

developed and validated in this and in previous work and 5)

reduced costs. Most of these subjects would thus not have been

available for studies that assessed substantial numbers of

polymorphisms using individual genotyping.

DNA was prepared from blood [13,55,56]. Genotyping and

primary assessments of genotyping were performed by investiga-

tors blinded to clinical diagnoses. DNAs from groups of 20

individuals of the same ethnicity and phenotype were carefully

quantitated and combined. This number of individuals/pool was

selected since we have extensively validated use of pools of this size

[13–17,37,38] with respect to statistical power as well as the

advantages and disadvantages of pooling noted above. Hybrid-

ization probes were prepared as described (Affymetrix assay 6.0,

[15]). For each pool 150 ng of pooled DNA was processed, labeled

and hybridized to Affymetrix 6.0 arrays according to the

instructions of the manufacturer (Affymetrix, Santa Clara CA)

and [13–15]. Quality controls for assays were performed as

recommended (Affymetrix, Santa Clara CA) and (Fig. S2).

Features of this portion of methods are depicted in Fig. S1.

Identification of Nominally-Positive SNPs
For NIDA individuals allele frequencies for each SNP in each

DNA pool were assessed based on hybridization to the 3–4

‘‘perfect match’’ cells on each of three arrays, as described [14,15].

We validated this approach (Fig. 1) [14,15]. The intensities of the

highest and lowest 5% of features on each array were monitored

and the variances in signal between replicate hybridizations of

DNA from each pool and between hybridization signals from

pools of the same phenotype and ethnicity were assessed. For the

detection of nominally positive SNPs we averaged the ‘‘perfect

match’’ data for each SNP on each array, derived the arctangent

of the ratio between hybridization intensities for A and B alleles,

averaged the arctan A/B values for the three replicate arrays,

divided the mean arctan A/B ratios for abusers by the mean

arctan A/B ratios for controls to form an abuser/control ratio for

each SNP, and generated a ‘‘t’’ statistic for the differences between

arctan A/B in abusers and controls with corresponding p values

(see Fig. S1 for this portion of the ‘‘cluster then converge’’ analysis

and Fig S2 for initial quality control).

We deleted data from SNPs on sex chromosomes. This allowed

us to combine data from male and female subjects and increase

overall power. We also deleted data for SNPs whose chromosomal

positions could not be adequately determined.

Identification of Genes That Contained Convergent Data
from Two Samples: 1) ‘‘Converge Then Cluster’’

For these analyses, we identified ‘‘reproducibly-positive’’ SNPs

that cluster in small genomic regions within genes (Table 1). These

SNPs a) display t values with p,0.05 significance in both African-

and European-American abuser vs control comparisons (we define

this evidence for significant association in each of two independent

samples as ‘‘reproducible’’), b) cluster, so that at least three

reproducibly-positive SNPs lie within 25kb of other reproducibly-

positive SNPs, c) identify genes (Table 2, legend). The 104 genes in

Table 2 are supported by reproducible clustered positive

association data from the same SNPs in each of two samples.

We identify subsets of these genes when we impose more stringent

criteria for: a) #10,000 basepair distances between reproducibly-

positive SNPs, and b) at least 4 nominally-positive SNPs per cluster

(Table 1).

Identification of Genes That Contained Convergent Data
from Two Samples: 2) ‘‘Cluster Than Converge’’

To provide complementary analyses, we began by identifying

clusters of positive SNPs that fall within genes in each sample. We

identify the genes that are tagged by at least one cluster of

nominally positive SNPs from each of the two samples (Table 1).

We focus on a set of criteria for approach (2) that produce about

the same ratio of ‘‘true’’ genes to total genes (‘‘true’’+‘‘chance’’)

(0.43 vs 0.47) as those likely to be observed using the criteria on

which we focused in approach (1). The SNPs that we identify in

this secondary analysis thus a) display t values with p,0.05

significance in one abuser vs control comparison, b) cluster, so that

at least four of these positive SNPs lie within 10kb of each other in

this abuser vs control comparison, c) identify the same genes as

clustered positive SNPs from the other sample (Table 2, legend, and

Table S1). Three hundred forty one genes are identified in this

way (Table S1). Fifty-two of the 104 genes listed in Table 2 based

on approach (1) are also identified after application of the criteria

noted above and approach (2). See Fig. S1 (points 4–6) for details

of the last steps of ‘‘cluster then converge’’ analyses:

The sets of results from approaches (1) and (2) were compared to

those expected by chance using 100,000 Monte Carlo II

simulation trials (below) ([36] and below, and Johnson et al, in

preparation). For each of 100,000 simulation trials, a random set

of SNPs was chosen by sampling randomly from a list that

contained all SNPs studied. The randomly chosen SNPs were

considered ‘‘pseudopositive’’ SNPs for that trial. The number of

trials for which the results from ‘‘pseudopositive’’ SNPs subjected

to our analytical procedure matched or exceeded the results

actually observed from the SNPs identified in the current study

was tabulated. Empirical p values were calculated by dividing the

number of trials for which the observed results were matched or

exceeded by the total number of Monte Carlo simulation trials.

Similar Monte Carlo III approaches ([36] and below) sampled

from a dataset of all gene sequences. These approaches allowed us

to generate nominal p values for the observations made for each

gene listed in Table 2.
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Monte Carlo I assessments [36] thus provided p values for the

extent to which clustering of nominally positive SNPs (from each

of 2 samples in ‘‘converge then cluster’’ approach and from each

sample in ‘‘cluster then converge’’ approach) differed from chance.

Monte Carlo II assessments [36] provided p values for the degree

to which clusters identified in one of the samples from the ‘‘cluster

then converge’’ approaches were found in the same genes as those

identified by clusters from the other sample. Monte Carlo III

assessments [36] provided p values for the likelihood of finding of

sets of nominally-positive SNPs in segments of each of the genes

identified here (Johnson et al, in preparation).

Secondary analysis used permutation approaches. We random-

ized assignment of the phenotypes to data derived from the

current SNPs and analyzed the data in each of the 10,000

permutation trials.

To assess the power of our current approach we used current

sample sizes and standard deviations, power calculator PS v2.1.31

[57,58] and a= 0.05. Results from ‘‘Gene detective’’ [25]

provided a secondary power assessment.

To provide controls for the possibility that observed abuser-

control differences were due to a) occult ethnic/racial allele

frequency differences or b) noisy assays, we assessed the overlap

between our results and SNPs that displayed the largest a)

allele frequency differences between African-American vs

European-American control individuals and b) the largest

assay ‘‘noise’’.

To seek patterns of human brain expression for the genes

identified herein, we identified 846 human cDNA libraries

constructed from brains with modest or no pathology in dbEST.

We identified 1) all entries and 2) ‘‘more reliable’’ entries with

correct genomic orientation and either evidence for polyA tail or

spliced structure (CYL and GRU, in preparation). For each brain

region, we assessed the p-value for over-representation of

expression of the addiction-associated genes using hypergeometric

distribution tests and false discovery rate (FDR) corrections,

considering Q-values,0.05 as statistically significant.

dbGAP Samples from the Family Study of Cocaine
Dependence, COGA and COGEND Studies

Unrelated subjects who met DSM criteria for cocaine

dependence and control subjects with no evidence for dependence

on any addictive substance were assembled from three studies.

Family study of cocaine dependence subjects were recruited from

treatment centers close to St. Louis. Mo; 55% of contacted

subjects participated. Community-based comparison subjects were

recruited through driver’s license records from the Missouri

Family Registry and were matched to cocaine dependent subjects

based on date of birth, ethnicity, gender, and zip code. Eighty

percent of screened and eligible comparison subjects participated.

Other participants came from individuals who participated in the

collaborative study on the genetics of alcoholism and the

collaborative study on the genetics of nicotine dependence.

Dependent individuals displayed DSM dependence on cocaine

as reflected in the dbGAP variable phv00066444.v1.p1. Controls

displayed no DSM dependence on cocaine, nicotine, alcohol,

marijuana, opioids or other drugs. We identified 481 dependent

and 1053 control unrelated European-American and 516

dependent and 409 control unrelated African-American subjects

for this analysis. Genotyping for these samples was performed

using Illumina 1M SNP arrays at the Center for Inherited Disease

Research (CIDR), with quality controls and principal components

analysis (PCA) controls for racial/ethnic background available at

the CIDR website (www.cidr.jhmi.edu). Genotypes from depen-

dent and control individuals were selected from dbGAP files. p

values for each SNP were based on x2 tests. The resulting p values

were then analyzed and compared to the results from the NIDA

individuals by the ‘‘cluster then converge’’ method described

above.

Gene Ontology analysis was performed in BioBase Systems

Biology Environment (http://www.biobase.de) installed on

http://helixweb.nih.gov/biobase.

Supporting Information

Figure S1 Simplified schematics for methods used in the current

analyses. A: Methodological schematic. First two lines denote

separation of African-American and European-American samples

into ‘‘case’’, ‘‘control’’ and ‘‘other’’ phenotypes. Third line denotes

pooling DNAs from groups of 20 individuals of the same racial/

ethnic and phenotype group. Lines 4–6 denote analyzing DNA

from each of the pools using three independent Affymetrix 6.0

array assays. B: Analytic schematic. Points 1–3 and ‘‘Manhattan

plots’’ indicate analyses that identify SNPs with nominally-

significant case vs control differences. Point 4a: Converge then

cluster analysis. Point 4b: Cluster then converge analysis. Point 5

emphasizes gene-centered analysis used herein.

Found at: doi:10.1371/journal.pone.0008832.s001 (0.07 MB

PDF)

Figure S2 QQ plots for distribution of t values from African-

American data (left) and European American data (right).

Observed data from these experiments provides deviations from

expected data generated from 10,000 t tests which were each run

from a set of random values of the same size as those obtained

from the true datasets. Deviations noted at the right side of these

plots are likely to represent both a) true case vs control differences

and b) nonnormal differences in the distribution of t values from

the bona fide data. In the current ‘‘nontemplate’’ analyses, we use

t values to identify the 5% of SNPs with the highest t values and

subsequent testing with empirical statistics to assign overall levels

of significance. Thus, any nonnormal component of this

distribution is of less concern than it would be for ‘‘template’’

GWA analyses in which t values might be used as the primary

determinant of (e.g., genome wide) significance.

Found at: doi:10.1371/journal.pone.0008832.s002 (0.03 MB

PDF)

Table S1 Genes identified by ‘‘cluster then converge’’ secondary

analyses (2), as described in the text. These genes are thus each

identified by clusters of four or more SNPs that display nominally

significant allele frequency differences between polysubstance

abuser vs control comparisons, cluster within ,10kb of each

other and lie within the gene’s exons or within +/210 kb 39 or 59

flanking sequences. Note that for this analysis, the same SNPs are

not required to display nominal significance in each of the two

samples. p values are based on 10,000 Monte Carlo simulation

trials in which the number of times randomly-selected segments of

the genome that lie within genes are assessed for the same features

displayed by the actual gene identified. Some, but not all, of these

genes are also identified by (1) converge then cluster analyses as

noted in Table 1 and by clustered nominally-significant SNPs from

dbGAP datasets, as noted in Table 2.

Found at: doi:10.1371/journal.pone.0008832.s003 (0.04 MB

PDF)

Table S2 List of RS numbers and chromosomal location

identified as ‘‘positive’’ that are the basis for identification of the

genes in Table 2 in the manuscript.

Found at: doi:10.1371/journal.pone.0008832.s004 (0.03 MB

PDF)
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