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Abstract

Background: Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices
(PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar
motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for
motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position
alignment between the two compared motifs. In some applications, alignment-free methods might be preferred; however,
few such methods with high accuracy have been described.

Methodology/Principal Findings: Here we describe a novel alignment-free method for quantifying the similarity of motifs
using their PFMs by converting PFMs into k-mer vectors. The motifs could then be compared by measuring the similarity
among their corresponding k-mer vectors.

Conclusions/Significance: We demonstrate that our method in general achieves similar performance or outperforms the
existing methods for clustering motifs according to their binding preference and identifying similar motifs of transcription
factors of the same family.
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Introduction

Transcription factors (TFs) play important roles in the

regulation of gene transcription through binding to specific

DNA sequences called TF binding sites (TFBSs), which are

usually 5–25 bp in length [1,2]. The TFBSs of the same TF show

some level of conservation but are rather degenerate, and they are

collectively called a TFBS motif in this paper. A TFBS motif is

often represented by a position frequency matrix (PFM), which

consists of nucleotide frequencies at each position of the motif [3].

A PFM is derived from the alignment of known TFBSs of the TF,

and it largely reflects the TF’s DNA binding preference at each

position. Thus once the PFM of a TF is known, it is possible to

predict other binding sites by scanning it against the regulatory

regions in a genome [4,5].

It is often desired to compare the similarity among motifs using

their PFMs to either infer the cognate TF of a putative motif by

comparing it with known motifs in a database or to cluster

redundant or sub-motifs of the same TF or motifs of related TFs.

For instance, it has been suggested that PFMs of different TFs

from a structurally related class can be merged to form a

generalized binding model or familial binding profile (FBP) [6]. An

FBP model reflects the ‘‘average’’ binding preference of the TFs in

the family and can be incorporated in motif finding algorithms as

prior knowledge to increase the sensitivity in finding motifs for a

particular TF family [6–8]. Furthermore, in genome-scale TFBS

prediction applications, redundant and sub motifs of the same TFs

are often returned by motif finders, and they need to be clustered

to form unique motifs [9,10]. In all these applications, the

similarity between two motifs needs to be accurately calculated for

the desired purposes.

Current methods for motif comparison typically involve a

similarity metric for column-to-column comparison and a method

to find the optimal position alignment between the two compared

motifs [8]. The final similarity score between the two motifs is

computed based on the alignment of columns and the chosen

column similarity metric. The column similarity metrics that have

been used include Pearson’s correlation coefficient (PCC), p-value of

Chi-square (pCS), average Kullback-Leibler (KL), Sum of squared

distances (SSD), and average log likelihood ratio (ALLR), etc.

[6,9,11–15]. Either a global or local optimal column-to-column

alignment between two PFMs is typically generated using dynamic

programming, such as the Smith-Waterman [16] or Needleman-

Wunsch algorithm [17]. The combinations of these column

similarity metrics and alignment methods have been thoroughly

evaluated recently by Mahony and Benos [8], and implemented in

the software package STAMP [7]. More recently, an alignment free

motif comparison method MoSta was proposed by Pape et al. [18].

In this paper we present a new alignment-free method for motif

comparison, which was largely inspired by the strategies for
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alignment-free sequence comparisons [19]. Briefly, we first convert

each PFM into a composition vector with each element representing

the likelihood score for a particular short k-mer sequence fitting the

PFM model. Therefore, the vector, which we term a k-mer

frequency vector (KFV), contains scores for all possible k-mer words.

We then compute the similarity between two motifs using a distance

measure between their corresponding KFVs. In this way we

eliminate the necessity of the alignment step while effectively

capturing the similarity between the two compared motifs.

In the following sections, we will first describe our algorithm in

detail, and then present its performance for motif retrieval and

clustering compared with other state-of-the-art methods.

Methods

1. Datasets of PFMs
A TFBS motif of length n (bp) is usually represented as a 46n

matrix in a variety of forms such as position frequency matrix

(PFM), position weight matrix (PWM), position specific scoring

matrix (PSSM/PSM), etc. These matrices reflect various features

of the sequence motifs including frequency of occurrence,

probability, log-likelihood, etc. Although some form may be a

better representation of sequence motifs for a certain purpose, they

all convey similar information about motifs. Therefore in this

study we focus on the comparison of PFMs, as the other matrix

representations can be easily derived from the PFMs. In this

regard, we designed our algorithm to take PFMs as the input.

Specifically, we define a PFM as the nucleotide frequency at each

position from the aligned motif sequences. Three datasets of

experimentally verified PFMs were used for testing and evaluation

purpose in this study (Table 1). Dataset-1 and Dataset-2 contain

PFMs with known TF structural classes in JASPAR [20,21] and

TRANSFAC [22] respectively. Dataset-1 was also used by

Mahony et al. [8], containing 96 PFMs from JASPAR, and 25 of

them are from Zinc-Finger (ZF) families. Dataset-2, created by

Narkilar et al. [23], contains 355 PFMs from six large TF structural

families in TRANSFAC. To compare our algorithm to the existing

methods for their ability to detect redundant PFMs without

considering structure similarity, we created Dataset-3 based on the

124 JASPAR core motifs downloaded from JASPAR (http://

jaspar.genereg.net/html/DOWNLOAD/SITES/JASPAR_CORE

_2008/). We first created the PFM for each of the 124 binding site

alignments. We then created additional three PFMs for each

alignment by randomly removing (without replacement) one-third

of the sequences from the motif alignment. This leads to total

124*4 = 496 PFMs in Dataset-3. The basic information about the

three datasets is summarized in Table 1.

2. Conversion of a PFM into a KFV
Let PFM M be a 46n matrix with each column being the

frequencies of the four types of nucleotides at that position in the

alignments of the TFBSs with length n. A sequence of k (k#n)

nucleotides is designated as a k-mer (K). Let Sk be the set

containing all possible k-mers. Clearly, Sk has 4k elements:

Sk~ K1,K2, � � � ,K4kf g:

We construct a 4k-dimensional KFV VM to represent M, with

each element in VM being the likelihood (LKi,M) for a specific k-mer

(Ki) being described by M,

VM~ LK1,M ,LK2,M , . . . ,LK
4k ,M

� �
:

Intuitively, to compute the likelihood LK,M, we slide the k-mer K
over the motif PFM M, and for each shift, we calculate a

probability that K fits the corresponding columns of M. We then

sum up this probability scores over all shifts as the likelihood of K
fitting M. Formally, LK,M is defined as,

LK,M~
Xn{kz1

i~1

P
k

j~1
NKð ÞTj :

Mizj{1

Mizj{1

�� ��

In the above equation, n is the length of M, k is the length of the

k-mer and k#n, and NK is the 46n (bits) matrix form of the k-mer

(K), with ‘‘1’’ in a column representing certain nucleotide at that

position in the k-mer. For instance, the 5-mer TAGAC can be

presented by the following 465 matrix:

NTAGAC~

0

0

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

2
6664

3
7775:

(NK)j is the j-th column of NK, Mi is the i-th column of M and | Mi

| is the Manhattan norm of column vector Mi, defined as:

Mj

�� ��~Xn

i~1
Mij :

3. Comparison between Two KFVs
After PFMs are converted into KFVs, a distance d(a,b) between

two KFVs a and b can be defined such that it possesses the

following three properties according to Strang’s definition of

distance metric [24]:

d a,bð Þ § 0 and d a,bð Þ ~ 0 u a~ b Positivityð Þ

d a,bð Þ ~ d b,að Þ Symmetryð Þ

d a,bð Þ z d a,cð Þ § d b,cð Þ Triangle inequalityð Þ

Clearly, many distance/dissimilarity metrics defined between

two vectors meet the above criteria, and thus can be used to

measure d(a,b). These metrics include Euclidean distance [25], d2

Table 1. Three datasets used in this study for testing and
evaluation.

Dataset Dataset-1 Dataset 2 Dataset-3

Number of PFMs 96 355 496

Average length 10.39 12.14 10.6

Min length 4 4 4

Max length 30 29 22

Number of Classes 13 6 -

PFM sources JASPAR TRANSFAC JASPAR

Dataset source Mahony, et al.,
2007

Narlikar and Hartemink,
2006

This study

doi:10.1371/journal.pone.0008797.t001
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distance [26], Pearson correlation coefficient (PCC) [27,28],

Mahalanobis distance [29], information theory based measure

using Kullback-Leibler (KL) discrepancy [30], angle metrics

[31,32], etc.. For a review of these methods see [19]. Here we

evaluated our method on four distance metrics including the

Euclidean distance (dEuclidean), Pearson correlation (dPCC), cosine

angle metric (dcos), and a modified KL distance (dKL) for

measuring the dissimilarity between KFVs. Specifically, for KFV

a and b, these distance metrics are defined respectively as below:

dEuclidean a,bð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
ai{bið Þ2

q

dPCC a,bð Þ~1{PCC a,bð Þ~1{

P
i ai{�aað Þ bi{�bb

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ai{�aað Þ2
P

i bi{�bb
� �2

q

dcos a,bð Þ~1{cosh~1{
a:b

aj j bj j~1{

P
i aibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ai
2
P

i bi
2

q

dKL a,bð Þ~
X

i
ai
:log2

aizmin að Þ
bizmin bð Þz

X
i
bi
:log2

bizmin bð Þ
aizmin að Þ

where ai and bi are the i-th element of a and b respectively, and a

and b are average of elements of a and b, respectively. Both PCC

and cosine angle metric are scale-independent, so that they are not

sensitive to repetitions, which often occur in TFBS motifs such as

tandem repeats and palindromic structures. The KL discrepancy

is an information theory-based metric, measuring relative entropy

between two discrete probability distributions. The modified KL

distance (dKL) is actually a sum of two KL discrepancy values, so

that the dKL distance can be symmetric. To avoid zero on the

denominator, a pseudo-number, which is the minimum of a or b,

was added to both ai and bi. Both dPCC and dcos have the range of

[0,1] while dKL and dEuclidean range from 0 to +‘.

In practice, we may not know the orientation of motifs

compared, thus we compute two distance scores for each pair of

PFMs for the two possible orientations. We then take the smaller

one as the distance between the two PFMs:

d a,bð Þ~min
a:b

aj j bj j ,
a:b�

aj j b�j j

� �

where b* is the KFV derived from the reverse complement of the

same PFM (b).

4. Performance Evaluation by ROC Analysis
We employed the ROC analysis to compare our algorithm to

other prior methods for their ability to identify the TFBS motifs of

structural and/or evolutionarily related TFs in the above

mentioned three datasets, for Dataset-1 and Dataset-2, the ROC

curves were plotted based on the following criteria. Given a

dataset containing N PFMs with known TF structural classes,

N(N+1)/2 pair-wise comparisons (including self-comparisons) were

conducted and pair-wise similarity scores were computed using

our algorithm or the other compared methods. We consider a pair

of PFMs as a match (positive) if the distance d(a,b) between their

corresponding KFVs a and b is within a threshold, or a mismatch

(negative), otherwise. We consider a positive as a true positive if

the two associated TFs come from the same structural class, and a

negative as a true negative if the associated two TFs are from

different structural classes. The ROC curve plots the true positive

rate (TPR) against the false positive rate (FPR), computed for

different thresholds of pair-wise distances.

For Dataset-3, the ROC curves were plotted using the similar

criteria as described above, except that we consider a positive as a

true positive if the two PFMs are originated from the same motif

alignment, and a negative as a true negative if the two PFMs are

originated from the different motif alignment. This assignment of

true positives/negatives could allow us to compare motif metrics

for their ability to detect redundant PFMs in a set of motifs.

5. Hierarchical Clustering and Motif Tree Construction
To test if our motif comparison algorithm is effective for

clustering similar motifs, we computed pair-wise distances for the

71 non-ZF motifs in Dataset-1, which was used previously by

Sandelin and Wasserman [6] to construct familial binding profiles

(FBP) and more recently by Mahony et al. [8] for PFMs clustering.

The pair-wise distances were computed using a word size k = 4,

since this k value generally gives the best performance based on

our experiments (see section 3.1 and also Figure S1). To better

display the resulting PFM trees, we transform the above defined

distance using the following exponential function,

dist0~
1

ea
ea:dist

where a is a constant, and we chosen a= 10 in this application.

Finally, the UPGMA algorithm was used to hierarchically cluster

these 71 non-ZF PFMs.

6. Estimation of the Optimal Number of Clusters and
Construction of FPMs

We used the statistic CHlog to estimate the optimal number of

clusters from the UPGMA clustering result. CHlog proposed by

Mahony et al. [8], is a derivative of the CH index [33] aiming to

find an optimal balance between inter-cluster and intra-cluster

variability, and is defined as,

CHlog cð Þ~ log Bð Þ= c{1ð Þ
log Wð Þ= n{cð Þ

where B and W represent the sum of between (inter-) and within

(intra-) cluster distances, respectively, and n and c are the number

of data points (PFMs) and number of clusters under consideration,

respectively. The optimal number of clusters is indicated by the c

value that maximizes CHlog.

Based on the estimated optimal number of clusters, a FBP was

generated for each cluster using the STAMP package [7].

7. Database Searching and Implementation
We have implemented the algorithm as a web server for

demonstration purpose, with which a user can identify the best

matching motifs in a specified motif database of a query motif.

The server can be accessed at http://bioinfo.uncc.edu/kfv/

Results

1.Performance of the KFV Algorithm for Motif Retrieval
with Various Parameter Settings

It has been shown that structurally and/or evolutionarily related

TFs tend to bind similar TFBS motifs, however, identification of

A New TFBS Similarity Metric
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these similar motifs can be difficult due to the highly degenerate

nature of TFBSs. We therefore evaluated our algorithm for

identifying the TFBS motifs of structural and/or evolutionarily

related TFs using all three datasets by the ‘‘best-hit’’ approach

used in Mahony et al. [8]. Specifically, for Dataset 1 and 2, we

asked if the TF of the best match of the returned hits shared the

same structural class of the TF of the query PFM, when the PFM

was queried against a dataset containing multiple PFMs. For

Dataset-3, we checked whether the ‘best-hit’ was originated from

the same motif alignment as the query PFM. Following the

practice of Mahony et al. [8], we define the accuracy of a method

as the percentage of motifs whose structural classes are correctly

recovered by the method as the best-hit in the database searches.

The performance of KFV on all three datasets at various

parameter settings are listed in Table 2.

For Dataset-1 and 2, as expected, when k = 1 the accuracy of the

KFV algorithm was low (from 0.25 to 0.56), since at this k value

the algorithm was reduced to a method comparing motifs based

solely on the nucleotide composition of PFMs. Starting from k = 2,

our algorithm began to gain discriminative ability and reached the

maximal overall accuracy when k = 4 for both dataset-1 and 2

using all four vector distance metrics with the exception that the

KL-based distance has the optimal k = 3 for Dataset-1. These

results suggested that in general PCC and cosine angle distance

had better performance than Euclidean distance and the KL-

based distance. It is not very surprising that PCC and cosine angle

distance have similar performance, as both metrics are mathe-

matically similar and related (see section 2.3). Since the

combination of cosine angle metric and k = 4 gave the highest

overall accuracy, we used k = 4 and cosine angle as the parameter

settings in the rest of the experiments in this study. For Dataset-3,

since the PFMs are originated from the same motif alignment,

their differences are small, good accuracy could be achieved even

for k = 1. Although the highest accuracy (0.988) was achieved

when k = 2 and Euclidean distance was used, we still used the

combination of cosine distance and k = 4 in later analysis on this

dataset since this combination also has very good accuracy (0.984).

2.Comparison of the KFV Algorithm with Other Methods
for Motif Retrieval

We first compared our method to the six well-regarded

alignment-based methods implemented in the STAMP package,

which represents state of the art research of motif comparision [8]

and a more recently developed alignment-free method MoSta

[18], for their ability to identify the TFBS motifs of structurally

and/or evolutionarily related TFs using Dataset-1 by the ‘‘best-hit’’

method. The methods in STAMP can be selected by specifying the

column comparison metric and alignment method [7]. MoSta uses

asymptotic covariance to measure the natural similarity between

two PFMs without the requirement of alignment [18].

As shown in Table 3, our KFV method with k = 4 and cosine

angle outperforms all the six major methods implemented in

STAMP on the 71 non-ZF PFMs, and achieves the same high

retrieval accuracy of 0.915 as MoSta (Smax). On the other hand,

the KFV method outperforms MoSta using either of its similarity

measures on the 25 ZF PFMs, and achieves the same high retrieval

accuracy of 0.6 as STAMP using PCC as the column similarity

metric. The accuracy of our algorithm as well as that of the

methods in STAMP and MoSta for the ZF PFMs is lower than

that achieved for the non-ZF PFMs. This might be largely due to

the fact that among the 25 ZF PFMs, 17 are from the ZF-C2H2

family containing TF proteins with highly divergent binding

motifs. Nevertheless, our method achieves an accuracy of 0.833

(the fourth column in Table 3) on the entire Dataset-1, which is

higher than any method in STAMP or MoSta.

We then compared the performance of our algorithm for motif

retrieval on Dataset-2 by the ‘best–hit’ method to that of STAMP

[8] and a Bayesian learning algorithm [23] as both algorithms

have been applied by their authors to this dataset for the same

purpose. We also included MoSta in this test (a GC content of 0.5

and the balanced threshold were used). As shown in Table 4, our

KFV algorithm (k = 4 and cosine angle) outperforms both STAMP

and Bayesian Learning on all these TF families with the exception

for the bZIP family where our algorithm achieves similar accuracy

to the Bayesian Learning method but is worse than STAMP.

Table 2. Performance of the KFV algorithm on the three
datasets measured as the accuracy from the ‘‘best hit’’ test.

Dataset-1 k = 1 k = 2 k = 3 k = 4 k = 5

- Euclidean 0.385 0.708 0.760 0.792 0.674

- PCC 0.250 0.677 0.802 0.823 0.768

- cosine angle 0.375 0.719 0.823 0.833 0.768

- KL-based 0.427 0.646 0.729 0.667 0.568

Dataset-2 k = 1 k = 2 k = 3 k = 4 k = 5

- Euclidean 0.531 0.789 0.854 0.868 0.859

- PCC 0.251 0.803 0.882 0.899 0.898

- cosine angle 0.475 0.800 0.873 0.901 0.893

- KL-based 0.562 0.777 0.811 0.823 0.805

Dataset-3 k = 1 k = 2 k = 3 k = 4 k = 5

- Euclidean 0.946 0.988 0.984 0.986 0.986

- PCC 0.323 0.978 0.980 0.984 0.984

- cosine angle 0.760 0.982 0.982 0.984 0.986

- KL-based 0.921 0.974 0.972 0.964 0.953

doi:10.1371/journal.pone.0008797.t002

Table 3. Comparison of the KFV algorithm with other
methods for motif retrieval using Dataset-1.

Accuracy

Method Non-ZF PFMs(71) ZF PFMs (25) Total (96)

KFV (k = 4, cosine) 0.915 0.600 0.833

STAMP (PCC) 0.887 0.600 0.813

STAMP (SSD) 0.859 0.560 0.781

STAMP (AKL) 0.831 0.520 0.750

STAMP (ALLR-LL) 0.859 0.400 0.740

STAMP (pCS) 0.761 0.560 0.708

STAMP (ALLR) 0.775 0.400 0.677

MOSTA (Smax) 0.915 0.440 0.792

MOSTA (Ssum) 0.817 0.560 0.750

The results are shown separately for the zinc-finger and non zinc-finger families.
The values in bold indicate the highest accuracy achieved for each category. In
parentheses beside each method are the primary parameter settings (column
comparison metric for STAMP or similarity measure score for MoSta). The
accuracy for STAMP using different column comparison metrics were taken
from [8], in which the evaluation was performed using the optimal alignment
strategies and gap scores on the same dataset. For MoSta, a GC content of 0.5
and the balanced threshold were used.
doi:10.1371/journal.pone.0008797.t003
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Compared with MoSta, both KFV and MoSta have similar

performance on this dataset except that KFV performs better in

C2H2 family. In general, our KFV algorithm can achieve similar

performance to these current existing methods, and it has slightly

higher overall performance (see the last row in Table 4).

To further compare our algorithm with STAMP and MoSta,

we conducted ROC analysis of the performance of the three

packages on the three datasets outlined in section 2.1. Notably, we

run STAMP [7,8] using PCC with ungapped Smith-Waterman

alignment (PCC/SWU) and SSD with gap open = 1 and gap

extension = 0.5 (SSD/SW) as the algorithms because they have the

best overall performance among others according to the authors.

For MoSta, we used a GC content of 0.5 (50%) and the balanced

threshold [18]. For each pair of PFMs, MoSta returns two

similarity scores (Smax and Ssum). As shown in Figure 1, our

algorithm clearly outperforms both algorithms in STAMP (PCC/

SWU and SSD/SW) as well as both metrics in MoSta on Dataset-

1, which is consistent with the results shown in Table 3. The

performance of our algorithm on Dataset-2, is also better than

both algorithms in STAMP, while MoSta (Smax score) slightly

outperforms our algorithm when the false positive rate is below

0.07. Although all the three methods perform well on Dataset-3

(Figure 1) because the PFMs derived from the same motif

alignment are generally very similar to each other, our KFV

method clearly outperforms both STAMP and MoSta. This

indicates that KFV could be a very useful metric for detecting

highly similar redundant PFMs in a motif dataset. These ROC

analyses on the three datasets again suggest that our method is

rather accurate, and the parameters setting (k = 4 and cosine angle

metric) is very robust in identifying similar and redundant motifs in

a motif dataset, and thus could be used for general purpose.

3.Performance of the KFV Algorithm for Hierarchical
Motif Clustering

Lastly, we evaluated our algorithm for hierarchical clustering of

similar motifs. To this end, we constructed a motif tree (PFM tree)

of the 71 non-ZF JASPAR PFMs from Dataset-1 using our KFV

algorithm with k = 4 and cosine angle being the distance metric

(Figure 2). The intra/inter cluster stability analysis of this tree

using the statistic CHlog suggests an optimal number of clusters of

16 for the 71 PFMs with one singleton cluster containing a PFM

HOMEO PBX1 (Figure 3). The logos of the remaining 15 clusters,

each is represented as a FBP, are shown in Figure S2. As shown in

Figure 2, overall, the dataset was grouped into homogeneous

clusters with respect to the structural classes of the corresponding

TFs. This result is consistent with the commonly accepted notion

that structurally related TFs may have similar binding preference

to DNA sequences, since the hierarchical clustering performed was

solely based on the binding preference information (PFMs).

In general, our clustering result on this dataset was quite similar,

albeit with subtle difference, to the result from Mahony et al. [8] on

the same dataset. Among the 71 PFMs, all seven from the ETS

family were clustered together and formed a monophyletic group.

The NUCLEAR RECEPTOR, HOMEO and REL clusters were

homogeneous, although some members of these families appear in

other clusters. The PFMs of the bHLH family were clustered into

three homogeneous groups, with six PFMs forming a bHLH-zip

subclass in one group and four PFMs in other two separate but

close clusters. The bZIP motifs were also clustered into three

separate groups, with four PFMs (CREB-like) in one cluster and

four (C/EBP-like) in the other two separate clusters. It should be

noted that one PFM from the FORKHEAD family (FOXL1) was

clustered with five MADS motifs, which could be explained by the

fact that TFBSs for FOXL1 contains only 3 information-rich

positions, which resembles partial MADS TFBSs. As shown in

Figure 2, the PFMs of the FORKHEAD and HMG families could

not be separated from each other. This was largely because the

binding sites of both TF families contain an AT rich core and

there was an overlap in four positions in these binding sites with

high information content.

Although our motif tree is in general very similar to that of

Mahony et al. (see Figure 5 in [8]), our tree seems to make more

biological sense. For instance, although both STAMP and our

algorithm clustered the 10 bHLH PFMs into three clusters, our

algorithm grouped the two clusters containing ‘‘standard’’ (non-

bHLH zip) bHLH PFMs closer to each other, while STAMP

grouped one cluster containing Myf and NHLH1 close to the

bHLH-zip cluster. On the other hand, both STAMP and our

algorithm failed to separate FPMs of the HMG and FORKHEAD

families, and grouped them together in a single cluster. However, as

shown in Figure 2, our algorithm grouped FORKHEAD and HMG

PFMs into two homogenous subgroups within that cluster, while

STAMP mixed the HMG subgroup with a HOMEO PFM. It

should be also noted that STAMP could separate the FOXL1 cluster

from the MADS cluster and assign FOXL1 a singleton cluster so

that MADS formed a homogenous group, while our algorithm failed

to do so, generating a non-homogenous MADS cluster.

We also constructed a motif tree using the MoSta method

(Smax). The tree (Figure S3) is quite similar to the one constructed

using the KFV algorithm (Figure 2). This result is expected as both

algorithms achieved the same accuracy for motif retrieval on those

71 non-ZF PFMs from Dataset-1 (Tble-3).

Discussion

Compared with the existing well-regarded alignment-based

motif similarity comparison methods (e.g. the methods in

STAMP), our method do not require an alignment between the

two compared motifs, thus it is free from the influence of the

largely arbitrary choice of the multiple parameters used in an

alignment method. Although sometime it is desired to have

different parameters for different applications, the real-valued gap

opening and extension scores as well as the choice of alignment

Table 4. Comparison of the KFV algorithm with other
methods for motif retrieval using Dataset-2.

Structural
Class Accuracy

KFV STAMP
MoSta (Smax/
Ssum)

Bayesian
Learning

bZIP (93) 0.92 0.94 0.90/0.94 0.92

C2H2 (74) 0.82 0.76 0.76/0.72 0.77

C4 (52) 0.98 0.98 0.98/0.94 0.91

Homeo (50) 0.88 0.82 0.82/0.92 0.85

Forkhead (49) 0.92 0.9 0.92/0.86 0.83

bHLH (37) 0.89 0.81 0.92/0.73 0.88

Total (355) 0.90 0.87 0.88/0.86 0.86

The number in the parentheses is the number of PFMs within that TF structural
class. The accuracies for STAMP and Bayesian Learning were taken from
Mahony et al. [8]. The accuracy for STAMP was evaluated using ungapped
Smith-Waterman alignment and PCC metric for column comparison. The
accuracy for KFV was evaluated with k = 4 and cosine angle distance. The values
in bold font indicate the highest accuracy achieved for each structural class.
doi:10.1371/journal.pone.0008797.t004
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Figure 1. Evaluation of three motif comparison algorithms using ROC curves. The ROC curves were plotted based on three datasets in
Table 1.
doi:10.1371/journal.pone.0008797.g001
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Figure 2. The motif tree of the 71 non-ZF PFMs in Dataset-1. The tree was constructed using the UPGMA algorithm based on the pairwise
distances calculated by our KFV method with k = 4 and cosine angle metric. The vertical dashed blue line represents the level at which the CHlog

metric estimates the optimal number of clusters. The 71 PFMs were grouped into 16 groups as indicated by the dashed line.
doi:10.1371/journal.pone.0008797.g002
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methods make it hard to optimize these parameter settings for a

certain task. Although our KFV approach is not parameter-free, it

only contains two parameters, that is, the k-mer length k and the

vector distance metric. Moreover, the constraint on the choice of k

from the motif length (5–25 bp) [1,2] and its integer-valued nature

make k be easily optimized for a vector distance metric. Intuitively,

the choice of k value depends on the distribution of the length of

motifs in a dataset. As indicated in the Figure S4, the distributions

of the length of motifs in the three datasets are very similar with an

average length about 10 bp, this might explain why our KFV

algorithm performs equally well in the three datasets with the same

k value (k = 4). Because a motif length is determined by biophysical

principles of protein-DNA interactions, its distribution should be

universal, rather than dataset- or genome-dependent as long as the

dataset is well-sampled. Thus we believe that our choice of k = 4

should be rather robust for the KFV algorithm. Furthermore, we

showed that our algorithm performs well with cosine angle as the

vector distance measure on the all the three datasets, suggesting

the combination of k = 4 and cosine angle could be used as default

parameters for general purpose. More importantly, our algorithm

achieved at least similar accuracy to the best-regarded methods in

STAMP (Table 3, and 4). Of course, one distinct advantage of

alignment-based methods is their faster running time, especially

for ungapped alignment (see Table S1). When ungapped

alignment strategy is chosen, the alignment task is reduced to a

much simpler position shift problem, and Mahony et al. found that

ungapped alignment works well for most datasets [8].

In addition, our algorithm achieves similar performance and

outperforms the recently developed alignment-free motif compar-

ison method, MoSta [18] in most of the cases tested (Table 3, 4 and

Figure 1). Our algorithm is also much faster than MoSta (Table S1).

Although both algorithms are based on the word statistics of motifs,

they differ significantly from each other in algorithmic designs.

Specifically, MoSta measures the ‘natural similarity’ between two

PFMs by calculating the asymptotic covariance between the sets of

compatible words associated with the two PFMs compared.

Although the idea of compatible words is similar to that of k-mers

in our algorithm, compatible words need to be full-length binding

site sequences, while k-mers have a fixed length and are usually

short (e.g. k = 4). In order to construct a compatible word set, a

threshold value is needed to filter out ‘non-compatibles’ and only

compatible words for each PFM are kept. On the other hand, KFV

keeps all the k-mers and their likelihood scores, which are used for

the comparison between PFMs. While enumerating all possible k-

mer (e.g. 256 for 4-mer) is fast, searching through the sequence

space to construct a compatible words set is time consuming,

especially for TFBSs (PFMs) with relatively long lengths, explaining

why MoSta is much slower than KFV (Table S1).

To conclude, our method in most cases can achieve similar

performance to or sometimes outperform other state-of-the-art

methods for identifying similar or redundant motifs in a database

as well as for clustering similar motifs of structurally or

evolutionarily related TFs. In this sense, it can be at least used

as an alternative to the current motif comparison methods. In

particular, we have shown that our method can be a better choice

for motif retrieval from a database and identifying highly similar

redundant motifs in a motif dataset. Additionally, due to its

robustness, our algorithm can be used in a wide range of

applications. In particular, as there are more and more studies

focusing on transcription regulation in both prokaryotes and

eukaryotes, TFBS data will increase exponentially in the next

several years. Therefore, it is foreseeable that more motif databases

will be created. We hope that our algorithm could contribute to

the efficient utilization of these databases.
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