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Abstract

Objectives: Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to
accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was
designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and
apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH).

Methods: ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial
contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined.

Results: Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the
effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested
as decreased mitochondrial membrane potential and accumulation of mitochondrial O2

N2. Myocardium from ethanol-
treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of
Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain
components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP,
total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-a, Fas receptor, Fas L and cytosolic AIF.

Conclusions: Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression
following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte
enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction
possibly through mitochondrial death pathway of apoptosis.

Citation: Guo R, Ren J (2010) Alcohol Dehydrogenase Accentuates Ethanol-Induced Myocardial Dysfunction and Mitochondrial Damage in Mice: Role of
Mitochondrial Death Pathway. PLoS ONE 5(1): e8757. doi:10.1371/journal.pone.0008757

Editor: Piero Anversa, Brigham and Women’s Hospital, United States of America

Received September 30, 2009; Accepted December 23, 2009; Published January 18, 2010

Copyright: � 2010 Guo, Ren. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA) 1R01 AA013412 and
University of Wyoming Northern Rockies Regional IDeA Networks for Biomedical Excellence (INBRE) (5P20RR016474). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jren@uwyo.edu

Introduction

Alcohol (ethanol) exposure often results in the development of

alcoholic cardiomyopathy characterized by cardiomegaly (dilated

cardiomyopathy), disruption of myofibrillary architecture and

myocardial dysfunction [1,2]. Although a number of scenarios

have been speculated towards the onset and progression of

ethanol-induced myopathic changes including direct cardiotoxicity

of ethanol and its metabolites [3], oxidative stress and accumu-

lation of fatty acid ethyl esters [4], the ultimate culprit factor(s)

behind alcohol-elicited cardiac damage remains elusive. Acetal-

dehyde, the primary metabolic product of ethanol, has drawn

some recent attentions as a candidate toxin for the onset and

development of alcoholic cardiomyopathy [5]. Data from our

laboratory have shown that acetaldehyde directly compromises

myocardial excitation-contraction coupling, sarco(endo)plasmic

reticulum (SR) Ca2+ release and cardiac contractile function

[5–8]. Meanwhile, facilitated clearance of acetaldehyde via mito-

chondrial aldehyde dehydrogenase (ALDH-2) was shown to be

beneficial in alleviating acute and chronic ethanol exposure-

induced contractile dysfunction and/or myocardial hypertrophy

[9,10], further supporting the detrimental role of acetaldehyde in

alcohol-induced myocardial damage. Nonetheless, the precise

mechanism of action behind the acetaldehyde-induced unfavor-

able myocardial functional and morphological changes following

either acute or chronic ethanol exposure remains elusive. Given

that apoptosis and mitochondrial damage are commonly present

in response to ethanol challenge and are thought to play an

essential role in alcoholism-elicited organ damage and complica-

tions [9,11], our current study was designed to address the role of

mitochondrial function and apoptosis in ethanol-induced myocar-

dial dysfunction. Here we took advantage of the novel transgenic

mouse model generated in our labs with the cardiac-specific

overexpression of alcohol dehydrogenase (ADH), which mimics an

‘‘acetaldehyde overloaded’’ model of alcoholic cardiomyopathy

[12]. Myocardial mitochondrial damage was assessed using

PLoS ONE | www.plosone.org 1 January 2010 | Volume 5 | Issue 1 | e8757



mitochondrial superoxide (O2
N2) accumulation and mitochondrial

membrane potential. Mitochondria are known to play a key role in

the maintenance of cardiac function and morphology through

regulation of reactive oxygen species production and apoptosis

[11]. Mitochondria are often themselves targets of oxidative stress

and contribute to mechanisms by which oxidative stress-related

cell signals control cardiac contractile function [11,13]. We further

examined the roles of the two main apoptotic domains including

one through activated death receptors in the cell surface (extrinsic

pathway) and another via signals originated within the cell

involving mitochondria as either an initiator or a magnifier

(intrinsic pathway) [14]. The death receptor pathway is usually

triggered by the linkage of specific ligands to membrane receptors

including tumor necrosis factor a (TNF-a) and Fas receptor [14].

To this end, expression of TNF-a, Fas, Fas ligand (FasL), Caspase-

8 and pro-caspase-8 was examined in wild-type FVB and ADH

hearts following acute ethanol challenge. To monitor the change

in mitochondrial death domain, cytosolic accumulation of pro-

caspase-9, cytochrome C and apoptosis inducing factor (AIF) was

examined. TUNEL assay and levels of the pro-apoptotic proteins

Bax and Caspase-3 as well as the anti-apoptotic protein Bcl-2 were

used as for overall assessment of apoptosis.

Materials and Methods

Experimental Animals and Acute Ethanol Exposure
All animal procedures were conducted in accordance with

humane animal care standards outlined in the NIH Guide for the

Care and Use of Experimental and were approved the University

of Wyoming Animal Care and Use Committee. Production of the

ADH transgenic mice was described in detail previously [15]. In

brief, using the albino Friend Virus-B type (FVB) mice, the cDNA

for murine class I ADH was inserted behind mouse a-myosin

heavy chain promoter to achieve cardiac-specific overexpression.

This cDNA was chosen because class I ADH is the most efficient

in the oxidation of ethanol. A second transgene with a cDNA

encoding tyrosinase was co-injected with ADH. This enzyme

produces coat color pigmentation in albino mice and was used to

conveniently identify transgenic animals. All mice were housed in

a temperature-controlled room under a 12 hr/12 hr-light/dark

and allowed access to tap water ad libitum. For acute ethanol

challenge, adult male FVB and ADH mice (4–6 month-old) were

injected intraperitoneally with ethanol (3 g/kg/d) for 3 consecu-

tive days prior to euthanasia under anesthesia (ketamine/xylazine:

3:1, 1.32 mg/kg, i.p.).

Assessment of Ethanol and Acetaldehyde Levels
Upon sacrifice under anesthesia, blood plasma was collected

and was stored in sealed vials at 280uC. Immediately before

analysis, the samples were warmed to 25uC. A 2 ml aliquot of the

headspace gas from each vial was removed through the septum on

the cap with a gas tight syringe and transferred to a 200 ml loop

injection system on a Hewlett-Packard 5890 gas chromatograph

(GC) equipped with a flame ionization detector. Ethanol,

acetaldehyde and other components were separated on a 9-meter

VOCOL capillary column (Supelco) with film with 1.8 mm

thickness and an inner diameter of 0.32 mm. The temperature

was held isothermally at 30uC, and the carrier gas was helium at a

flow rate of 1.8 ml/min. Under these conditions, separation of

acetaldehyde from ethanol and other compounds was complete in

one minute. Quantitation was achieved by calibrating the GC

peak areas against those from headspace samples of known ethanol

and acetaldehyde standards, over a similar concentration range as

the tissue samples in the same buffer [16].

Mouse Heart Perfusion
Isolated mouse hearts were retrogradely perfused with a Krebs-

Henseleit buffer containing 7 mM glucose, 0.4 mM oleate, 1% BSA

and a low fasting concentration of insulin (10 mU/ml). Hearts were

perfused at a constant flow of 4 ml/min (equal to an aortic pressure

of 80 cmH2O) at baseline for 60 min. A fluid-filled latex balloon

connected to a solid-state pressure transducer was inserted into the

left ventricle through a left atriotomy to measure pressure. LVDP,

the first derivative of LVDP (6 dP/dt) and heart rate were recorded

using a digital acquisition system at a balloon volume which resulted

in a baseline LV end-diastolic pressure of 5 mmHg [17].

Histological Examination
Following anesthesia, hearts were excised and immediately

placed in 10% neutral-buffered formalin at room temperature for

24 hrs after a brief rinse with PBS. The specimen were embedded

in paraffin, cut in 5 mm sections and stained with hematoxylin and

eosin (H&E). Cardiomyocyte cross-sectional areas were calculated

on a digital microscope (x400) using the Image J (version1.34S)

software [9].

Isolation of Murine Cardiomyocytes
After ketamine/xylazine sedation, hearts were removed and

perfused with Krebs-Henseleit bicarbonate (KHB) buffer contain-

ing (in mM): 118 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 25

NaHCO3, 10 HEPES and 11.1 glucose. Hearts were digested with

Table 1. Biometric parameters of FVB and ADH mice challenged with ethanol.

Parameter FVB FVB-EtOH ADH ADH-EtOH

Body Weight (g) 26.860.9 26.260.8 28.360.9 28.660.9

Heart Weight (mg) 14066 13067 14065 14166

Heart/Body Weight (mg/g) 5.2360.16 4.9460.19 5.6960.18 4.9560.23

Liver Weight (g) 1.2660.08 1.3060.05 1.4060.05 1.3960.04

Liver/Body Weight (mg/g) 47.262.5 49.460.8 49.762.1 49.361.8

Kidney Weight (g) 0.3160.02 0.3360.02 0.3460.02 0.3760.04

Kidney/Body Weight (mg/g) 11.560.3 12.660.4 12.160.6 13.260.5

Blood Alcohol (mg/dl) Undetectable 59.3610.3* Undetectable 62.7621.5*

Cardiac Acetaldehyde Levels (nmol/mg) 0.8760.53 35.364.2* 0.6060.40 99.9612.0*,#

Mean 6 SEM, n = 12–15 mice per group, undetectable: ,2.5 mg/dl, *p,0.05 vs. FVB group, #p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.t001

ADH, Ethanol and Mitochondria
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collagenase D for 20 min. Left ventricles were removed and

minced before being filtered. Myocyte yield was 50%–70% which

was not overtly affected by ADH or ethanol challenge [9].

MitoSOX Red Fluorescence Measurement of
Mitochondrial O2

N2

Cardiomyocytes from FVB and ADH mice with or without

ethanol treatment were loaded with MitoSOX Red (2 mM,

Molecular Probes) for 10 min. Maximum fluorescence uptake

interval was evaluated by preliminary experiments. After 1 hr’s

incubation at 37uC, cells were rinsed with the perfusion buffer and

MitoSOX Red fluorescence intensity was captured at 510/580 nm

using an Olympus BX51 microscope equipped with a digital cooled

charged-coupled device camera. InSpeck microspheres (Molecular

Probes) were used to calibrate MitoSOX Red fluorescence by

calculating the ratio of myocyte fluorescent intensities to the

fluorescent beads [18]. To assess the effect of the ethanol metabolite

acetaldehyde on mitochondrial O2
N2 generation, freshly isolated

cardiomyocytes from non-ethanol-treated FVB mice were incubat-

ed with acetaldehyde (100 mM) for 4 hrs at 37uC prior to

determination of the MitoSOX Red fluorescence.

Measurement of Mitochondrial Membrane Potential
Mitochondrial membrane potential (DYm) was detected in

cardiomyocytes suspended in a HEPES-saline buffer [19]. Briefly,

after a 10-min incubation with 5 mM JC-1 at 37uC, cells were

washed twice by sedimentation using HS buffer free of JC-1.

Cardiomyocytes were examined every 10 min for 120 min under

a confocal laser scanning microscope (Leica TCS SP2) at

excitation wavelength of 490 nm and the emission fluorescence

was recorded at 530 nm (monomer form of JC-1, green) and

590 nm (aggregate form of JC-1, red). Results in fluorescence

intensity were expressed as 590-to-530-nm emission ratio. The

mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydra-

zone (CCCP, 10 mM) was used as a positive control for

mitochondrial membrane potential measurement [20].

TUNEL Staining
TUNEL (terminal deoxynucleotidyl transferase-mediated

dUTP nick-end labeling) assessment of myonuclei positive for

DNA strand breaks was determined using a fluorescence detection

kit (Roche Applied Science, Indianapolis, IN) and fluorescence

microscopy. After perfusion, mouse hearts were removed and fixed

in 4% paraformaldehyde overnight at room temperature. Cross

sections (5 mm) were placed in a cryostat (223uC) and fixed in 4%

paraformaldehyde 20 min and then fixed Sections were permea-

bilized with 0.1% Triton X-100 in 0.1% sodium citrate for 2 min

on ice. TUNEL reaction mixture containing terminal deoxynu-

cleotidyl transferase (TdT), fluorescein-dUTP was added to the

sections in 50-ml drops and incubated for 60 min at 37uC in a

humidified chamber in the dark. The sections were rinsed three

times in PBS for 5 min each. Following embedding, sections were

visualized with an Olympus BX-51 microscope equipped with an

Olympus MaguaFire SP digital camera. DNase I and label

solution were used as positive and negative controls. To determine

the percentage of apoptotic cells, the TUNEL-positive nuclei and

TUNEL-negative cells were counted using the ImagePro image

analysis software (Media Cybernetics, Bethesda, MD) [21].

Western Blot Analysis
The total and cytosolic fractions of protein were prepared as

described [9,22]. Samples containing equal amount of proteins

were separated on 10% SDS-polyacrylamide gels in a minigel

apparatus (Mini-PROTEAN II, Bio-Rad) and transferred to

nitrocellulose membranes. The membranes were blocked with

5% milk in TBS-T, and were incubated overnight at 4uC with

anti-ANP, anti-Bax, anti-Bcl-2, anti-caspase-3, anti-pro-caspase-8,

anti-pro-caspase-9, anti-TNFa, anti-Fas receptor, anti-Fas L, anti-

AIF, and anti-cytochrome C antibodies. After washing blots to

remove excessive primary antibody binding, blots were incubated

Figure 1. Effect of ethanol exposure on cardiac function: Effect of
acute ethanol exposure on cardiac contractile function using a
Langendorff perfusion system in FVB and ADH mice. A: Left
ventricular developing pressure (LVDP); B and C: Maximal velocity of
pressure development (+dP/dt) and decline (2dP/dt). Mean 6 SEM, n = 5–
10 hearts per group, * p,0.05 vs. FVB, # p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.g001
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for 1 hr with horseradish peroxidase (HRP)–conjugated secondary

antibody (1:5,000). Antibody binding was detected using enhanced

chemiluminescence (Amersham Pharmacia, Piscataway, NJ), and

film was scanned and the intensity of immunoblot bands was

detected with a Bio-Rad Calibrated Densitometer (Model: GS-

800). All tissue samples were run in duplicates. a-Tubulin was used

as the loading control.

Data Analysis
Data are Mean 6 SEM. Difference was calculated by repeated

measures analysis of variance (ANOVA) followed by a Tukey’s post

hoc analysis. A p value,0.05 was considered significant.

Results

General Features and Whole Heart Function of FVB and
ADH Mice Treated with Alcohol

Neither ethanol treatment nor ADH transgene altered body and

organ weights or organ size (shown as the organ-to-body weight

ratio). As expected, acute ethanol exposure elicited comparable

elevations in blood alcohol level, which was minimal in the non-

ethanol-treated mice. Cardiac acetaldehyde levels were signifi-

cantly increased following ethanol challenge, the effect of which

was exacerbated by the ADH transgene (Table 1). Assessment of

whole heart function including LVDP, maximal velocity of

pressure development and decline (6 dP/dt) revealed a significant

decline following ethanol treatment, the effect of which was

accentuated by ADH (Fig. 1).

Effect of Acute Ethanol Exposure on Myocardial
Histology in FVB and ADH Mice

To assess the impact ADH on myocardial histology following

acute ethanol challenge, the cardiomyocyte cross-sectional area

was examined. In the H&E staining sections, acute ethanol

challenge increased the cardiomyocyte transverse cross-section

area. The ethanol-induced increase in cardiomyocyte cross-

sectional area was significantly augmented by the ADH transgene

(Fig. 2).

Figure 2. Histological analyses following ethanol exposure: Histological analyses hearts from FVB and ADH mice with or without
ethanol exposure. A - D: H&E staining micrographs of transverse sections of left ventricular myocardium (x 400) from FVB, FVB-EtOH, ADH and
ADH-EtOH groups; E: Quantitative analysis of cardiomyocyte cross-sectional (transverse) area using measurements of ,150 cardiomyocytes from 3–5
mice per group. Mean 6 SEM, * p,0.05 vs. FVB, # p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.g002
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Effect of Acute Ethanol Exposure on Mitochondrial O2
N2

Production and Membrane Potential
To evaluate mitochondrial integrity and function, mitochon-

drial O2
N2 production and membrane potential were detected

using the MitoSOX Red and JC-1 fluorescent probes, respectively.

Our data revealed that acute ethanol exposure significantly

promoted mitochondrial O2
N2 production and decreased mito-

chondrial membrane potential in cardiomyocytes, the effects of

which were accentuated by ADH. The ADH transgene itself did

not elicit any significant effect on mitochondrial O2
N2 production

or mitochondrial membrane potential (Fig. 3 and Fig. 4).

Moreover, the ADH enzymatic metabolite of ethanol, acetalde-

hyde (100 mM), significantly promoted mitochondrial O2
N2

production (Fig. 3F).

Effect of Acute Ethanol Exposure on Myocardial
Apoptosis in FVB and ADH Mice

Acute ethanol exposure is often associated with enhanced

apoptosis [9]. The acute ethanol challenge-elicited effect on

myocardial mitochondrial damage was further supported by

apoptotic assay using TUNEL staining. The TUNEL-positive

nuclei visualized in fluorescein green as a percentage of all nuclei

Figure 3. Mitochondrial O2
N2 generation following ethanol exposure: Mitochondrial O2

N2 generation using the MitoSOX Red probe
in cardiomyocytes from FVB and ADH mice with or without acute ethanol exposure. Cohorts of non-ethanol-treated FVB cardiomyocytes
were incubated with the ADH enzymatic metabolite of ethanol, acetaldehyde (ACA, 100 mM), for 4 hrs at 37uC prior to MitoSOX Red measurement.
A–E: Representative fluorescence images (40x) from FVB, FVB-EtOH, ADH, ADH-EtOH and FVB-ACA groups. F: Pooled data. Mean 6 SEM, n = 15–20
fields per group, * p,0.05 vs. FVB, # p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.g003

Figure 4. Mitochondrial function following ethanol exposure:
Cardiomyocyte mitochondrial membrane potential (MMP) in
FVB and ADH mice with or without acute ethanol exposure. JC-
1 fluorochrome was shown as the ratio of red to green fluorescence.
CCCP was used a positive control. Mean 6 SEM, n = 9–14 cells per
group, * p,0.05 vs. FVB, # p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.g004
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stained with DAPI (blue) was significantly higher in myocardium

from acute ethanol-treated FVB mice, the effect of which was

exacerbated by ADH. ADH transgene itself did not affect the

TUNEL-positive nuclei in the absence of ethanol exposure (Fig. 5).

Effect of Acute Ethanol Challenge on ANP and Apoptotic
Protein Makers in FVB and ADH Mice

Our data revealed that neither acute ethanol challenge nor

ADH transgene affected the hypertrophic marker ANP expression.

In line with the TUNEL assay observation, our further results

indicated that ethanol treatment significantly increased expression

of the pro-apoptotic proteins Bax and Caspase-3 while decreasing

the level of the anti-apoptotic protein Bcl-2. Although ADH failed

to alter the ethanol-induced response of Caspase-3, it significantly

augmented ethanol-elicited responses in Bax and Bcl-2. ADH

transgene itself did not elicit any effect on the expression of Bax,

Bcl-2 and Caspase-3 in the absence of ethanol treatment (Fig. 6).

We went on to examine the involvement of the death receptor and

mitochondrial death pathways in ADH and ethanol-associated

apoptotic effects. Neither ethanol nor ADH transgene affected the

levels of the main death receptor apoptotic proteins TNFa, Fas

receptor and Fas ligand (FasL) and Caspase-8 (Fig. 7). Examina-

tion of the mitochondrial death pathway depicted that acute

ethanol treatment significantly promoted cytosolic accumulation of

cytochrome C and pro-caspase-9, the effect of which was

augmented by ADH. Neither ethanol nor ADH altered the levels

of total pro-caspase-9, cytosolic AIF and the death receptor

mediator cytosolic pro-caspase-8 (Fig. 8).

Discussion

The hallmarks of alcoholic cardiomyopathy include compro-

mised cardiac morphology and myocardial contractility [1,2,5].

This is coincided with our observations of reduced myocardial

contraction and enlarged cardiomyocyte area in ethanol-chal-

lenged murine hearts. Furthermore, data from our present study

revealed overt mitochondrial damage and apoptosis following

ethanol challenge, which may contribute to the ethanol-elicited

myocardial histological and functional alterations. More strikingly,

our study provided evidence for the first time that cardiac

mitochondrial damage and apoptosis following ethanol exposure

may be exacerbated by overexpression of ADH, which produces

much more local acetaldehyde in the hearts consistent with the

previous findings [15,16]. These observations are in favor of the

notion that facilitated ethanol metabolism via ADH enzyme

exacerbates ethanol-induced myocardial dysfunction, histological

alteration and apoptosis possibly related to mitochondrial damage.

Data from our present study revealed that ADH accentuated

ethanol-induced cardiomyocyte hypertrophy with little change in

gross weight of the heart or expression of the hypertrophic marker

ANP. These seemingly conflicting data may be a concerted result

from hypertrophy and apoptosis in murine cardiomyocytes. An

earlier study using the same ADH transgenic mice noted overt

Figure 5. TUNEL staining following ethanol exposure: Photomicrograph showing TUNEL staining in cardiomyocytes from FVB and
ADH mice with or without acute ethanol treatment. TUNEL positive nuclei were visualized with fluorescein (green). A: FVB; C: FVB-EtOH; E:
ADH; and G: ADH-EtOH. All nuclei were stained with DAPI shown in blue color. B: FVB; D: FVB-EtOH; F: ADH; and H: ADH-EtOH. Pooled data are shown
in panel I. Mean 6 SEM, n = 4–6 mice per group, * p,0.05 vs. FVB, # p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.g005
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cardiac hypertrophy and upregulated expression of the hypertro-

phic markers a-skeletal actin and atrial natriuretic factor in ADH

but not FVB mice after 10 weeks of alcohol feeding [23]. To this

end, it is not surprising for the lack of change in ANP in response

to acute ethanol challenge in our experimental settings. The

enlarged cardiomyocyte size may be a result of certain

hemodynamic changes following acute ethanol challenge or binge

drinking although further study is warranted. Acetaldehyde is

known to trigger both oxidative stress and apoptosis via activation

of stress signaling such as c-Jun phosphorylation [5,24,25]. This is

supported by our experimental findings of elevated O2
N2

production and TUNEL-positive apoptotic cells in ADH murine

hearts following ethanol challenge. Enhanced O2
N2 and oxidative

stress are known to induce hypertrophy in cardiomyocytes. As the

major metabolite of ethanol, acetaldehyde enhances free radical

generation through aldehyde oxidase and xanthine oxidase-

associated oxidation, leading to accumulation of O2
N2 as shown

in our present study [5,26–28]. Our earlier report indicated that

ADH produced greater levels of lipid peroxidation and protein

carbonyls in hearts from the alcohol-fed mice [16], indicating a

key role of free radical formation in alcohol- and acetaldehyde-

induced cardiac damage. To the contrary, the occurrence of

apoptosis contributes to the loss of cardiomyocytes, which is

deemed as a predictor of adverse outcomes for cardiac diseases

and eventually heart failure [29]. With the concurrent hypertro-

phy and loss of cell number in cardiomyocytes, it is not surprising

to find the unchanged gross heart weight in response to acute

ethanol exposure.

Mitochondrial integrity plays a pivotal role for cell survival and

function [11]. Loss of mitochondrial integrity leads to the

development of several diseases such as neurodegenerative

disorders, diabetes and ischemia reperfusion-induced heart damage.

Recently, mitochondrial dysfunction also received some attentions

in the onset of alcoholic complications [11]. Data from our current

study revealed elevated mitochondrial O2
N2 production and

reduced mitochondrial membrane potential in hearts following

acute ethanol exposure. More intriguingly, the ethanol-induced

changes in mitochondrial membrane potential and mitochondrial

O2
N2 production were exaggerated by the ADH transgene (or

mimicked by the ethanol metabolite acetaldehyde). These observa-

tions were in line with the changes in myocardial contractility and

histology in both FVB and ADH mice following ethanol exposure,

suggesting the essential role of mitochondria in ADH-induced

exacerbation of myocardial injury in response to ethanol exposure.

Mitochondrial damage has been demonstrated to result in

apoptosis through mitochondrial pathways [11]. Apoptosis or

programmed cell death plays a key role in the pathogenesis of a

variety of diseases including atherosclerosis, myocardial ischemia

Figure 6. Cardiac hypertrophy and apoptosis following ethanol exposure: Expression of the hypertrophic marker ANP and
apoptosis-related proteins in myocardium from FVB and ADH mice with or without acute ethanol exposure. A: ANP; B: Bax; C: Bcl-2;
and D: Caspase-3. Insets: Representative gel blots depicting expression of ANP, Bax, Bcl-2, Caspase-3 and a-Tubulin (loading control). Mean 6 SEM,
n = 5–10 samples per group, all samples were in duplicates with the average being used, * p,0.05 vs. FVB, # p,0.05 vs. FVB-EtOH group.
doi:10.1371/journal.pone.0008757.g006

ADH, Ethanol and Mitochondria
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and reperfusion injury, diabetic cardiomyopathy and alcoholic

cardiomyopathy [30–33]. Apoptosis is closely associated with a

number of cardiovascular anomalies such as myocardial infarc-

tion, dilated cardiomyopathy, end-stage heart failure, ventricular

dysplasia, hypertrophic cardiomyopathy and ischemia reperfusion

injury in both patients and animal models [34–39]. As mentioned

earlier, two major defined pathways are involved in the apoptotic

signaling cascade in the heart namely the death receptor and

mitochondria pathways, both of which mainly depend on the

activation of caspase [40,41].

In this study, the decreased expression of Bcl-2, up-regulated

expression of caspase-3 and Bax, as well as increased TUNEL

positive cells depicted the presence of a global myocardial apoptosis

following acute ethanol exposure. Our observation of significantly

increased cytosolic expression of cytochrome C and pro-caspase-9

in ethanol-treated mice depicts an essential role of the mitochon-

drial death pathway in ethanol-induced apoptosis. The fact that the

ADH transgene augmented the ethanol-induced cytosolic accumu-

lation of pro-caspase-9 and cytochrome C further substantiated the

critical role of acetaldehyde in ethanol-induced mitochondrial

damage, which is consistent with the ADH-accentuated mitochon-

drial O2
N2 production and mitochondrial membrane potential loss

following acute ethanol challenge. It has been demonstrated that

pro-caspase-8 and pro-caspase-9 are predominantly localized in

mitochondria which are released into cytoplasm upon permeabi-

lization of the outer mitochondrial membrane upon apoptosis

stimulation or oxidative stress [42,43]. AIF, another important

factor normally localizes to the mitochondrial inter-membrane

space, plays a critical role in the caspase-independent apoptosis

[44]. Our finding of unaltered cytosolic AIF expression does not

seem to favor the involvement of a caspase-independent apoptotic

process in ethanol-induced cell death. It should be mentioned that

our results cannot directly address the intimate interplay between

mitochondrial damage and myocardial dysfunction in these mice

following acute ethanol exposure. Our current findings of

unchanged expression of TNF-a, Fas receptor, Fas L, caspase-8

and pro-caspase-8 in FVB and ADH mice in response to ethanol

exposure suggest a minimal role of the death receptor pathway in

ethanol-and ADH-elicited apoptotic responses.

In summary, the present study has provided convincing

evidence that cardiac overexpression of ADH exacerbated acute

ethanol exposure-induced myocardial contractile dysfunction

associated with mitochondrial damage and apoptosis, supporting

an essential role of acetaldehyde and mitochondrial dysfunction in

ethanol-elicit alcoholic myopathic alteration. Although it is still

premature to discern the precise contributions from various death

Figure 7. Death receptor pathway in myocardium following ethanol exposure: Expression of Caspase-8 (A), TNFa (B), Fas receptor
(C) and Fas Ligand (Fas L, D) in myocardium from FVB and ADH mice with or without acute ethanol exposure. Insets: Representative
gels using specific antibodies. Mean 6 SEM, n = 3–6 samples per group, all samples were in duplicates with the average being used.
doi:10.1371/journal.pone.0008757.g007
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pathways including the newly identified autophagy mechanism to

ethanol-induced cell death and tissue injury, our data should shed

some lights towards a better understanding of the role of

mitochondria and mitochondrial death pathway in alcohol-

induced myocardial dysfunction. Although certain mitochondria-

centered medicinal product (e.g., MacroMicroTM Cleanse &

Detox) has been developed to improve mitochondrial function

against acetaldehyde-induced handover and other complications

following alcohol intake, further scrutiny is required to unveil the

clinical value of mitochondrial protection under the state of both

binge drinking and chronic alcoholism.
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