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Abstract

The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling
events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with
ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human
Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four
proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was
observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70
function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs
and by accessory proteins.

Enhanced version: This article can also be viewed as an enhanced version in which the text of the article is integrated
with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this
enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
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Introduction

The heat shock-70 proteins (Hsp70s) are chaperones involved in

crucial cellular functions in all kingdoms of life. Hsp70-family

function, structure, and mechanisms have been studied to great

detail using cognate HSPA8/Hsc70 [1], stress-induced HSPA1/

Hsp70-1/Hsp72 [2,3] the ER-resident HSPA5/Bip [4], and the

bacterial ortholog, DnaK [5-7]. Hsp70 proteins bind and release

client polypeptides in a cycle that is coupled to an ATPase activity

[8]. The overall domain structure is conserved: The N-terminal

nucleotide binding domain (NBD) with ATPase activity is joined

by a flexible linker to the C-terminal peptide substrate binding

domain (SBD). Alternation between the ATP state with low

affinity and high exchange rates for clients and the ADP state with

high affinity and low client exchange rates is tightly regulated

by several classes of associated proteins, or cochaperones [9].

Allosteric communication with the SBD and interactions with

cochaperones and nucleotide exchange factors all critically depend

on the conformation of the NBD. Therefore, understanding the

conformational changes in the NBDs of Hsp70 proteins is key to

understanding how the ATPase motor drives the client binding

and release cycle of the Hsp70 machine.

The human genome contains over 40 hsp70 sequences. Many of

them are pseudogenes, but at least eleven distinct genes located on

several chromosomes are translated into protein [9–11]. These

Hsp70 isoforms differ from each other by amino acid sequence,

expression levels, subcellular localization, and induction in

response to different cues. Both constitutively expressed and

stress-induced Hsp70 proteins have been identified [12]. Consti-

tutively expressed Hsp70 chaperones have housekeeping functions

such as the folding of nascent polypeptides, protein translocation

between cellular compartments, degradation of unstable and

misfolded proteins, and regulation of assembly and disassembly of

protein complexes. Other Hsp70 members can be induced by

various cellular stresses, such as heat stress, heavy metals,

radiation, ischemia, nitric oxide radicals, or other stimuli that

activate stress transcription factors. Stress induced Hsp70s prevent

accumulation of stress denatured proteins.

Several of the human cytosolic Hsp70 isoforms have yet to be

extensively characterized. Heat shock 70-like protein-1 (HSPA1L,

also called Hsp70-hom or Hsp70t) is a constitutively expressed,

non-inducible cytosolic protein with high abundance in testis

[13,14]. Polymorphisms in the HSPA1L gene, predominantly in

the region coding for the client binding domain, have been linked
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Figure 1. Relationship between the ATPase domains of human Hsp70 isoforms. Sequence alignment of the NBDs of selected Hsp70
proteins. Secondary structure elements are indicated for HSPA1A above and for HSPA6 below the alignment. Sequences shown are human HSPA1A
(1HJO; gi:5123454); HSPA1L (3GDQ; gi:124256496); HSPA2 (3I33; gi:13676857); bovine Hsc70 (PDB entry 1YUW; gi:76253709), E.coli DnaK (1DKG;
gi:16128008); HSPA5 (3IUC; gi:16507237); HSPA9 (no structure available; gi:24234688); and HSPA6 (3FE1; gi:34419635).
doi:10.1371/journal.pone.0008625.g001
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to disease [15,16]. HSPA2/Hsp70-2 is a constitutively expressed

protein with high levels in testis [17,18]. HSPA2 is essential for

maturation of male gametocytes [19] and is linked to male

infertility [20,21]. While it is undetectable in many tissues HSPA2

is involved in cancer cell survival [22]. The HSPA6/Hsp70B’ gene

is strictly inducible with no detectable basal expression [23,24].

The HSPA6 protein is nuclear and cytosolic. HSPA6 induction is

a sensitive biomarker of cellular stress; the protein appears

transiently in response to heat stress whereas HSPA1A/Hsp72

levels persist for days [25].

The major Hsp70 protein of the endoplasmic reticulum is

HSPA5, originally called immunoglobulin heavy chain binding

protein (BiP), or glucose regulated protein-78 (GRP78) [26,27].

HSPA5 has crucial roles in the assembly of ER proteins and

protein complexes and the unfolded protein response [28]. Both

HSPA5 and its interaction partners are linked to a number of

diseases including infectious diseases, inherited diseases, and

several types of cancer [29–31].

Despite the large number of NBD crystal structures determined

under different nucleotide conditions, the conformational changes

that ultimately drive the Hsp70 chaperone machine have never

been visualized by X-ray crystallography of NBDs alone. Instead,

the NBDs all crystallized in a closed conformation that is

interpreted as resembling the ATP-bound state. Only crystal

complexes of NBDs and nucleotide exchange factors have yielded

structures with a partially opened nucleotide binding cleft [32–36].

Also, the small cleft between subdomains IA and IB that is

expected to adopt different opening states in allosteric regulation

of the SBD [7] looks similar in all NBD crystal structures. We used

X-ray crystallography to address the question whether previously

less well characterized human Hsp70 isoforms might adopt

different conformations in the absence of binding partners. We

determined the structures of the ATPase domains of HSPA1L,

HSPA2, HSPA5, and HSPA6. Despite different nucleotides and

divalent cations present during protein purification and crystalli-

zation these structures are highly similar to the crystal structure of

HSPA1A and other previously determined Hsp70 NBDs. HSPA5

crystallized with ADP and calcium in the active site, and with

calcium bound to a secondary site, whereas we observed the

products of ATP hydrolysis (ADP and inorganic phosphate) and a

divalent cation in the active sites of the remaining structures. We

conclude that in isolation, the ATPase domains of these human

Hsp70 isoforms have rather similar properties to those of the

previously determined isoforms.

Results and Discussion

A common feature of Hsp70 ATPase domains is that, despite

the large conformational changes they are predicted to undergo in

their physiological context, their crystal structures are highly

similar under different nucleotide conditions. We addressed the

question whether this is also true for the NBDs of HSPA1L,

HSPA2, HSPA5 and HSPA6. These share between 67 and 92%

sequence identity with the NBD of the major stress inducible

isoform, HSPA1A (Figure 1). We used a multiconstruct approach

[37] to produce the NBDs of these human Hsp70 isoforms for

structure determination by X-ray crystallography. We also

produced the NBD of HSPA1A, the structure of which has been

determined previously [38,39]. All five proteins were straightfor-

ward to produce in E. coli, although the soluble expression levels

for HSPA5/BiP were relatively low.

Crystals of the five proteins were obtained with NBD constructs

that contained either the full length N-terminus or short N-

terminal truncations and with ADP and either Mg2+- or Mn2+-ions

present in the crystallization solution (Figure 2 and Table 1).

Crystals diffracted to a resolution of between 1.8 and 2.2 Å except

for the HSPA2 crystals which diffracted to 1.3 Å. The structures

were solved by molecular replacement (Table 2). In all ATPase

domains except for that of HSPA5/BiP the products of ATP

hydrolysis, including inorganic phosphate, were observed. Exam-

ples of the electron density around the bound nucleotide are

shown for HSPA2 and HSPA5 (Figure 3).

The overall structures of the four human Hsp70 ATPase domains

that were determined here for the first time all closely resemble the

structure of HSPA1A and related previously determined structures

(Figure 4). The HSPA1A NBD structure determined by us was

virtually identical with the HSPA1A NBD structure published

previously (PDB entry 1HJO; [39]). The canonical Hsp70 fold, with

the common placement of secondary structural elements, was also

observed for HSPA5/BiP, the least conserved member of the five

proteins studied by us (Figure 4A). Pairwise comparison among

these NBDs shows that for ,70% of the backbone traces the rms

difference is below 0.5 Å (Figure 4B). The largest rms deviation in

the Ca positions was found for HSPA5, where the overall rms value

is higher than 1.3 Å (only 17% of the backbone trace shows an rms

difference lower than 0.5 Å). To illustrate this we color coded the

rmsd in Ca atom positions between the pairs HSPA6 - HSPA1L,

HSPA6 - HSPA5, and HSPA6 - E.coli DnaK, and mapped them

onto the structure of HSPA6 (Figure 4C). This analysis shows that

the most prominent difference between the HSPA5 and the

canonical Hsp70 structures is a shift in subdomain IIB.

Figure 2. Purification and crystallization of Hsp70 isoforms. (A)
Coomassie-stained SDS-polyacrylamide gel showing the purity of the
crystallized proteins. (B-F) Examples of crystals grown under the
conditions that yielded the datasets. (B) HSPA1A; (C) HSPA1L; (D)
HSPA2; (E) HSPA5; (F) HSPA6.
doi:10.1371/journal.pone.0008625.g002
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Table 2. Summary of data acquisition and structure refinement details*.

Protein HSPA1A HSPA1L HSPA2 HSPA5 HSPA6

PDB entry 3JXU 3GDQ 3I33 3IUC 3FE1

Search model 1BA0 1BA0 3FE1 3I33 2E88

Ligand ADP, PO4, Mg2+ ADP, PO4, Mn2+, GOL ADP, PO4, Mg2+, GOL ADP, Ca2+ ADP, PO4, Mg2+, Cl, PGE

Data collection

X-ray source Cu-Ka radiation DIAMOND I03 ESRF ID23-1 BESSY 14.1 BESSY 14.1

Wavelength (Å) 1.54166 0.98000 0.97930 0.91841 0.91841

Space group P212121 P212121 P212121 P1 C121

Cell dimensions

a, b, c (Å) 46.013, 63.298, 144.197 70.07, 70.7, 97.5 48.180, 78.6, 93.99 48.212, 51.795, 94.994 236.45, 105.4, 73.59

a, b, c (u) 90, 90, 90 90, 90, 90 90, 90, 90 98.85, 94.88, 117.61 90, 101.04, 90

Resolution (Å) 26.43–2.14 (2.24–2.14) 25.0–1.8 (1.85–1.8) 26.26–1.3 (1.39–1.3) 35.0–2.13 (2.13–2.19) 35.0–2.2 (2.28–2.2)

Rmerge 0.093 (0.297) 0.07 (0.2) 0.136 (0.266) 0.13 (0.8) 0.12 (0.6)

I/s(I) 20.6 (6.87) 27.9 (9.36) 11.6 (0.5) 11.42 (2.9) 10.54 (2.8)

Completeness (%) 98.3 (88.8) 99.3 (93.2) 99.2 (99.3) 94.4 (95.3) 98.6 (98.1)

Redundancy 12.7 (8.45) 13.7 (7.9) 6.9 (7.0) 3.8 (3.7) 3.9 (3.9)

Refinement

Resolution (Å) 10.54–2.14 23.83–1.8 25.56–1.3 29.12–2.4 33.69–2.2

No. reflections 22346 42856 83300 28620 88609

Rwork
{/Rfree

{ (%) 20.9/26.4 17.2/20.2 18.4/19.9 19.4/27.0 20.1/23.8

Molecules/a.u. 1 1 1 2 3

No. atoms

Protein 2930 2936 2934 5912 8868

Ligands 33 39 39 58 110

Water 202 309 345 399 333

B-factors (Å2)

Protein 19.26 19.73 12.29 22.0 25.45

Ligands 11.89 12.84 8.2 12.34 19.78

Water 21.35 26.91 22.32 24.29 25.8

R.m.s deviations

Bond lengths (Å) 0.013 0.012 0.007 0.016 0.013

Bond angles (u) 1.415 1.367 1.212 1.588 1.38

Ramachandran plot (%)

Favored regions 98.1 99.2 99.1 98.4 98.5

Additionally allowed regions 1.9 0.8 0.9 1.6 1.5

*Values for the highest resolution shell are shown in parentheses.
{Rwork is defined as S||Fobs|2|Fcalc|| / S|Fobs|, where Fobs and Fcalc are observed and calculated structure-factor amplitudes, respectively.
{Rfree is the R factor for the test set (5–10% of the data).
doi:10.1371/journal.pone.0008625.t002

Table 1. Summary of crystallization conditions.

HSPA1A HSPA1L HSPA2 HSPA5 HSPA6

Salt 0.2M magnesium chloride 0.2M trimethyl amine n-oxide 0.2M ammonium acetate 0.2M calcium chloride 0.1M disodium hydrogen phosphate

Buffer 0.1M Bis-Tris 0.1M Tris 0.1M Bis-Tris 0.1M sodium acetate 0.1M citric acid

Precipitant 25% PEG-3350 26% PEG monomethyl ether-2000 25% PEG-3350 20% PEG-6000 16% PEG-300

pH 5.5 8.5 5.5 5 3.2

Additive ADP, MgCl2 ADP, MnCl2 ADP, MgCl2 ADP, MgCl2 ADP, MgCl2

Temperature 4uC 4uC 4uC 20uC 20uC

doi:10.1371/journal.pone.0008625.t001
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The slightly opened nucleotide binding cleft of ADP-bound

HSPA5 distinguishes it from the set of NBDs that crystallized with

ADP and inorganic phosphate in the active site. Cleft opening in

HSPA5 is brought about by rotation of subdomain IIB by

approximately 5.8u, as determined using the DynDom server [40].

This mechanism of cleft opening is similar to that determined by

crystallography of Hsp70 proteins in complex with nucleotide

exchange factors [32–35], but differs from that observed for actin

[41].

All five NBDs crystallized in the presence of ADP and either

MgCl2 or MnCl2 (Table 1). Inorganic phosphate was present only

in the solution for HSPA6. Nevertheless, electron density for

inorganic phosphate was observed in the active site of four of these

proteins (Table 2), which thus had the products of ATP hydrolysis

bound to them. We conclude that at least HSPA1A, HSPA1L, and

HSPA2 bound ATP in the expression host, hydrolyzed their

bound ATP, and subsequently during crystallization never

released the products of ATP hydrolysis into solution. Only the

HSPA5 structure contained ADP and metal ion but not inorganic

phosphate. Metal ion coordination geometry and distances

suggested that here the bound divalent cation was calcium, which

was present in the mother liquor. Thus HSPA5 may have lost

magnesium and inorganic phosphate after cation exchange for

calcium during crystallization.

A second calcium ion was found at the base of HSPA5 a-helix-

6, tethered by the H252 hydroxyl and the E256 and D257

carboxylates. This site has previously been identified in human

HSPA1 (1S3X) [38]. Conservation of the side chains involved in

Ca2+-interactions in human and many other Hsp70s suggests a

universal binding site, but to our knowledge no other crystal

structures of any Hsp70 protein contain Ca2+ at this site. Given the

millimolar concentrations of calcium in the ER we expect that

HSPA5 may be partially regulated at the second site found in our

crystal structure, whether in relation to ATP turnover or other

activities [31]. Interestingly, this second metal binding site is

implicated in ATP synthesis by mutagenesis of HSPA1 [42]. ATP

synthesis was found to be dependent on both calcium ions and

transient Hsp70 phosphorylation [42]. Also, both DnaK [43] and

HSPA5 [44] are transiently phosphorylated, in a Ca2+-dependent

manner, on the threonine side chain corresponding to HSPA5

T229. We speculate that HSPA5 and possibly other family

members might be able to retain the products of ATP hydrolysis

for ATP regeneration at a site in close proximity to the active site.

The second calcium site might position the ADP pyrophosphate tail

for phosphoester bond formation, while phosphorylated T229

(or an alternative side chain in the vicinity, such as strictly

conserved HSPA5T251/DnaKT225) might act as phosphate donor.

This pathway might be employed in situations of high ATP

turnover or low ATP concentrations to secure vital cellular

functions.

Materials and Methods

Protein Expression and Purification
The cDNAs coding for the full-length human HSPA1A, HSPA1L,

HSPA2, HSPA5, and HSPA6 were obtained from the Mammalian

Gene Collection (accession codes BC002453, BC034483, BC001752,

BC020235, and BC035665, respectively). The sequence coding for

residues HSPA1AM1-N387, HSPA1LM1-K386, HSPA2P6-D386,

HSPA5D26-D410, and HSPA6E6-D385 were subcloned into expression

vector pNIC-Bsa4 by ligation-independent cloning. The resulting

expression constructs contained a hexahistidine tag and a TEV-

protease cleavage site (MHHHHHHSSGVDLGTENLYFQS) at the

N-termini.

Recombinant expression and purification of the proteins is

described in detail on our webpage (http://www.thesgc.org/

structures/). Briefly, each expression construct was transformed

into E. coli strain BL21(DE3)R3 pRARE (Novagen) and the

cultures were grown in Terrific Broth supplemented with 8 g/l of

glycerol at 37uC. At an absorbance at 600 nm between 1 and 2

the temperature was lowered to 18uC, recombinant protein

production was induced by addition of 0.5 mM isopropyl-b-d-

thiogalactopyranoside, and cell growth was continued for 18 h at

18uC. Cells were harvested by centrifugation and the cell pellets

were resuspended in 1.5 volumes/wet cell weight of lysis buffer

(100 mM HEPES, 500 mM NaCl, 10% glycerol, 10 mM

imidazole, 0.5 mM TCEP, pH 8.0, and one tablet of Complete

EDTA-free protease inhibitor (Roche Biosciences) per 50 ml cell

suspension). Before lysis, 4 ml (1000 U) of Benzonase (Novagen)

was added per 50 ml cell suspension, and lysis was achieved by

sonication. Cell debris was removed by centrifugation and the

soluble fractions were filtered through a syringe filter (0.45 mm

pore size). Cleared lysates were passed over 1-ml HiTrap

Chelating columns (GE Healthcare) pre-equilibrated with buffer

1 (30 mM Hepes, 500 mM NaCl, 10% glycerol, 10 mM

imidazole, pH 7.5, 0.5 mM TCEP). The columns were washed

sequentially with buffer 1 and buffer 1 supplemented with

25 mM imidazole. Bound protein was eluted with buffer 1

Figure 3. Electron density around the nucleotide in the NBDs of HSPA2 and HSPA5. Representative parts of the 2Fobs-Fcalc density maps around
the nucleotide binding site (contoured at 1.5s above the mean) of (A) HSPA2 with MgADP + Pi, and (B) HSPA5 with CaADP. Selected side chain and main
chain atoms within hydrogen bonding distance are indicated.
doi:10.1371/journal.pone.0008625.g003
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containing 500 mM imidazole, loaded onto 16/60 Superdex-200

HiLoad columns (GE Healthcare), and gel filtration was

performed in buffer 2 (30 mM Hepes, 300 mM NaCl, 10%

glycerol, pH 7.5, 0.5 mM TCEP). Fractions were pooled based

on gel filtration profiles and purity, TCEP was added to 2 mM,

and the proteins were concentrated to 24.8 mg/ml (HSPA1A),

16.0 mg/ml (HSPA1L), 14.0 mg/ml (HSPA2), 31.0 mg/ml

(HSPA5A), and 25.0 mg/ml (HSPA6). Proteins were typically

more than 90% pure judged by SDS-PAGE analysis (Figure 2A).

Protein construct masses were verified by TOF-MS analysis

(results not shown). Aliquots were flash-frozen and stored at

-80uC.

Crystallization, Data Collection, Structure Solution and
Refinement

Crystallization methods and conditions are summarized in

Table 1. Crystals appeared after 2–28 days. For data collection

crystals were briefly dipped in cryo solution containing 40% PEG

300, 0.15M Na2HPO4, 0.1M citric acid, 0.2M NaCl (HSPA6)

or mother liquor containing 15%–20% glycerol (HSPA1A,

HSPA1LA, HSPA2, and HSPA5) and flash-frozen in liquid

nitrogen.

A single wavelength dataset for HSPA1A was collected with

Cu-Ka radiation (1.54166 Å) on an X8 PROTEUM system

equipped with a four-circle Kappa goniostat and a PLATINUM-

Figure 4. Crystal structures of the human Hsp70 ATPase domains. (A) The structure of the HSPA5/BiP NBD in complex with CaADP at 2.4 Å
resolution. (B) Superposition of the five Hsp70 NBD structures determined in this study. Dark blue, HSPA1A; yellow, HSPA1L; cyan, HSPA2; red, HSPA6;
green, HSPA5/BiP. (C) Cartoon representation of HSPA6, colored to illustrate rms differences in Ca-positions between HSPA6 and HSPA1L (left), HSPA6
and HSPA5 (center), and HSPA6 and DnaK (right).
doi:10.1371/journal.pone.0008625.g004
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135 CCD (all from Bruker AXS, Delft, Netherlands). SAINT

(Bruker AXS) and XPREP (Bruker AXS) were used to process the

data. Further datasets were collected at synchrotron beamlines at

BESSY (BL14-1), Berlin, Germany (HSPA5 and HSPA6),

DIAMOND (I03), Oxfordshire, UK (HSPA1L) and ESRF

(ID23-1), Grenoble, France (HSPA2). Data sets were indexed,

scaled, and reduced using the programs XDS [45] and SCALA

[46]. All structures were solved by molecular replacement using

MOLREP [47]. The structures were refined with RefMac5 [48]

and model building was done using Coot [49]. For further details

on data processing and refinement statistics, see Table 2.

Geometry of the models was analyzed with Molprobity [50].

Sequence alignments were obtained using ESPript [51].

Data Deposition
The atomic coordinates and structure factors have been

deposited with the Protein Data Bank, www.rcsb.org (PDB entry

codes: 3FE1 [HSPA6]; 3GDQ [HSPA1L]; 3I33 [HSPA2]; 3IUC

[HSPA5]; 3JXU [HSPA1A]).
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