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Abstract

This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation
of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple
thoughts through their fMRI patterns. We use factor analysis of fMRI brain imaging data to reveal the biological
representation of individual concrete nouns like apple, in the absence of any pictorial stimuli. From this analysis emerge
three main semantic factors underpinning the neural representation of nouns naming physical objects, which we label
manipulation, shelter, and eating. Each factor is neurally represented in 3–4 different brain locations that correspond to a
cortical network that co-activates in non-linguistic tasks, such as tool use pantomime for the manipulation factor. Several
converging methods, such as the use of behavioral ratings of word meaning and text corpus characteristics, provide
independent evidence of the centrality of these factors to the representations. The factors are then used with machine
learning classifier techniques to show that the fMRI-measured brain representation of an individual concrete noun like apple
can be identified with good accuracy from among 60 candidate words, using only the fMRI activity in the 16 locations
associated with these factors. To further demonstrate the generativity of the proposed account, a theory-based model is
developed to predict the brain activation patterns for words to which the algorithm has not been previously exposed. The
methods, findings, and theory constitute a new approach of using brain activity for understanding how object concepts are
represented in the mind.
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Introduction

How a simple concept like apple is represented in the human

mind has been of interest to philosophers for centuries, but the

question has not been amenable to scientific approaches until

recently. The emerging technologies of brain imaging have now

made it possible to examine the neural representation of such

concepts in the human brain, in a way that has been revealing of

the mental content. It is clear that the neural representation of

such concepts involves multiple brain areas specialized for various

types of information, indicating that the representations can be

decomposed into components. In the case of discrete physical

objects, the neural representations can be related to verbs of

perception and action that apply to the objects [1]. For example,

apple appears to be neurally represented in terms of an apple’s

visual properties, graspability, purpose, etc., and the representa-

tion is distributed across a number of relevant brain areas; for

example, the information about the physical actions that can be

applied to an object are represented in cortical areas related to

control of hand actions [1,2].

A central issue addressed here concerns the underlying semantic

dimensions of representation of concrete nouns and the physical

objects to which they refer. What are the underlying semantic,

psychological, or neural dimensions in terms of which apple is

represented? To take a simpler example, a kinship term such as

grandmother is likely to be represented in terms of gender (female),

generation level relative to a reference person (two generations

older), and lineality (direct ancestor) [3]. The dimensions of

kinship terms are easier to discern because of the well-structured

biological and social domains to which they refer. The

corresponding representational dimensions of apple are far less

clear. However, new methods of neuroimaging and machine

learning have the potential of revealing the dimensions of

representation that the brain uses.

A new approach, combining fMRI neuroimaging and machine

learning techniques, successfully characterized the neural repre-

sentations of physical objects like apples [1]. This approach

proposed that meanings of physical objects can be characterized in

terms of 25 features, namely the nouns’ co-occurrence frequencies

with 25 verbs of perception and action in a large text corpus. For

example, one semantic feature (independent variable in a

regression model) was the frequency with which the noun co-

occurs with the verb taste. The farthest reaching contribution of

this model was its generativity, enabling it to extrapolate

sufficiently to predict the neural representation (fMRI-measured

brain activity) of words that were new to the model, simply on the

basis of (1) the new words’ co-occurrence frequencies with the 25

verbs, and (2) the weights associating those frequencies to patterns

of brain activation in response to a fixed number of words. When

presented with previously unseen brain activation patterns
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generated by two new concrete nouns, the model was able to

correctly match the two nouns to the two patterns 77% of the

time, very far above chance level.

The relative success of this previous model speaks to the choice

of verbs used for co-occurrence measures. Many of the verbs

pertain to physical manipulation such as touch, rub, lift, manipulate,

push, and move. Some pertain to eating: taste, eat. The set of verbs

was generated intuitively as actions and perceptions that seemed

applicable to physical objects.

The current study takes a different approach, asking whether

there is some bottom-up analytic procedure that reveals the

underlying dimensions of representation, perhaps more compactly.

Is there a set of fundamental neural dimensions that arise in the

representation of physical objects that such a procedure can

reveal?

There is a rich history of applying dimension-reduction

techniques, such as factor analysis and multidimensional scaling,

to behavioral data to recover the underlying dimensions of

meanings of words, including classic studies of color terms [4],

verbs of motion [5], animals [6], and a variety of different domains

[7]. Here we apply factor analysis to neural data obtained with

fMRI to determine the semantic factors underlying the brain

activation. To foreshadow our results, we found that factor

analysis indicated three fundamental semantic dimensions of

neural representation of the physical objects in the 60-item

stimulus set.

A second innovation of this study is its exclusive focus on the

representation of words rather than on pictures of objects. Much

of the previous research has focused on or included visual

depictions of the objects of interest, rather than focusing on words

(Mitchell et al. [1] presented word-picture pairs). Various kinds of

depictions (such as line drawings or photographs) inherently

present a particular instantiation of a given object category, and

they explicitly depict some of the object’s visual features, which in

turn are represented in the perceiver’s brain. By contrast, words

are symbols whose neural representations are entirely retrieved

from previous knowledge rather than being at least partly visually

perceived.

Which particular brain locations are involved in the represen-

tation of a concept depends in part on how the concept is evoked.

Previous neuroimaging studies that presented a visual depiction of

the object, such as a line drawing or photograph, have determined

which specific brain areas play a role in the high-level visual

representation of categories of physical objects (such as faces),

indicating that there is a set of areas, particularly in ventral

temporal cortex, that respond differentially to pictures of a set of

disparate categories of objects, such as houses, faces, and chairs

[8–10]. Moreover, by applying machine learning or pattern-based

classification methods to fMRI data (reviewed in [11–13]), such

studies have succeeded in finding a mapping between multivariate

patterns of brain activity and a given object category. The

remarkable successes in identifying the brain activity associated

with viewing classes of visual depictions of objects has focused,

unsurprisingly, on the brain’s primary and secondary (ventral

temporal) visual areas. Here, with printed words as stimuli, we ask

if it is possible to identify higher order cortical representations (in

addition to the perceptual representations) of the semantic

properties of a concrete noun. Moreover, we attempt to specify

the cortical locations at which the different semantic factors are

processed.

A third innovation of this study lies in its examination of the

commonality of the neural representation of words across different

people. Only recently has it been possible to demonstrate that

there is a great deal of commonality across people in their neural

representations of visually depicted objects, like screwdriver, drill, hut,

or castle [14]. Here we examine the commonality of the

representation of concrete nouns across people. The measure of

commonality is whether a classifier (a mathematical function that

here maps from fMRI activation patterns to word labels), trained

on the brain activation patterns of a set of people, can accurately

classify (label) patterns of activation obtained from people outside

of that set. Although the issue of cross-person commonality of

representation is dealt with succinctly, it yields one of the most far-

reaching conclusions of this research, indicating whether one

person’s neural representation of the meaning of a concrete noun

closely resembles another person’s.

The machine learning or pattern classification approach is also

used in a more fundamental way, namely for determining whether

a neural signature of each word’s meaning, derived from a subset

of a given participant’s data, can be used to classify (label) the

words from an independent subset of that same participant’s brain

activation data. The classification approach is used to assess how

well the factor analysis output characterizes individual neural

representations.

The findings reported here thus constitute several types of

advances. The central focus concerns the semantic organization of

the neural representation of familiar concrete objects, revealing

the component building blocks of the brain’s representation of the

meaning of physical objects. Second, we report the neural

representation evoked by words rather than pictures. A third

novel aspect of the findings is the discovery of significant cross-

participant commonality in neural representations of word

meaning, such that the activation patterns of an individual

participant can be identified based on training data drawn

exclusively from other people. Finally, we demonstrate the

generativity of the proposed principles, allowing a model to

predict the activation of a new concrete noun based on its

semantic properties.

Materials and Methods

Participants
Eleven adults (eight right-handed females, two clearly right-

handed males, and one male with right-handedness for tool use,

with all 11 participants showing left-dominant activation) from the

Carnegie Mellon community participated and gave written

informed consent approved by the University of Pittsburgh and

Carnegie Mellon Institutional Review Boards. Eight additional

participants were excluded because of either excessive head

motion (two participants) or insufficient stability of voxel activation

profiles (six participants).

Experimental Paradigm
The stimuli were 60 words, containing five exemplar concrete

objects from twelve taxonomic categories: body parts, furniture,

vehicles, animals, kitchen utensils, tools, buildings, building parts,

clothing, insects, vegetables, and man-made objects, as shown in

Table 1. The 60 words were presented six times (in six different

random permutation orders). Each word was presented for 3s,

followed by a 7s rest period, during which the participants were

instructed to fixate on an X displayed in the center of the screen.

There were twelve additional presentations of a fixation X, 31s

each, distributed across the session to provide a baseline measure.

Task
When a word was presented, the participants’ task was to

actively think about the properties of the object to which the word

referred. To promote their consideration of a consistent set of

Neurosemantic Theory
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properties across the six presentations of a word, they were asked

to generate a set of properties for each item prior to the scanning

session (for example, the properties for the item castle might be cold,

knights, and stone). Each participant was free to choose any

properties for a given item, and there was no attempt to impose

consistency across participants in the choice of properties.

fMRI Procedures
Functional images were acquired on a Siemens Allegra

(Erlangen, Germany) 3.0T scanner at the Brain Imaging Research

Center of Carnegie Mellon University and the University of

Pittsburgh using a gradient echo EPI pulse sequence with

TR = 1000 ms, TE = 30 ms and a 60u flip angle. Seventeen 5-

mm thick oblique-axial slices were imaged with a gap of 1 mm

between slices. The acquisition matrix was 64664 with 3.125-

mm63.125-mm65-mm voxels. Initial data processing was per-

formed using SPM2 (Wellcome Department of Cognitive

Neurology, London).

Data Preprocessing
The data were corrected for slice timing, motion, and linear

trend, and were normalized into MNI space without changing

voxel size (3.12563.12566 mm). The gray matter voxels were

assigned to anatomical areas using Anatomical Automatic

Labeling (AAL) masks [15]. For some analyses, the gray matter

voxels were partitioned into five bilateral brain areas or ‘‘lobes’’

using AAL masks: frontal, parietal, temporal, occipital, and an

idiosyncratically-defined fusiform ‘‘lobe’’ which included the

fusiform and parahippocampal gyri. This fusiform ‘‘lobe’’ was

separated from the other areas because of its prominence in

previous studies of object representations. (The temporal and

occipital ‘‘lobes’’ are hence also idiosyncratically-defined because

their definition excludes their usual share of the fusiform and

parahippocampal gyri.) A later check found no voxels relevant to

the reported outcomes outside of the five lobes.

The percent signal change relative to the fixation condition was

computed at each gray matter voxel for each stimulus presentation.

The main input measure for the subsequent analyses consisted of

the mean of the four brain images acquired within a 4s window,

offset 4s from the stimulus onset (to account for the delay in

hemodynamic response). The intensities of the voxels in this mean

image for each word were then normalized (mean = 0, SD = 1).

Selecting Voxels with Stable Activation Patterns
The analyses below generally focused on a small subset of all the

voxels in the brain, namely those whose activation profile over the 60

words was stable across the multiple presentations of the set of

words. The assumption here is that the activation levels of only the

relatively stable voxels provide information about objects. A

voxel’s stability was computed as the average pairwise correlation

between its 60-word activation profiles across the multiple

presentations that served as input for a given model (the number

of presentations over which stability was computed was four or six,

depending on the analysis). Here the 60-word activation profile of a

voxel for a particular presentation refers to the vector of 60

responses of that voxel to the words during that presentation. A

stable voxel is thus one that responds similarly to the 60 word

stimulus set each time the set is presented.

Factor Analysis Methods
To factor the neural activity associated with the 60 different

word stimuli into different components shared across participants

and brain lobes, we used a two-level exploratory factor analysis

based on principal axis factoring with varimax rotation, using the

same algorithm as the SAS factor procedure (www.sas.com).

At the first level, a separate factor analysis was run on each lobe

of each participant, using as input the matrix of intercorrelations

among the activation profiles of the 50 most stable voxels in the

lobe. (Prior to computing the intercorrelations, the voxels’

activation profiles within each lobe and participant were averaged

over six presentations and normalized over the 60 words to have a

mean = 0 and SD = 1. The choice of the particular number of

voxels (50) used as input was motivated by similar analyses in other

datasets where 50 was the smallest number of voxels that

maximized classification accuracy.) The goal of each of these

first-level factor analyses was to reduce the data from the

activation profiles of many (50) stable voxels to a few factors that

characterized the profiles of most of the stable voxels in each lobe

of each participant.

Then a second-level factor analysis was run to identify factors

that were common across lobes and participants, a procedure

known as higher-order factor analysis [16]. (The search for

commonality across lobes was motivated by the assumption that a

semantic factor would be composed of a large-scale cortical

network with representation in multiple brain lobes.) The input to

Table 1. 60 stimulus words grouped into 12 semantic categories.

Category Exemplar 1 Exemplar 2 Exemplar 3 Exemplar 4 Exemplar 5

body parts leg arm eye foot hand

furniture chair table bed desk dresser

vehicles car airplane train truck bicycle

animals horse dog bear cow cat

kitchen utensils glass knife bottle cup spoon

tools chisel hammer screwdriver pliers saw

buildings apartment barn house church igloo

building parts window door chimney closet arch

clothing coat dress shirt skirt pants

insects fly ant bee butterfly beetle

vegetables lettuce tomato carrot corn celery

man-made objects refrigerator key telephone watch bell

doi:10.1371/journal.pone.0008622.t001
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the second-level analysis consisted of the five dominant first-level

factors obtained from each lobe of each participant. (Below this

two-step factor analysis is compared to a single-level analysis.)

To define the factor analysis models precisely, we introduce the

following notation:

~VVi is the 60-word mean activation profile of the i-th

voxel (i = 1…50)

~FF1
j is the first-level factor profile over 60 words of the j-th

factor (j = 1…5)

L1
ij is a first-level loading of i-th voxel on factor ~FF1

j

Then the following equation defines voxel activation profiles as

a linear combination of factor profiles and serves as a model for

the first-level factor analysis.

~VVi~
X

j

~FF1
j L1

ij

After the first-level factor analysis is computed, we have the

matrix of first-level loadings L1
ij (and we also have voxel profiles ~VVi

for all 50 voxels in a lobe). The equations above (corresponding to

i = 1…50) can be solved for the unknown factor profiles ~FF1
j (using

least squares), producing five first-level factor profiles. These factor

profiles (which apply to all 50 voxels within that lobe of that

participant) constitute the factor scores for each of the 60 words.

This algorithm was applied separately for each set of 50 voxels

selected from five lobes of four participants, resulting in 20 first-

level factor analyses. (The motivation for choosing four partici-

pants is given below.) The five dominant factors were selected

from each of these first-level analyses, to produce a set of 100 first-

level factors ~FF1
n , where n = 1…100. The choice of five factors from

each first-level analysis was based on observing that the first five

factors had eigenvalues greater than one, and that additional

factors typically produced diminishing returns in characterizing

the voxel activation profiles. These 100 first-level factors were used

as input to the second-level factor analysis.

Now define ~FF2
k as a second-level factor profile over 60 words

(k = 1…10), L2
nk as a second-level loading of n-th first-level factor

on second-level factor ~FF2
k .

Then the following equation defines the first-level factor profiles

as a linear combination of second-level factor profiles and serves as

a model for the second-level factor analysis.

~FF1
n ~

X

k

~FF2
k L2

nk

The second-level factor analysis produces a matrix of second-

level L2
nk loadings, and we also have the first-level factor profiles

~FF1
n . The number of factors to which the analysis was limited was

10 and of these 10 second-level factors, only the first four factors

were common to all four of these participants. Solving the above

equation for the unknown second-level factor profiles (using least

squares) produces the vectors of second-level factor profiles over

the 60 words. The factor profiles from these four factors constitute

the factor scores for each word.

Factor loading matrices from all first-level and second-level

analyses were also used to create a (simplified) mapping between

factors and voxels. For the first-level analyses, a voxel was uniquely

assigned to one of the five first-level factors for which it had the

highest (absolute value) loading, provided that this loading was

above a threshold value of 0.4 (a typical value for exploring factor

structure). Similarly, for the second level analysis, a first-level

factor was uniquely assigned to one of the 10 second-level factors

for which it had the highest (absolute value) loading, provided that

this loading has was above the 0.4 threshold. Considered together,

the above mappings allowed us to assign a set of voxels (from

different lobes and participants) to each of the second-level factors.

This assignment served the two purposes. First, it provided a

basis for assessing the commonality of each factor across

participants. A factor was defined as being common to N

participants if it was mapped to voxels that originated in N

participants. Second, the set of voxels assigned to a factor specified

the brain locations associated with the factor.

The above two-level factor analysis was initially performed

using data from only four of the participants, selected to optimize

the discovery of semantic factors capturing neural activity across

more of the cortex than just in visual areas. The four selected

participants were the ones who had the greatest number of voxels

with high stability in non-occipital portions of the cortex.

Generally, in a task with visual input, the most stable voxels are

found in occipital areas, where the stability is determined primarily

by the low-level visual features of the written words. The presence

of substantial numbers of stable non-occipital voxels in these four

participants made it more likely that interpretable semantic factors

would emerge during this initial discovery phase of analysis. The

analysis was subsequently applied to all 11 participants, producing

similar results, as reported below.

Although the factors emerging from a factor analysis initially

have to be subjectively interpreted, we report below how the

recovered factors were subjected to several validation methods. In

the results section, the four emergent factors are (1) analyzed for

content; (2) independently substantiated by demonstrating consis-

tency with two other measures of word meaning; (3) used as the

basis of a machine learning cross-validation protocol that

demonstrates the ability to identify the word from its fMRI

pattern; and (4) used as the basis of a machine learning cross-

validation protocol that demonstrates the ability to predict the

fMRI pattern of a new word.

Machine Learning Methods
Overview. The machine learning techniques used here can

be separated into three stages: algorithmic selection of a small set

of voxels believed to be useful for classification; training of a

classifier on a subset of the data; and finally testing of the classifier

on an independent subset of the data. The training and testing use

cross-validation procedures that iterate through many cycles of all

possible partitionings of the data into training and testing datasets.

The training set and test set are always rigorously kept separate

from each other. The two main machine learning modeling

approaches used are a Gaussian Naı̈ve Bayes (GNB) classifier and

linear regression. Throughout the paper, we use the term word

identification to refer to the ability of a machine learning algorithm

to determine (with some accuracy) which of many words a person

is thinking about.

Feature selection. First, there is an algorithmic feature

selection, selecting 80 of the 15,000–20,000 brain voxels (each

3.12563.12566 mm) believed to be particularly useful for

detecting the patterns of interest. (Several previous studies

indicated that 80 voxels regularly produced considerably higher

identification accuracies than using all of the voxels in the brain,

and modest increases of the number of voxels above 80 tended not

to systematically increase accuracy.) In the base machine learning

model described later, the voxels selected were the 80 most stable

voxels in the cortex. Here a voxel’s stability was computed as the

average pairwise correlation between its 60-word activation
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profiles across the four presentations in a training set for the

within-participant identification. The activation values for the 80

voxels were normalized (mean = 0, SD = 1) across the 60 words,

separately for the training and test set, to increase comparability

across the six presentations. (For the cross-participant analyses, the

80 voxels were those that were most stable across the 60 words for

the participants in the training set, excluding any data from the

participant involved in the test of the classifier.)

Classifier training. In a second stage, a subset of the data

(four out of the six presentations in the within-participant

classification) was used to train a classifier to associate fMRI

data patterns with a set of labels (the words). A classifier is a

mapping function f of the form: f: voxel activation levelsRYi,

i = 1,…,m, where Yi were the 60 words (leg, chair, car, dog,…),

and where the voxel activation levels were the 80 mean activation

levels of the selected voxels. The classifier used here was a

Gaussian Naı̈ve Bayes (GNB)-pooled variance classifier. (Several

other classifiers were also examined, such as variants of GNB-

pooled, a support vector machine, and a k-nearest neighbor

classifier, all of which sometimes produced comparable results. We

make no claim of superiority for GNB-pooled.) GNB is a

generative classifier that models the joint distribution of class Y
and attributes and assumes the attributes X1,…,Xn are

conditionally independent given Y. The classification rule is:

Y/ arg max
yi

P(Y~yi)P
j

P(Xj jY~yi)

where P(X|Y = yi) is modeled as a Gaussian distribution whose

mean and variance are estimated from the training data. In GNB-

pooled variance, the variance of attribute Xj is assumed to be the

same for all classes. This single variance is estimated by the sample

variance of the pooled data for Xj taken from all classes (with the

class mean subtracted from each value).

Classifier testing. The classifier was tested on the mean of

the two left-out presentations of each word. This procedure was

reiterated for all 15 possible combinations (folds) of leaving out two

presentations. (The between-participant classification always left

out the data of the to-be-classified participant and trained the

classifier on the remaining participants’ data.)

The rank accuracy (hereafter, simply accuracy) of the classification

performance was computed as the normalized rank of the correct

label in the classifier’s posterior-probability-ordered list of classes.

For example, if the classification were operating at chance level,

one would expect a mean normalized rank accuracy of 0.50,

indicating that the correct word appeared on average between the

30th and 31st position in the classifier’s output of a ranked list of 60

items. A rank accuracy was obtained for each fold, and these rank

accuracies were averaged across folds, producing a single value

characterizing the prediction accuracy for each word. The mean

accuracy across items (words) was then computed.

Results

Overview of Results

1. In the first section of the results, we report the outcome of a

data-driven approach, a factor analysis of the brain activation,

discovering three semantic factors and one visual factor

underlying the representation of the 60 words that are common

across participants. This section also describes the cortical

locations associated with each factor.

2. We then develop converging information about the word

representations by obtaining two additional characterizations

that are based on (a) text corpus statistics related to the words,

and (b) independent participant ratings of the words. These

additional approaches indicate strong correspondences with

the factor analysis characterizations of the words.

3. We then apply a machine learning (or pattern classification)

approach to determine whether the semantic characterization

obtained by the bottom-up approach can be used to

successfully identify a word by its fMRI activation signature.

4. We show that the neural representation of a concrete noun is

common across people, allowing cross-participant identifica-

tion of the words.

5. We express the theory of concrete noun representation

explicitly and use a regression model to test the generativity

of the theory by predicting the activation of words that the

model has not previously encountered and matching the

predictions to the observed activation.

1. Using Factor Analysis to Determine the Semantic
Dimensions Underlying the Activation and the Factors’
Locations

Common factors across participants. The factor analyses

start with the four participants with the greatest number of stable

anterior voxels and are then generalized to the entire group

because the anterior voxels encode semantic information that is

part of a concrete noun’s meaning. The 80 most stable voxel

locations of the four participants with plentiful anterior voxels

were very similar to each other and included inferior left frontal

cortex, inferior parietal, and posterior temporal regions, whereas

the remaining seven participants had few voxels in these anterior

locations among the 80 most stable ones. We show below that the

remaining seven participants also had informative anterior voxels,

but there were enough stable posterior voxels among these seven

participants to lower the stability rank of the anterior voxels. It was

the four participants with plentiful anterior voxels (labeled P1, P2,

P3, and P5 in a later Figure) who also tended to have the highest

word identification accuracies using machine learning techniques.

Of the factors emerging in the second-level factor analysis, only

four of them were common to all four of the participants with

plentiful anterior voxels in the first-level factor analyses. (These

four factors explained 29% of the variation in the input data (the

100 factors from the first-level factor analyses), whereas all 10

factors explained 56% of the variation.) The four common factors

were initially interpreted by observing which words had the

highest factor scores for a given factor and which had the lowest.

For example, the factor we labeled as eating-related assigns the

highest rank orders to vegetables and eating utensils. Another

example is the factor labeled word length, which assigned the highest

factor scores to the longest words and the lowest scores to the

shortest words (cat, cow, car, leg, key), making it straightforward to

interpret this factor.

There were three interesting semantic factors: manipulation,

eating, and shelter-entry. The manipulation factor accords its highest

scores to objects that are held and manipulated with one’s hands.

The 10 words with the highest factor scores for this factor included

all five of the tools, as well as key, knife, spoon, bicycle, and arm. The

10 words with the highest factor scores for each factor are shown

in Table 2. The eating factor appears to favor objects that are edible

(all five vegetables are in the top 10) or are implements for eating

or drinking (glass and cup). Note that each word has a score for

each of the factors, so a word’s neural representation is a

composition of these four factors, such that glass and cup rank high

not only in terms of eating, but they also have a substantial

manipulation component (although not in the top 10). The shelter
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factor appears to favor the objects that provide shelter or entry to a

sheltering enclosure. The 10 words with the highest factor scores

contained three of the dwellings, four of the vehicles that include

an enclosure (such as train), as well as door, key, and closet. These

interpretations of the factors are consistent with converging

evidence presented below. (The percentage of variation accounted

for by each of the four second-level factors in the data of the four

participants with plentiful anterior voxels was eating: 7.26; shelter:

8.51; manipulation: 7.31; word length: 5.67.)

Visual features of the printed word: the word-length

factor. The word length factor presents an opportunity to separate

a low-level, perceptual feature of the printed word from the high-

level, semantic object features (encoded by the manipulation, eating,

and shelter factors). The word length factor appears to represent the

width or number of letters of the printed word. The word length

factor scores of each word are highly correlated with word length

(r = 0.90). The locations associated with this factor (reported

below) also appear to be consistent with this interpretation. There

was also a check made to determine whether word frequency

might also be influencing the activation at the word length factor

locations. However, a stepwise regression on the mean activation

of the voxels in each factor location determined that after having

entered word length as the independent variable in the first step,

entering word frequency in the second step never produced a

reliable increase in R2 in any of the analyses of the four factor

locations in any of the 11 participants. In sum, this low-level word

length factor demonstrates that the factor analysis method can

recover a factor that matches a clearly measureable property of the

stimuli, and thus serves as a validity check. Moreover, the factor

captures an essential part of the representation of a written word as

it progresses into the semantic system.

Alternative analyses yielding similar results. The impact

of having used the two-level factor analysis can be assessed by

comparing it to a single-level analysis that finds factors in a single

step (eliminating the first-level within-lobe, within-participant

analyses). The single-level analysis also recovers the four factors

reported above. The shelter, manipulation, and word length factors

strongly resemble the corresponding factors in the two-level

analysis (the correlations between the two sets of 60 factor scores

derived from the two approaches for these three factors were 0.89,

0.92, and 0.96 respectively). However, there was a modest

difference in the eating factor scores from the two approaches (a

correlation of 0.71 between the two sets of factor scores) and,

moreover, the eating factor ranked fifth among the resulting

factors in the single-level analysis (having been displaced by a

much less interpretable factor). The two different factor analysis

approaches thus produce the same four factors. We have focused

on the results of the two-level analysis because there we enforced

certain assumptions (distribution across lobes and generality across

participants) and because the resulting factor structure was more

easily interpretable.

To confirm that the factors obtained from the four participants

with plentiful anterior voxels apply well to the activation of all 11

participants, an additional two-level factor analysis was performed

on all 11 participants using the method described above. The first

four factors (explaining 20% of the variation in the first-level

factors data) were extremely similar to the corresponding factors

from the original four-participant analysis, and also were shared

by a substantial proportion of the participants. The correlation

between four- and 11-participant-based factor scores for the 60

words for shelter was .91, and the factor was present in nine of the

11 participants; for manipulation the correlation was .88 and the

factor was present in five of 11 participants; for eating the

correlation was .85 and the factor was present in nine of 11

participants; for word length the correlation was .93 and the factor

was present in all 11 participants. There were other factors

emerging from the four- and 11-participant factor analyses that

were present in fewer of the participants than these four factors,

such as a factor that could be labeled containment, which assigned

high scores to objects capable of being filled, such as cup and closet.

Thus the alternative analyses described above (the one-level factor

analysis and the two-level analysis on data from all 11 participants)

show that the outcomes are not closely dependent on the main

methods that were used.

Finding the Multiple Brain Locations Corresponding to
Each Factor

Because the semantic factors emerge from the activation

patterns of individual voxels, it is possible to trace the factors

back to their root voxels and determine where the voxels

associated with a given factor are located. Using the factor

loading matrices from the second- and first-level factor analyses,

the locations of voxels that are associated with each of the four

common factors were computed from the analysis of all four

participants with plentiful anterior voxels. Recall that voxels were

uniquely assigned to one of the four factors by selecting their

highest (absolute value) loading above a .4 threshold. For each

factor, the associated voxels tended to cluster in three to five

different locations in the brain. Voxel clusters were obtained by

finding at least five neighboring voxels that belonged to a given

factor. Then a sphere was defined at the centroid of the cluster

having a radius equal to the mean radial dispersion of these voxels

from the centroid.

To foreshadow, all four factors were associated with multiple

locations, distributed across multiple lobes. Moreover, many of the

locations associated with a given factor have been previously

characterized as nodes in networks of cortical areas related to the

factor in fMRI studies without verbal stimuli, as described below.

Two of the factors (manipulation and eating) were very strongly left-

lateralized, possibly due to handedness considerations. The shelter

and word length factors included voxel clusters in both hemispheres.

The centroids and radii associated with each factor are shown in

Figure 1 and Table 3. Figure 1 shows the multiple cluster locations

for all of the factors in the brain as colored spheres. (Additionally,

Figure S1 shows the locations of the actual voxels assigned by the

above procedure to the four factors.) In the descriptions below of

the correspondences between these locations and those reported in

other studies, we cite the Euclidean distance from the centroid of a

Table 2. Ten words with highest factor scores (in descending
order) for each of the 4 factors.

Shelter Manipulation Eating Word length

apartment pliers carrot butterfly

church saw lettuce screwdriver

train screwdriver tomato telephone

house hammer celery refrigerator

airplane key cow bicycle

key knife saw apartment

truck bicycle corn dresser

door chisel bee lettuce

car spoon glass chimney

closet arm cup airplane

doi:10.1371/journal.pone.0008622.t002
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Figure 1. Locations of the voxel clusters (spheres) associated with the four factors. The spheres (shown as surface projections) are
centered at the cluster centroid, with a radius equal to the mean radial dispersion of the cluster voxels.
doi:10.1371/journal.pone.0008622.g001

Table 3. Locations (MNI centroid coordinates) and sizes of the voxel clusters associated with the four factors.

Factor Cluster location x y z No. of voxels Radius (mm)

shelter L Fusiform Gyrus/Parahippocampal Gyrus (PPA) 232 242 218 26 6

R Fusiform Gyrus/Parahippocampal Gyrus (PPA) 26 238 220 6 4

L Precuneus 212 260 16 40 8

R Precuneus 16 254 14 36 8

L Inf Temporal Gyrus 256 256 28 12 4

manipulation L Supramarginal Gyrus 260 230 34 51 10

L Postcentral/Supramarginal Gyri 238 240 48 21 12

L Precentral Gyrus 254 4 10 18 6

L Inf Temporal Gyrus 246 270 24 34 8

eating L Inf Frontal Gyrus 254 10 18 26 8

L Mid/Inf Frontal Gyri 248 28 18 10 6

L Inf Temporal Gyrus 252 262 214 7 4

word length L Occipital Pole 218 298 26 24 6

R Occipital Pole 16 294 0 47 10

L Lingual/Fusiform Gyri 228 268 212 20 8

R Lingual/Fusiform Gyri 30 276 214 14 6

doi:10.1371/journal.pone.0008622.t003
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given cluster of a factor in the analysis above, to the peak voxel or

the centroid of activation provided in the cited article. Note that

the mean radius of our spheres is about 7 mm and the voxel size is

3.12563.12566 mm, so any centroid-to-centroid distance less

than our radius constitutes an overlap of location.

Relating the Factor Locations to Activation Locations in
Other Tasks

Even though the locations of the multiple clusters were obtained

from a factor analysis of the activation in response to the

presentation of printed words, many of the factor-related locations

have previously been shown to activate in perceptual or motor

tasks that do not involve verbal stimuli but appear to entail the

same factor. Notably, the multiplicity of the locations per factor is

echoed in these previous studies.

Manipulation factor locations. fMRI studies of object

manipulation yield activation sites very similar to the multiple

locations of the manipulation factor, according to a meta-analysis of

such studies [17]. For example, the manipulation factor’s four

locations correspond extremely well (within 1.4 to 8.2 mm across

the four locations) to areas that activate during actual and

pantomimed hand-object interactions [18]. Similarly, three of the

four locations activate during imagined grasping of tools [19]. The

manipulation factor location in L Postcentral/Supramarginal Gyri

has activated as part of a network involved in surface orientation

discrimination ([20], d = 1.3 mm), object manipulation, and hand-

object interaction ([21], d = 7.9 mm). The L Supramarginal area

activated in hand-object interaction ([21], d = 9.5 mm) and was

selectively activated during a pantomime grasping task ([22],

d = 5.9 mm). L Precentral Gyrus activated in a visual pointing task

([23], d = 8.0 mm), presumably as part of the network related to

visually-guided arm movement. The previous studies collectively

indicate what the specializations of the separate manipulation factor

locations might be, such the planning of motor movements, motor

imagery of interaction with objects, abstract representation of

motion, and lexical knowledge related to tools. Thus the

manipulation factor appears to be decomposable in studies that

focus on the components of a factor.

Shelter factor locations. Bilateral fusiform/parahippo-

campus and precuneus locations overlap well with networks of

areas that activated in previous visual perception studies. The

fusiform shelter clusters, obtained from a factor analysis of brain

activation patterns in response to words, correspond well to the

published ‘‘parahippocampal place area’’ (PPA) that activates

when participants view pictures depicting buildings and landmarks

[24]: the shelter centroids are within 2.8 mm and 4.2 mm of the

PPA loci (Talairach coordinates of ((20, 239, 25) and (228, 239,

25)) on the right and left respectively). Equally striking is the fact

that four of the five shelter locations correspond to four areas

activated when judging familiarity of pictures of places (the

participant’s own office or house) [25], emphasizing that the

neural representation of shelter entails a network of areas.

The eating factor includes an L IFG cluster that is 4.5 mm away

from the location associated with face-related actions like chewing

or biting reported by Hauk et al. [2].

The word length factor includes bilateral occipital pole primary

visual cortex clusters that most likely reflect the low-level visual

representation of the printed word.

The outcome and advantage of this approach in comparison to

a conventional univariate GLM analysis is presented in the

Supporting Information section (Text S1). Table S1 shows the

comparison of the locations of activation in taxonomic-category-

based GLM contrasts to the factor locations; the GLM-derived

clusters that match some of the factor locations are shown as

surface renderings in Figure S2.

To summarize, the four factors, which can be localized to 16

clusters in the brain, appear to reflect the semantic and visual

properties of the 60 concrete words. In many cases, there is an

amazingly close overlap between the locations that encode a given

factor for the 60 concrete nouns in our experiment, and areas that

activate during non-verbal tasks, such as actually performing or

observing hand manipulations of objects (grasping, pointing). This

correspondence provides an important link between the neural

representation of concrete nouns and the representation of the

different types of interactions a person can have with such objects.

Moreover, the multiple locations of a factor can usefully be

construed as differently-specialized nodes of a network, each of

which contains a representation of the object. Finally, it is

important to recall that each noun is represented as a mixture of

factors, such as an apple being both an object of eating and an object

of manipulation. These findings constitute the beginnings of a

neurosemantic theory of concrete noun representations, further

elaborated and tested in sections below.

2. Relating the Semantic Factors to Other
Characterizations of Word Meaning: Latent Semantic
Analysis (LSA) and Independent Participant Ratings

Converging method 1: Latent Semantic Analysis

(LSA). One test of the interpretation of the semantic factors

was obtained by using LSA (http://lsa.colorado.edu/), which

applies singular value decomposition to corpus-based metrics to

provide a high-dimensional (300 in our case) representation of

inter-text similarity [26]. LSA was used to determine the distance

between each of the 60 words and a string of five to nine words

(always excluding any stimulus word) intended to correspond to

each factor. The string we defined for the eating factor was food

vegetable meat utensil eat drink dish; for manipulation it was tool manipulate

handle grip utensil; for shelter-entry it was: building dwelling residence shelter

indoor enter entry drive travel. The resulting LSA-computed distances

between each stimulus word and the strings were highly correlated

with the words’ corresponding factor scores derived from the

activation data: the correlations were, for manipulation: .70; eating:

.57; and shelter: .46. This general type of correspondence between

brain activation data and text corpus characteristics of a word was

one of the main foci of the Mitchell et al. [1] analysis.

Figure 2 plots these LSA distances (between the word and the

factor-related-string) against the word’s factor score, for each of

the 60 words. The 10 rightmost points in each graph correspond

to the 10 words with the highest factor scores, shown in Table 2.

(Also shown is the correlation between the length of the word and

the factor score, in which LSA is not involved.) These findings

illustrate that an independent, corpus-based characterization of

word meaning, obtained without brain imaging data, bears a

substantial relation to the characterization obtained through factor

analysis of the brain activation patterns.

Converging method 2: Independent human ratings of the

words. An independent set of ratings of each word with respect

to each of the three semantic factors was obtained from a separate

set of 14 participants. For example, for the eating-related factor,

participants were asked to rate each word on a scale from 1

(completely unrelated to eating) to 7 (very strongly related). The mean

ratings correlated well with the corresponding factor scores

derived from the activation data: manipulation: .62; eating: .52;

shelter: .72. For word length, the factor scores’ correlation with the

actual word length was .90. Figure 3 plots these correlations. In

summary, the participant ratings of word meaning, much like the
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corpus-based LSA distances, provide converging information

consistent with the interpretation of the factors.

3. Using Machine Learning (Pattern Classification)
Methods to Test the Factor Approach

Although factor analysis has long been a powerful discovery tool,

it often suffers from a lack of an independent method to assess the

explanatory and predictive power of the analysis. To assess how well

the four factors (their profiles and locations) reflect the properties of

the 60 words, machine learning (ML) methods were used to

construct and compare several different models of the activation.

These models were first trained on a subset of the relevant data and

then used to make predictions over the remaining data, enabling us

to quantitatively test the accuracies of competing models. The

models differed primarily in the semantic characterization that

governed the selection of features (voxels).

Voxels selected based on semantic factors. In the ML

model based on factor analysis, a feature set consisting of 80 voxels

was first algorithmically selected. (Sets of voxels larger than 80 do

not systematically improve the classifiers’ performance.) The three

properties that governed voxel selection were:

1. a semantic property (or for the word length factor, a visual

property), namely the similarity of the voxel’s mean activation

profile to the profile of one of the four factors, specifically, the

factor associated with one of 16 locations, described below.

(The mean activation profile of the voxel is the vector of 60

mean values of the voxel’s activation level for the 60 words; the

factor’s profile consists of the factor scores for the 60 words.)

The similarity between the voxel and factor activation profiles

was measured as the correlation between these two vectors.

2. a stability property, namely the stability of the voxel’s

activation profile over the four distinct presentations of the

set of 60 words that were included in the classifier’s training set.

(Stability was calculated as the mean pairwise correlation

between all possible pairs of the voxel’s four presentation-

specific activation profiles.)

3. a location property, specified by the 16 locations associated

with the four factors. These locations served as the centroids of

search volumes that were similar to the spheres shown in

Figure 1, but larger by one voxel and shaped as cuboids, for

computational simplicity

Combining the three properties above, five voxels were selected

from each of the 16 search volumes, namely those five voxels with

the highest product of semantic and stability scores, resulting in a

feature set of 80 voxels.

To ensure independence between the training data and the test

data in the ML cross-validation procedures, all of the factor-based

ML analyses on a given participant used factor profiles and factor

locations derived only from data from other participants. The

factor profiles and cortical locations were derived from three of the

four participants with plentiful anterior voxels, always excluding

the participant under analysis.

Figure 2. Correlation between LSA scores and activation-derived factor scores for the 60 words. For the word length factor, the abscissa
indicates the actual word length.
doi:10.1371/journal.pone.0008622.g002
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Word Identification Accuracy Based on Recovered
Factors

The first new machine learning finding is that it is possible to

identify which noun (out of 60) a person is thinking about with

accuracies far above chance level by training a classifier on a

subset of that person’s activation data (four out of six presentations)

and then making the identification over an independent dataset

(the mean of the remaining two presentations). (The mean of two

presentations is used simply to signal average.) This identification

was based on a total of 80 voxels, five from each of the 16 locations

associated with the four factors, chosen using the procedure

described above. The rank accuracies of the word identification

reached a maximum of .84 for two of the 11 participants

(Participants P1 and P2), with a mean rank accuracy of .724 across

the 11 participants. The accuracies for individual participants and

the group means are shown in Figure 4 by the black curve. All of

the individual participants’ identification accuracies are well above

chance level (the dashed horizontal black line indicates the p,.001

level of statistical difference from chance, determined by random

permutation tests). These findings establish the ability to identify

which word a participant is considering, based on the operating

characteristics of a small set of voxels that were chosen on the basis

of their match to the four factor profiles obtained from other

participants’ data.

Previous comparable studies of the brain activity associated with

semantic stimuli have been based on the presentation of pictorial

inputs (such as a sequence of photographs of physical objects from

Figure 3. Correlation between independent ratings of the words and activation-derived factor scores for the 60 words. For the word
length factor, the abscissa indicates the actual word length.
doi:10.1371/journal.pone.0008622.g003

Figure 4. Rank accuracy of identifying the 60 individual words
for each participant and the group mean. The accuracies are
based on either the participant’s own training set data (black) or on the
data from the other 10 participants (gray), using factor-based feature
selection (80 voxels) and the Gaussian Naı̈ve Bayes classifier. The dashed
lines indicate levels with p,.001 greater than chance, obtained with
random permutation testing (black, within participants; gray, between
participants).
doi:10.1371/journal.pone.0008622.g004
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a given category, such as houses) whose visual forms were being

represented (probably in an abstract form) in secondary visual

processing areas, particularly ventral temporal cortex, and the

activation patterns were then identified as being associated with a

particular category [8]. Here, by contrast, the stimuli were printed

words only, which were identified by their activation as one of 60

individual exemplars. To our knowledge, this is the first

demonstration of the ability to identify the neural representation

of individual words (although we have previously demonstrated

the ability to do so for word-picture pairs [1]).

Identification within taxonomic categories. The classifier

can still distinguish reasonably well even among the five words that

all come from the same taxonomic category. For example, when

the classifier is trained on all 60 words, the mean rank accuracy of

the correct response among the five buildings (averaged over

participants) is .684. The mean of such accuracies over all 12

taxonomic categories is .658, far above chance level, indicating

that this method identifies more than just the category of the

stimulus item. However, this accuracy is lower than when the

identification is from among five randomly chosen items (which is

.738), indicating that greater similarity among the alternatives

decreases the identification accuracy.

Word identification based only on a single factor. It is

interesting to ask how well words can be identified by their

activation when the voxels used by the classifier are selected on the

basis of only one of the factors. The accuracy was somewhat

similar for the four factors used individually. The manipulation

factor alone provided a mean accuracy of .632 (based on 20

voxels); the shelter factor alone led to a mean identification accuracy

of .655 (using 25 voxels); the eating factor alone provided .593

accuracy (15 voxels); and word length provided .663 accuracy (20

voxels). (All of these accuracies are above the p,.001 chance

level.) These results demonstrate that the factors make comparable

contributions to word identification, as suggested by the similarity

in the variation they each accounted for.

Word identification based on only the three semantic

factors. If the classifier is based on only the three semantic

factors (and the lower-level word length factor is not considered), the

word mean identification accuracy was .676 (based on 60 voxels

distributed among the locations of the three semantic factors), well

above the p,.001 chance level and higher that any of the factors

considered alone. This result indicates that word length contributes

substantially to the .724 mean accuracy obtained when the

classifier uses all four factors.

Machine learning using voxels selected only by

stability. The semantically-based model above, which uses

voxels from locations associated with the derived factors, can be

compared to a baseline model that uses voxels selected only for

their stability, regardless of their location within cortex. (As above,

a voxel’s stability is computed as the correlation of its presentation-

specific activation profiles (profiles across the 60 stimulus words)

across the four presentations in the training set.) The 80 whole-

cortex stable voxels were located primarily in the left hemisphere

(62.2% on average across participants), with a range of 43% to

80%, and were generally more posterior (visual) than the factor-

based locations. This stability-only model attempts to identify

which word the participant is thinking about without any

consideration of word meaning, and instead characterizes only

the statistical relation between the voxel activation levels and the

words. The results from this model show that it is also possible to

identify which noun (out of 60) a person is thinking about by

selecting voxel locations simply on statistical grounds, without

regard to the factor locations. The mean rank accuracy of the

word identification of the stability-only model was .726 across the

11 participants. If the voxel selection procedure imposes a location

constraint in addition to the stability constraint (using the 16 most

stable voxels in each of five ‘‘lobes’’), the mean rank accuracy is

.722.

Despite the comparable accuracies of the stability-based model

and the model derived from the factor analysis (in combination

with stability), there are several reasons to prefer the semantic-

factor-times-stability model. The first is that the selected voxels are

chosen based on the mapping of their activity to a semantic factor,

according them an interpretable attribute, and hence providing

some face validity to the model. A second important difference is

that only the semantic-factor models provide a basis for a

generative theory of object representation that is extensible to

new words. The model based only on stability has no capability of

doing so. This facet of the theory is explored below, where

semantically-based activation predictions are generated and tested

for words to which the model has not been exposed. A third

difference is that the voxels selected on the basis of a semantic-

factor-correlation-times-stability capture important but less stable

representations distributed throughout the cortex, including

frontal, parietal, and temporal areas that probably encode

semantic information. By contrast, the voxels selected by the

baseline model, solely on the basis of stability, strongly favor

posterior locations in the primary and secondary visual areas

where the voxels are apparently more stable. (In the factor analysis

output, these posterior voxels are associated primarily with the

word length factor.) Thus the semantic-factor-correlation-times-

stability model captures semantic representations (as well as visual

representations) distributed throughout the cortex, as well as

providing a basis of extensibility for the theory.

4. Across-Participant Word Identification
The semantic factor approach can also be used to determine

whether the words have a neural signature that is common across

people. The results show that it is in fact possible to identify which

of the 60 words a person is viewing with accuracies far above

chance level by extracting the semantically-driven neural signa-

tures of each of the 60 words exclusively from the activation

patterns of factor-related voxels of other people. The voxels were

selected on the basis of their correspondence to the factors (again

multiplied by stability, where stability was computed across all 10

of the participants in the training set). The model was based on the

four factors and used 80 voxels. (The factor analysis that was used

for selecting voxels was based on only three of the four participants

with plentiful anterior voxels such that no participant’s own factor

analysis was used when selecting voxels for that participant’s

classification.) The classifier was trained on data from 10

participants and tested on the 11th left-out participant (averaging

first over the six presentations within a participant, and then

treating the mean data from the 10 participants as though there

were 10 presentations). The mean across-participant identification

accuracy, averaged across the 11 participants, was .720, as shown

by the gray curve in Figure 4. All of the participants’ identification

accuracies were well above chance level (a chance probability of

p,.001 is shown by the dashed gray line). The mean accuracy for

the cross-participant model was similar to the mean accuracy

based on the corresponding within-participant identification, also

using 80 factor-times-stability voxels (mean = .724). However, the

cross-participant model had the benefit of more training data

(from the 10 left out participants, averaged over their six

presentations). Although the mean accuracies for the two models

were similar, the cross-participant model had similar accuracies for

all of the participants, whereas the within-participant model did

much better on some participants than others.
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The cross-participant findings provide the first evidence of a

neural representation of concrete nouns based on a set of semantic

factors that is common across people. This finding is an important

extension of the commonality found across participants in the

representation of pictures of physical objects [14].

5. Theory-Based Generative Prediction
The new findings can be expressed as an initial, limited theory

of concrete noun representation, stating how and where a given

noun is neurally represented. Specifically, each noun of the type

that we studied is proposed to be represented in terms of four

underlying factors at a total of 16 cortical locations, where the

locations for each factor code the degree and/or nature of the

relatedness of the noun to that factor. This formulation constitutes

a theoretical account whose fit to the data has been described

above. Below, we develop a generative or predictive account,

whereby the theory is used to predict the activation of words that

are not included in the data analysis.

We have recently reported a new machine learning protocol

that makes it possible to measure how well a model can generate a

prediction for an item (the neural representation of a particular

noun) on which it has not been trained [1]. The success of any

such generative approach demonstrates more than just a

mathematical characterization of a phenomenon. The ability to

extend prediction to new items provides an additional test of the

theoretical account of the phenomenon.

In brief, two words are left out of the training set at each fold

(say, apartment and carrot in one of the folds), and a regression model

is trained using the data from the remaining 58 words to

determine the regression weights to be associated with each of the

four factors. To make the prediction, the values of the independent

variables are directly derived from the ratings of the two words on

the three semantic dimensions (obtained from the independent

group of participants, as described above) and from the word

length. Then the model can make a prediction for each of the two

words, without using any information about any participant’s

fMRI response to those two words. The model then attempts to

match the two predicted images to the two observed fMRI images

for the two held-out words, based on their relative similarity to

each other (using a cosine measure). There were 1,770 such

attempts at matching (the number of unique word pairs that can

be left out of 60 words), and the model was assessed in terms of its

mean accuracy over these attempts within each participant. This

approach tests whether the model developed for 58 words is

extensible to two entirely new words.

To ensure that the predictive regression model had no

information about the two left-out words by virtue of information

from the factor analysis outcomes, a new factor analysis was run

on each of the 1,770 sets of 58 words, producing a separate set of

factor profiles and factor locations for each run. The underlying

regression model then used the four factor profiles and the

corresponding voxel locations (obtained from the data of three

participants other than the one that was being analyzed).

The voxels were selected similarly to the other machine learning

protocols. For each of the four factor locations (a total of 16

locations), five voxels with the highest product of the correlation

with the corresponding factor profile times their stability were

selected, for a total of 80 voxels. This selection procedure was

performed separately for each of the 1,770 runs, leaving two words

out at each iteration.

To illustrate examples of the predictions, Figure 5 shows the

presence of observed and predicted activation in the parahippo-

Figure 5. Observed and predicted images of apartment and carrot for one of the participants. A single coronal slice at MNI coordinate
y = 46 mm is shown. Dark and light and blue ellipses indicate L PPA and R Precuneus shelter factor locations respectively. Note that both the observed
and predicted images of apartment have high activation levels in both locations. By contrast, both the observed and predicted images of carrot have
low activation levels in these locations.
doi:10.1371/journal.pone.0008622.g005
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campal area and precuneus areas (indicated by dark and light blue

ellipses, respectively) for apartment, and the absence of such

observed and predicted activation for carrot. Analogously (but not

shown in the figure), L IFG (a location for the eating factor) shows

both observed and predicted activity for carrot but not for apartment.

The factor-based generative classification accuracy was quite

high: the mean accuracy across 11 participants was .801 (far above

the p,.001 greater than chance threshold of 0.537). This finding

confirms that the theory concerning the neural basis of concrete

noun representation is sufficiently powerful to generate predictions

that successfully discriminate between new pairs of concrete

nouns.

(The predictive accuracy of the regression model is not

comparable to the non-generative mean rank accuracy of .724

for the classification of individual words obtained with the

Gaussian Naı̈ve Bayes classifier. The regression model attempted

to answer the question ‘‘What will the activation patterns be for

these two new words, given the relation between word properties

and activation patterns for the other 58 words?’’ The Gaussian

Naı̈ve Bayes classifier attempted to answer the question of ‘‘Which

of the 60 words produced this activation pattern, given

information from an independent training set?’’)

Generative prediction across participants. Just above, we

demonstrated the generativity of the factor model across words.

Earlier in the paper, we demonstrated the generality of the model

for concrete noun representations over participants. Here we

describe how both kinds of extension/generalization can be made

simultaneously. The generative model can make predictions

concerning two previously unseen words for a previously unseen

participant. The predictions for each participant are based on data

acquired from the other 10 participants for the 58 remaining

words.

This factor-based cross-participant generative model matched

up the two unseen words with their fMRI images with a mean

accuracy of .762 across participants, which is far above the p,.001

threshold of 0.537. The theory-based model is able to extrapolate

to new words while it simultaneously generalizes across partici-

pants, demonstrating the generativity of the theory.

Comparison to a Previous Semantic Corpus-Based Model
It is interesting to consider how well a previous model (based on

co-occurrence frequencies with 25 verbs of perception and action)

[1] can make generative predictions based on the data from the

current study. When the generative regression model was applied

to the current data using the 80 most stable voxels, the accuracy

for discriminating between the two left-out words was .666,

compared to .801 for the factor-based generative model, a reliable

difference across the 11 participants (t(10) = 5.97, p,.001.).

The relative success of the previous model speaks to the choice

of verbs of interaction that were used for co-occurrence measures.

The full set of verbs was taste, eat, smell, touch, rub, lift, manipulate, run,

push, fill, move, ride, say, fear, open, approach, near, enter, see, hear, listen,

drive, wear, break, and clean. These verbs are related to the semantic

factors proposed here; for example, corresponding to the eating

factor are taste, smell, and eat; corresponding to manipulation are

touch, rub, lift, manipulate, push, fill, move, break, and clean;

corresponding to shelter are open, enter, and approach.

Both the factor model and the 25-verb-co-occurrences model

capture some essential characteristics of the relation between brain

activation and meaning. The 25-verbs model used co-occurrences

of the words with an intuitive set of 25 verbs for its

characterization of the 58 modeled words and the two left-out

words. The factor model that was derived bottom-up from the

activation data used the resulting factors for its characterization of

the 58 modeled words, and then additionally used independent

participant ratings to estimate semantic values for the left out

words.

A quantitative relation between the two approaches can be

established by using multiple regression to determine how well

each word’s co-occurrences with the 25 verbs can account for the

word’s three semantic factor scores (separately). The co-occur-

rences accounted for the factor scores reasonably well (R2 values of

.70, .65, and .59 for shelter, eating, and manipulation, respectively).

The three verbs (among the 25) with the highest beta weights in

the accounts of the shelter, eating, and manipulation factor scores were

near, fill, and touch, respectively. Thus the co-occurrence measures

obtained from the text corpora can to a considerable degree

predict the factor scores obtained from the fMRI data.

Discussion

The study yielded several novel findings:

1. discovery of key semantic factors underlying the neural

representation of concrete nouns;

2. relating the semantic factors to brain anatomical locations;

3. accurate identification of a thought generated by a concrete

noun on the basis of the underlying brain activation pattern;

4. determination of the commonality of the neural representation

of concrete nouns across people; and

5. ability to predict the activation pattern for a previously unseen

noun, based on a model of the content of the representation.

Semantic Factors
The neural representation of physical objects was revealed to be

underpinned by three major semantic dimensions: shelter, manip-

ulation, and eating, which have several interesting properties. These

dimensions have obvious face validity related to their ecological

validity or survival value. It is plausible that there exist additional

factors that underpin the representation of concrete nouns that

were not captured by our analysis, either because of limitations of

the set of stimulus words or limitations in the analysis procedures.

One limitation of the stimulus set is that it contained only count

nouns (including apple) but no mass nouns (like milk or sand). Mass

nouns cannot be grabbed or held like count nouns, requiring

different types of manipulation, and hence possibly requiring a

different type of representation of this factor or a different factor.

Another limitation of the stimulus set was the absence of nouns

referring to human beings (there was no sibling, lover, or attorney).

Such nouns and considerations of ecological importance suggest

that there may exist one or more additional dimensions related to

human interaction, with factors such as emotion and attraction.

Abstract nouns such as kindness, anger, or innocence were also

excluded from this study. Traits and emotions seem central to the

representation of such concepts, whereas manipulation, for example,

seems less relevant. A pilot study has demonstrated that there is

systematicity underlying the activation for such abstract nouns

because it is possible for a classifier to identify such concepts from

the corresponding brain activation with approximately similar

accuracy as identifying concrete nouns. The challenge remains to

relate the systematicity to some interpretable factors.

Aside from the limitations imposed by the stimulus set, there are

other reasons to suspect that, even for concrete nouns, there may

exist additional neural dimensions of representation. It may be

that there exist other neural representational factors that are used

less consistently across participants. (Recall that our analysis

excluded factors observed in only a minority of the participants’
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data.) Two such less general factors that emerged from the analysis

pertained to biological motion and to containment. The total

number of semantic factors which are neurally represented may be

related to the number of distinct ways that human beings can

interact with an object. In this perspective, shelter, manipulation, and

eating may simply be the most dominant factors for this particular

set of stimuli.

It is also notable that the semantic factors do not directly

correspond to particular visual properties of the objects to which

the nouns refer. For example, neither size nor curvilinearity

emerged as a factor (although it could be argued that shelter

represents concavity and size, and the manipulation factor codes

how one’s hand might conform to an object’s shape). This is not to

deny that there may be a small set of visual ‘‘factors’’ or geometric

primitives that underpin object recognition [27], which could

potentially be discovered using methods like ours, but applied to

visual brain area activation patterns in response to pictures of

objects. It seems reasonable to assume that an object is represented

in terms of both its visual properties and its semantic properties,

with different tasks evoking different properties.

It is also worthwhile to note that these three dimensions are not

done justice by the labels we gave them. For example, shelter may

additionally refer to enclosure or to an allocentric frame of

reference. Manipulation may more generally refer to physical

interaction with one’s body. Eating could possibly correspond more

generally to obtaining nourishment. At the same time, some

validation of these labels is provided by the success of the

predictive model. That model relied on the independent

participant ratings of the two left-out words with respect to these

three labels in making its predictions of neural activity.

Moreover, each of the three dimensions has three to five

subdimensions located at different cortical locations. Taken

together, these suggest an expanded set of about 12 dimensions

for the neurosemantic representation of concrete nouns (excluding

the representation of the word length). Each factor appears to

constitute a part of a cortical network whose constituent node

specializations have been suggested by previous perceptual-motor

studies, described above. Representation of all concrete nouns by

voxels in about 12 locations, referred to as combinatorial coding,

allows an enormous number of different individual entities to be

encoded uniquely by a very modest number of voxels. In this view,

there appears to be more than adequate capacity to represent all

possible concrete nouns, which have been estimated to number

about 1,600 concrete object types [27], as well as multiple tokens

of each.

The new findings thus suggest that the meanings of concrete

nouns can be semantically represented in terms of the activation of

a basis set of three main factors distributed across approximately

12 locations in the cortex. Several converging methods (use of LSA

and subject ratings) lend additional credence to the interpretation

of the three factors. There are some indications that these three

dimensions are not the only ones used in the neural representation

of concrete objects. Nevertheless, the current results do reveal the

beginnings of a biologically plausible basis set for concrete nouns,

and they furthermore have the potential to be extended to other

factors for other types of concepts.

Brain Locations
The three semantic dimensions of representation were traced to

particular sets of brain locations that have a plausible association

with their interpretation. For all three semantic factors, at least

some of the associated locations, derived from a factor analysis of

the processing of concrete nouns, also activated in less abstract

perceptual-motor tasks. The excellent matches of locations

indicate that each factor corresponds to a network of cortical

areas that co-activate during the factor-related processing. The

previous studies also suggest that each cortical location associated

with a factor is likely to be performing a distinguishable function

from the other locations, although they may all be operating on a

similar representation of the object.

Identifiablity of Concepts from Activation
The new findings demonstrate the ability for the first time to

accurately identify the content of a thought generated by a

concrete noun in the absence of a picture, on the basis of the

underlying brain activation pattern. Several alternative classifiers

were comparably effective at the classification, indicating (by the

way that they differ) that there is more than one set of voxels

(features) that contain the relevant information. Previous studies in

thought identification have presented drawings of objects [14] or

object-noun pairs [1], but human thought is not limited to what we

can see or hear; it extends to ideas that can be referred to in

language and in other symbolic systems such as mathematics. This

first demonstration of identification of symbolically-evoked

thoughts opens the possibility of studying the neural representation

of virtually any concept that can be communicated.

Commonality
The results importantly revealed a commonality of the neural

patterns across people, permitting concept identification across

individuals. This result establishes for the first time that different

brains represent concrete nouns similarly. The similarity presum-

ably arises from a shared sensorimotor system and the shared use

of the three fundamental dimensions for neurally representing

physical objects. It is important to note, however, that the location

and activation levels did not have to be common across people. It

could have been the case that association area locations are

assigned or recruited more arbitrarily. The new results indicate

that not only do people have concepts in common, but also their

brain coding of the concepts is similar, similar enough to decode

one person’s concept from other people’s brain activation patterns.

This is a remarkable new finding for concepts that are

contemplated without visual input.

Generative Model
The study demonstrated the ability to predict what the

activation pattern would be for a previously unseen noun.

Prediction goes beyond description because it entails an

understanding of the underlying neurosemantic principles that

relate meaning to brain activation. This demonstration of the

model’s generative power indicates considerable promise for

extensibility to all other comparable concrete nouns. The

demonstration that it performs well when trained on individuals

distinct from the test subject suggests the potential for developing a

general, person-independent model of word representations in the

human brain (and using this as a basis to study individual

differences).

Future Questions
Although many fascinating questions are raised by these

findings, we briefly mention two that seem answerable in the

near future. One such question concerns the way that two or more

words or concepts combine neurally to form a novel concept, such

as the phrase bird tape or the proposition John likes Mary. Perhaps

the methods developed here will be applicable to discovering the

neural chemistry of word combinations. The other question

concerns systematic individual differences in the way concepts are
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represented. For the participants with the highest identification

accuracies, the accuracies were lower when the classifier was

trained on other participants’ activation, indicating that there was

some systematic but idiosyncratic structure in the participant’s

data. It may be possible that this systematicity can eventually be

understood, in terms of such possible explanations as idiosyncratic

interaction with some of the objects or greater expertise in some of

the object categories. Similarly, there may be systematic

differences in concept representations in special populations, such

that participants with autism, for example, who often have a deficit

in social processing, might represent social concepts differently.

Given the new ability to determine much of the content of a

representation, it should be possible to determine what distin-

guishes the representations of individuals or special populations.

In summary, the research establishes a new way of describing

brain activity, not just in terms of its anatomical location and its

physical characteristics, but in terms of the informational codes

that are being processed in association with a given item. Second,

the work uses the underlying theory for generative prediction of

brain activation, providing a set of hypothesized principles on

which neural encodings of object meanings are based. These new

findings not only establish new knowledge about the neural

representations of meaning, but they also provide an empirical and

theoretical foundation for further investigation of the content of

human thought.
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Text S1 Comparing factor analysis outcomes with traditional

GLM contrasts for taxonomic categories.
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Figure S1 Locations of the multiple voxel clusters associated
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manipulation-related voxels in red, eating-related in green, and

word length in yellow.
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Figure S2 Taxonomic-category-specific GLM-derived clusters

that have matching factor locations. The clusters that match
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matches the word-length location is shown in yellow.

Found at: doi:10.1371/journal.pone.0008622.s003 (1.20 MB TIF)

Table S1 Comparison of the locations of activation in

taxonomic-category-based GLM contrasts to the factor locations.
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