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Abstract

BCL2 family members affect cell fate decisions in breast cancer but the role of BCL-W (BCL2L2) is unknown. We now show the
integrated roles of the antiapoptotic BCL-W and BCL2 in affecting responsiveness to the antiestrogen ICI 182,780 (ICI;
Fulvestrant Faslodex), using both molecular (siRNA; shRNA) and pharmacologic (YC137) approaches in three breast cancer
variants; MCF-7/LCC1 (ICI sensitive), MCF-7/LCC9 (ICI resistant), and LY2 (ICI resistant). YC137 inhibits BCL-W and BCL2 and
restores ICI sensitivity in resistant cells. Co-inhibition of BCL-W and BCL2 is both necessary and sufficient to restore sensitivity to
ICI, and explains mechanistically the action of YC137. These data implicate functional cooperation and/or redundancy in
signaling between BCL-W and BCL2, and suggest that broad BCL2 family member inhibitors will have greater therapeutic value
than targeting only individual proteins. Whereas ICI sensitive MCF-7/LCC1 cells undergo increased apoptosis in response to ICI
following BCL-W6BCL2 co-inhibition, the consequent resensitization of resistant MCF-7/LCC9 and LY2 cells reflects increases in
autophagy (LC3 cleavage; p62/SQSTM1 expression) and necrosis but not apoptosis or cell cycle arrest. Thus, de novo sensitive
cells and resensitized resistant cells die through different mechanisms. Following BCL-W+BCL2 co-inhibition, suppression of
functional autophagy by 3-methyladenine or BECN1 shRNA reduces ICI-induced necrosis but restores the ability of resistant
cells to die through apoptosis. These data demonstrate the plasticity of cell fate mechanisms in breast cancer cells in the
context of antiestrogen responsiveness. Restoration of ICI sensitivity in resistant cells appears to occur through an increase in
autophagy-associated necrosis. BCL-W, BCL2, and BECN1 integrate important functions in determining antiestrogen
responsiveness, and the presence of functional autophagy may influence the balance between apoptosis and necrosis.

Citation: Crawford AC, Riggins RB, Shajahan AN, Zwart A, Clarke R (2010) Co-Inhibition of BCL-W and BCL2 Restores Antiestrogen Sensitivity through BECN1 and
Promotes an Autophagy-Associated Necrosis. PLoS ONE 5(1): e8604. doi:10.1371/journal.pone.0008604

Editor: Mikhail V. Blagosklonny, Roswell Park Cancer Institute, United States of America

Received November 11, 2009; Accepted December 2, 2009; Published January 6, 2010

Copyright: � 2010 Crawford et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by awards from the Department of Defense Breast Cancer Research Program (BC050389) to Dr. Anatasha Crawford,
and from the U.S. Department of Health and Human Services (R01-CA131465) and Department of Defense (BC073977) to Dr. R. Clarke. Flow Cytometry,
Microscopy and Imaging, and Tissue Culture Shared Resources are supported by P30-CA-51008-16. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: clarker@georgetown.edu.

Introduction

Approximately 70% of all newly diagnosed breast cancers

express estrogen receptor-alpha (ER) [1], many of which are

sensitive to antiestrogens. The steroidal antiestrogen ICI 182,780

(ICI; Faslodex, Fulvestrant) is a selective ER downregulator

(SERD) that acts as an ER antagonist and enhances ubiquitin-

mediated ER degradation. ICI is an effective second-line

treatment for TAM resistant, ER-positive (ER+) tumors, and is

as effective as some aromatase inhibitors [2,3]. One limitation of

antiestrogen therapy is the prevalence of de novo and acquired

resistance in breast cancer. Acquired antiestrogen resistance

occurs when a tumor has an initially beneficial response to

antiestrogen treatment but the remaining tumor cells stop

responding [4,5]. We report the roles of BCL2L2 (BCL-W),

BCL2, and Beclin-1 (BECN1) in affecting responsiveness to ICI-

resistance, and describe how anti-apoptotic BCL2 family members

are involved in determining breast cancer cell fate.

BCL2 family proteins are essential regulators of apoptosis.

BCL2 and BCL-W are both antiapoptotic members of this family.

BCL-W maintains cell viability by preventing mitochondrial

membrane depolarization and caspase activation [6]. BCL-W

acts by binding to pro-apoptotic BCL2 family members and

preventing mitochondria-mediated apoptosis [7]. Overexpression

of BCL-W can prevent cell death [6] but its role(s) in affecting

breast cancer cell fate decisions or antiestrogen responsiveness is

unknown. BCL2 also blocks the induction of apoptosis by

inhibiting the activation of pro-apoptotic family members such

as BAX and preventing mitochondrial membrane depolarization

[8,9]. Overexpression of BCL2 is a potential mediator of resistance

to several chemotherapeutic drugs [10].

BCL2 family members also play essential roles in autophagy

(macroautophagy), a process characterized by the presence of

autophagosomes that engulf damaged organelles for subsequent

lysosomal degradation. Several anti-apoptotic BCL2 family mem-

bers inhibit the activity of BECN1 [11], a key regulator of

autophagy [12] that binds to PIK3C3 to facilitate autophagosome

production [13]. However, the precise relationships between

apoptosis and autophagy are unclear. Apoptosis or autophagy can

each lead to cell death, but in some cellular contexts autophagy is a

pro-survival process, for example, in the face of nutrient deprivation

[11]. While autophagy can contribute to TAM resistance in some
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breast cancer cells [14–16], its role in response to other

antiestrogens is unknown. In ER+ MCF-7 breast cancer cells

treated with camptothecin, autophagy prolongs survival and delays

apoptosis [17]. In marked contrast, autophagy promotes apoptosis

in MCF-7 cells treated with the cytotoxic diterpenoid oridonin,

where an inhibition of autophagy increases cell survival [18].

We determined whether BCL-W and BCL2 regulate ICI

response in human breast cancer cells, and whether any effects

involve changes in apoptosis and/or BECN1-associated autoph-

agy. We used three estrogen-independent cell lines: MCF-7/

LCC1 (ICI sensitive) [19], and LY2 and MCF-7/LCC9 cells that

are crossresistant to TAM and ICI [20,21]. We show that co-

inhibition of BCL-W and BCL2 restores sensitivity to the growth-

inhibitory effects of ICI in both MCF-7/LCC9 and LY2 cells. In

re-sensitized cells, ICI treatment increases the levels of autophagy

and necrosis but has no effect on apoptosis. Inhibition of

autophagy by 3-methyladenine (3MA) or BECN1 shRNA under

these conditions reduces necrosis and increases apoptosis. Thus,

restoration of ICI sensitivity with BCL-W+BCL2 inhibition

appears to occur through increasing an autophagy-associated

necrotic cell death. Finally, we show that co-inhibiting BCL-W

and BCL2 improves ICI sensitivity in antiestrogen-sensitive cells

by increasing apoptosis. Therefore, BCL-W, BCL2, and BECN1

integrate central functions in determining ICI responsiveness likely

by regulating functional autophagy to dictate the balance between

apoptotic and necrotic cell death.

Results

We measured endogenous BCL-W and BCL2 expression in

control and ICI treated resistant and sensitive cells. BCL2 expression

was significantly higher in ethanol control and ICI treated (resistant)

MCF-7/LCC9 cells when compared to (sensitive) MCF-7/LCC1

cells (Figure 1A; ANOVA p = 0.002). BCL-W expression was lower

in MCF-7/LCC1 cells after 24 hr of ICI treatment and increased in

both sensitive and resistant cells after 72 hr of ICI treatment.

However, the levels in resistant cells remained higher than in

sensitive cells (Figure 1B; ANOVA p = 0.004;).

To determine if BCL2 transcription is regulated in antiestrogen-

resistant cells, we measured basal BCL2 promoter activity using a

BCL2-luciferase promoter-reporter assay. Basal BCL2 promoter

activity was increased 14-fold in MCF-7/LCC9 cells (Figure S1;

Figure 1. Increased expression of BCL-W and BCL2 in MCF-7/LCC9 cells. Whole cell lysates were subjected to Western blot analysis with a
specific BCL2 or BCL-W antibody. (A) Bars represent the mean6SE of the relative BCL2:actin ratio (normalized to control cells) for three independent
experiments. Inset, a representative blot. (B) Bars represent the mean6SE of the relative BCL-W:actin ratio (normalized to control cells) for three
independent experiments. Inset, a representative blot.
doi:10.1371/journal.pone.0008604.g001

BCL2, BCL-W, and AE Resistance

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8604



p,0.003) when compared to MCF-7/LCC1 cells, suggesting that

the transcriptional regulation of basal BCL2 expression is altered

in MCF-7/LCC9 cells.

YC137 Restores ICI 182,780 Sensitivity by Increasing
Necrotic but Not Apoptotic Cell Death in Antiestrogen
Resistant Cells

We hypothesized that if the expression of pro-survival BCL2

family members is responsible for the resistance phenotype its

inhibition should restore antiestrogen sensitivity. We first tested this

hypothesis using the small molecule BCL2 inhibitor YC137 [22].

MCF-7/LCC1 and MCF-7/LCC9 cells were treated with YC137

(400 nmol/L) and ICI (20 nmol/L and 500 nmol/L) for 7-days.

Total cell number was significantly decreased after treatment with

both concentrations of ICI and/or YC137 in MCF-7/LCC1 cells

(ANOVA p,0.001; Fig. 2A). RI = 2.56 (20 nmol/L ICI) and

RI = 1.23 (500 nmol/L ICI) suggest a strong synergistic interaction

between 20 nmol/L ICI and YC137; the weaker interaction

between 500 nmol/L ICI and YC137 reflects the high potency of

500 nmol/L ICI alone in sensitive cells. In resistant cells, neither ICI

nor YC137 alone affected cell proliferation, whereas total cell

number decreased after YC137+ICI treatment (Figure 2A; AN-

OVA p = 0.001) indicating a restoration of ICI sensitivity; RI = 1.56

for the YC137+ICI treatment implies a synergistic interaction.

To determine the effect of BCL-W and BCL2 inhibition in

sensitive cells, MCF-7/LCC1 cells were treated with increasing

Figure 2. BCL-W and BCL2 inhibition increases sensitivity to ICI 182,780 and increases necrosis in MCF-7/LCC9 cells. (A) Cells were
treated with YC137 and/or ICI for 7-days. Bars represent the mean6SE of relative cell proliferation (normalized to EtOH treated controls) for a single
representative experiment performed in triplicate. (B) Cells were treated and stained with propidium iodide (PI). Bars represent the mean6SE of
relative PI staining (normalized to control EtOH treated cells) for three independent experiments. (C) Cells were transfected with siRNA and stained
with PI. Inset, a representative blot showing BCL-W and BCL2 siRNA knockdown.
doi:10.1371/journal.pone.0008604.g002
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concentrations of YC137. Five days of YC137 treatment had no

effect; however, cell proliferation decreased significantly after 7-

days (Figure S2A; ANOVA p,0.001). After 5-days of

YC137+ICI treatment, YC137 further decreased cell proliferation

after treatment with ICI (Figure S2B; ANOVA p,0.001).

Results with 20 nM ICI are included in Fig. 2A for comparison.

To determine if YC137 increases apoptosis, MCF-7/LCC1 and

MCF-7/LCC9 cells were treated with YC137+ICI for 48 hr. Cell

fate was evaluated by measuring FITC-Annexin V (apoptosis) and

propidium iodide (PI) staining (to measure necrosis; not to detect

the sub-G1 peak) by FACS. In contrast to MCF-7/LCC1 cells,

treatment of MCF-7/LCC9 cells with YC137 or ICI only, or

YC137+ICI did not induce apoptosis (not shown). However, in

MCF-7/LCC9 cells treated with YC137+ICI a significant increase

in PI staining was observed (Figure 2B; p = 0.036).

Whether the effects of YC137 are driven by inhibition of BCL-

W, BCL2, or inhibition of both proteins is required, is unknown.

To determine the effects of specific BCL2 family members on the

changes in cell death seen with YC137 treated cells, BCL-W and

BCL2 siRNA were used individually or concurrently to inhibit

their expression. Knockdown of either BCL-W or BCL2

individually or in combination in MCF-7/LCC9 cells does not

result in increased apoptosis when combined with ICI treatment in

resistant cells (not shown). However, we detected a significant

increase in PI staining after BCL-W6BCL2 knockdown and ICI

treatment (Figure 2C; p,0.05), the greatest effect was seen when

both BCL-W and BCL2 are co-inhibited (Figure 2C; p,0.05).

To confirm these observations morphologically, cells were treated

for 48 hr prior to staining with an acridine orange/ethidium

bromide solution and examined by fluorescence microscopy.

Images of viable cells (large, green nuclei), apoptotic cells

(condensed, green nuclei), late apoptotic cells (condensed red

nuclei), and necrotic cells (large, red-orange nuclei) were captured.

The greatest proportion of necrotic cells is seen with YC137+ICI

treatment (data not shown). These data show that BCL-W+BCL2

co-inhibition in ICI treated antiestrogen resistant cells most

strongly increases necrosis without significantly altering the rate

of apoptosis, while inhibition of BCL2 or BCL-W alone is not

sufficient.

ICI 182,780 Treatment Combined with BCL2 and BCL-W
Inhibition Increases Autophagy in Resistant Cells

During autophagy LC3 is cleaved to form LC3I and LC3II,

whereas p62/SQSTM1 binds to LC3 and is degraded [23]. To

determine if YC137 treatment acts by increasing autophagy, as

might be expected from its inhibition of BCL2 [24], cells were

treated with YC137 and/or ICI and examined for LC3 cleavage

and p62/SQSTM1 expression by Western blotting. In MCF-7/

LCC9 cells, there was a significant increase in LC3II expression

after YC137+ICI treatment when compared to ethanol treated

controls and MCF-7/LCC1 cells (Figure 3A; ANOVA p,0.001).

LC3II expression in the combination-treated cells was also

significantly higher than in cells treated with either YC137 or

ICI alone (Figure 3A; ANOVA p,0.001). Consistent with the

predicted increase in autophagy, p62/SQSTM1 expression was

downregulated in MCF-7/LCC9 cells treated with YC137 or

YC137+ICI; expression in the combination treated cells was

significantly lower than in cells treated with YC137 or ICI alone

(Figure 3B; ANOVA p,0.024). This decrease in p62/SQSTM1

expression was also observed in YC137+ICI treated MCF-7/

LCC1 cells (Figure 3B; ANOVA p,0.024). To determine if

BCL2+BCL-W knockdown produces the same effect as YC137,

MCF-7/LCC9 cells were transfected with both BCL2 and BCL-W

siRNAs and treated with ICI. Consistent with the effects of

YC137, BCL-W and BCL2 co-inhibition significantly increased

LC3II expression after ICI treatment (Figure 3C; p,0.05).

Combined Inhibition of BCL2, BCL-W, and Autophagy (by
3MA) Increases Apoptosis and Decreases Necrosis

To investigate the functional role of autophagy after BCL-W

and BCL2 co-inhibition, MCF-7/LCC9 cells were treated

with the autophagy inhibitor 3MA (350 mmol/L) in combination

with ICI and YC137. Cell number was significantly decreased

in 3MA+ICI+YC137 co-treated cells (Figure 4A; ANOVA

p,0.001). However, treatment with 3MA+ICI+YC137 did not

decrease further MCF-7/LCC9 cell proliferation when com-

pared to ICI+YC137 (Figure 4A).

Autophagy can be pro-death [15,18] or pro-survival [17,25]. To

determine the effect of autophagy inhibition on cell death, we

measured mitochondrial membrane permeability (MMP), apopto-

sis, and necrosis after treatment with 3MA. The ICI-resistant

LY2 cells were also examined to compare their response to

BCL2+BCL-W co-inhibition and autophagy inhibition with ICI-

resistant MCF-7/LCC9 cells. While LY2 cells express low basal

levels of BCL-W, BCL2, and LC3II (not shown), cell proliferation

was significantly down-regulated following YC137, ICI, and

YC137+ICI treatment; proliferation is lowest in combination

treated cells when compared to the individual treatments (Figure
S3; ANOVA, p,0.001). Following treatment with 3MA+Y-

C137+ICI, Annexin V staining increased significantly in resistant

cells (MCF-7/LCC9; LY2) when compared to controls, cells

treated with each of 3MA, YC137, or ICI alone, or YC137+ICI

(Figure 4B; ANOVA p,0.001). MCF-7/LCC1 cells increased

relative Annexin V staining after all treatments except when

treated with 3MA alone (Figure 4B; p,0.001).

We then determined if these effects were associated with

changes in the mitochondria. Consistent with the Annexin V

staining, MMP increased significantly in MCF-7/LCC1 cells

following treatment with ICI and YC137 alone, and after

treatment with ICI combined with YC137 and/or 3MA. In

contrast, MCF-7/LCC9 cells exhibit increased MMP only after

treatment with 3MA+YC137+ICI (Figure 4C; p,0.001). A

decrease in PI staining, indicating a decrease in necrosis, occurred

in resistant cells only after the addition of 3MA to YC137+ICI

(Figure 4D; ANOVA p,0.001). There was no change in the

number of cells in S-phase after treatment of MCF-7/LCC9 cells

with YC137, 3MA, YC137+ICI, or 3MA+YC137+ICI (Figure
S4). Thus, the reversal of resistance can occur without the cell

cycle arrest seen in de novo sensitive cells. As expected, the number

of MCF-7/LCC1 cells undergoing S-phase decreased after

YC137+ICI and 3MA+YC137+ICI treatment (ANOVA,

p = 0.016; Figure S4).

To establish further the roles of BCL-W and BCL2, we

performed similar studies in BCL-W+BCL2 siRNA co-transfected

resistant cells (MCF7/LCC9; LY2) treated with ICI and/or 3MA.

After treating the siRNA transfected MCF-7/LCC9 cells with a

combination of ICI and 3MA, we found a significant increase in

Annexin V staining in BCL-W and BCL2 siRNA co-transfected

cells (Figure 5A; ANOVA p,0.001). A significant decrease in PI

staining was also observed after BCL-W/BCL2 knockdown in

combination with ICI+3MA treatment (Figure 5B; ANOVA

p = 0.05). These data imply that functional autophagy plays a

major role in influencing the decision to undergo apoptosis and/or

necrosis in antiestrogen-resistant cells.

BECN1 Mediates Key Effects of YC137, BCL-W, and BCL2
While basal BECN1 expression levels are comparable in

sensitive and resistant cells (not shown), we could not exclude

BCL2, BCL-W, and AE Resistance
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the possibility that its role is functionally different in these cellular

contexts. Thus, we explored the mechanistic relationship between

BCL-W, BCL2, and BECN1 using shRNA-mediated knockdown

of BECN1 in resistant cells. BECN1 shRNA effectively decreased

BECN1 protein expression (approximate 5-fold) in MCF-7/LCC9

cells (Figure 6A; p = 0.029). Also, BECN1 shRNA infected MCF-

7/LCC9 cells were more sensitive to YC137 (50 nmol/L) and ICI

(500 nmol/L) than control infected cells, and cell proliferation was

down-regulated after treatment with YC137 or ICI (Figure 6B;

ANOVA, p,0.001). However, cell proliferation following

YC137+ICI treatment was significantly lower than either

treatment alone. For BECN1 knockdown combined with ICI

treatment, RI = 1.23 suggests at least an additive interaction.

Unlike control infected cells, proliferation was downregulated in

BECN1 shRNA infected cells treated with YC137 or YC137+ICI

(Figure 6B; ANOVA p,0.001). Furthermore, apoptosis was

significantly increased in cells treated with YC137+ICI

(Figure 6C; ANOVA p,0.001). The level of necrosis increased

in control infected cells, and decreased in BECN1 shRNA infected

cells, when treated with YC137+ICI (Figure 6D; ANOVA

p,0.05). BECN1 knockdown, in combination with BCL2+BCL-

W co-inhibition, inhibited autophagy, restored ICI sensitivity, and

increased apoptosis (but not necrosis) in ICI treated antiestrogen-

resistant breast cancer cells. These different cell death outcomes in

sensitive and resistant cells indicate considerable plasticity in breast

cancer cell fate mechanisms in response to antiestrogens.

Figure 3. LC3II and p62/SQSTM1 expression after BCL-W and BCL2 inhibition. Whole cell lysates were subjected to Western blot analysis
with a specific LC3 or p62/SQSTM1 antibody. (A) Bars represent the mean6SE of the relative LC3II:actin ratio (normalized to empty vector controls)
for three independent experiments. Inset, a representative blot. (B) Bars represent the mean6SE of the relative p62/SQSTM1:actin ratio (normalized to
empty vector controls) for three independent experiments. Inset, a representative blot. (C) Cells were transfected with siRNA and LC3II measured by
Western blot analysis. Bars represent the mean6SE of the relative LC3II:actin ratio (normalized to empty vector controls) for three independent
experiments.
doi:10.1371/journal.pone.0008604.g003
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Discussion

Antiestrogen resistance is a major limitation to improving breast

cancer survival rates and elucidating its mechanisms remains an

important challenge [26,27]. In breast tumors, BCL2 expression

measured prior to therapy correlates with ER expression and an

improved response to antiestrogens [28]. However, BCL2 levels

decrease after TAM therapy, but only in those women who obtain

clinical benefit [29]. In breast tumors, apoptosis increases after the

first 24 hr of TAM treatment but markedly decreases 3-months

later. Moreover, BCL2 expression is elevated in residual (resistant)

tumors [30]. We hypothesized that increased expression of BCL2

and/or BCL-W may play a role in antiestrogen resistance by

allowing resistant cells to evade apoptosis. We show that in the

absence of estrogen there is an increase in basal and ICI-regulated

BCL2 mRNA, protein, and promoter activity in resistant cells,

observations consistent with data showing elevated activity of two

upstream regulators of BCL2: NFkB and XBP1 [31–33]. However,

co-inhibition of BCL-W and BCL2 is required to restore ICI

sensitivity, a process that is driven by increased autophagy and

necrosis, but not apoptosis. We also show that increased autophagy

may activate necrotic cell death in resistant cells.

Figure 4. Increased apoptosis and decreased necrosis after BCL-W and BCL2 and autophagy inhibition. (A) Cells were treated with ICI,
3MA, YC137, or a combination of the three for 7-days. Bars represent the mean6SE of relative proliferation (normalized to empty vector control). (B)
Cells were treated with YC137, ICI, 3MA, YC137+ICI, or a combination of YC137, ICI, and 3MA for prior to Annexin V staining. Bars represent the
mean6SE of the relative Annexin V staining (normalized to empty vector controls) for three independent experiments. (C) Cells were treated with ICI,
3MA, YC137, or a combination prior to JC-1 staining. (D) Cells were treated with YC137, ICI, 3MA, YC137+ICI, or a combination of YC137, ICI, and 3MA
prior to PI staining. Bars represent the mean6SE of the relative PI staining (normalized to empty vector controls) for three independent experiments.
doi:10.1371/journal.pone.0008604.g004

BCL2, BCL-W, and AE Resistance

PLoS ONE | www.plosone.org 6 January 2010 | Volume 5 | Issue 1 | e8604



Little is known about BCL-W expression and function in breast

cancer. Since BCL-W is overexpressed in some human colon

cancer cells [6,34] and its expression is regulated by estrogen in

cerebrocortical neuron cultures [35], we hypothesized that BCL-

W could play a role in antiestrogen resistance. BCL-W expression

is increased by ICI in both sensitive and resistant cells, suggesting

that an increased co-expression of both BCL2 and BCL-W is

required for antiestrogen resistance. Hence, the ICI-induced

increase in the expression of BCL-W alone in antiestrogen-

sensitive cells has little effect on responsiveness unless accompanied

by a concurrent increase in BCL2, as is seen in resistant cells.

Small-molecule inhibitors of proapoptotic BCL2 family mem-

bers can restore sensitivity to some therapeutic agents that induce

apoptosis [36]. Some of these compounds inhibit the proliferation

of cells that express high levels of BCL2 [37]. However, several

antiapoptotic BCL2 family members also regulate autophagy

through their interactions with BECN1 [12,38,39]. In resistant

MCF-7/LCC9 and LY2 cells, only the levels of autophagy and

necrosis increase after YC137+ICI treatment; there is no increase

in either MMP or apoptosis.

We used BCL-W and/or BCL2 siRNA to confirm the results

with YC137. As expected, BCL-W+BCL2 co-inhibition has no

effect on apoptosis in ICI treated MCF-7/LCC9 cells, whereas

both autophagy and necrosis increase. Inhibition of BCL2 and

BCL-xL decreases cellular ATP and increases necrosis (but not

apoptosis) in acinar cells hyperstimulated with CCK-8 [40].

Autophagy can also activate necrosis in apoptosis-deficient mouse

embryonic fibroblasts [41]. Increased autophagosome formation is

induced early during necrotic cell death and contributes to the

cellular destruction that occurs during necrosis in Caenorhabditis

elegans [42]. These results suggest that BCL-W+BCL2 coinhibition

can increase antiestrogen sensitivity in resistant breast cancer cells

by preferentially activating necrosis, apparently in association with

the induction of autophagy. In contrast, inhibiting autophagy in

some TAM-resistant breast cancer cells can increase apoptosis

[16].

No change occurs in the proportion of cells undergoing S-phase

after 3MA+YC137+ICI treatment. Thus, it is unlikely that

autophagy plays a major role in the cell cycle arrest effects of

antiestrogens. We also show that the inhibition of autophagy, in

combination with BCL-W+BCL2 co-inhibition in ICI treated

resistant cells, does not further reduce total cell number but shifts

programmed cell death such that apoptosis increases and necrosis

decreases. Our results strongly suggest that functional autophagy is

a central component of the cell fate decision machinery in ICI-

resistant breast cancer cells, although we cannot exclude the

possibility that autophagy also alters the kinetics of cell death.

Nonetheless, in addition to being a cell death effector mechanism,

autophagy appears to be a central component in influencing how

breast cancer cells die in response to antiestrogens.

In summary, our results show that BCL-W+BCL2 co-inhibition

restores ICI sensitivity in antiestrogen-resistant cells and increases

ICI sensitivity in antiestrogen-sensitive cells. We show that the

overexpression of BCL-W and BCL2 is linked to determining cell

fate through autophagy in ICI resistant breast cancer models

(Figure S5A). We have shown that BCL-W+BCL2 coinhibition

increases autophagy and necrosis with no effect on the extent of

apoptotic cell death (Figure S5B). These data suggest that BCL-

W and BCL2 activate apoptosis and necrosis by initially regulating

autophagy (Figure S5C). We conclude that the co-inhibition of

BCL-W and BCL2 restores sensitivity in antiestrogen-resistant

breast cancer cells by promoting an autophagy-associated increase

in necrosis. Antiestrogen sensitive cells undergo autophagy and/or

apoptosis, whereas resistant cells undergo autophagy and necrosis

when resensitized. These different cell death outcomes in sensitive

and resistant cells show the notable plasticity of cell fate

mechanisms in breast cancer. In resistant cells, resensitization to

antiestrogens can also occur without the cell cycle arrest that

accompanies cell death in de novo sensitive cells. Thus, antiestro-

gen-regulated signaling that modifies cell cycling occurs through

mechanisms independent of mitochondrial function and cell

death.

From a therapeutic perspective, these data also suggest that

broad rather than specific BCL2 family member inhibitors will

have greater clinical value and may explain the apparent lack of

activity of targeted BCL2 antisense monotherapy in clinical trials

[43]. Combination therapy with endocrine agents and broadly

active small molecule inhibitors of BCL2 family members may

delay, prevent, or reverse the acquisition of antiestrogen resistance

in breast cancer patients and lead to significant improvements in

survival.

Figure 5. BCL-W/BCL2 knockdown and autophagy inhibition
increases apoptosis and decreases necrosis. (A) MCF-7/LCC9 cells
were transfected with a combination of BCL-W and BCL2 siRNA and
treated with ICI and 3MA. Bars represent the mean6SE of the relative
Annexin V staining (normalized to empty vector controls) for three
independent experiments. (B) Bars represent the mean6SE of the
relative PI staining (normalized to empty vector controls) for three
independent experiments.
doi:10.1371/journal.pone.0008604.g005
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Materials and Methods

Cell Culture
All cells were shown to be free of Mycoplasma spp. contamination.

MCF-7/LCC1 (ER+, estrogen independent, antiestrogen-sensitive)

[19]; MCF-7/LCC9 (ER+, estrogen independent, TAM and ICI

cross-resistant variant derived from MCF-7/LCC1 cells by selection

against ICI) [21], and LY2 cells (ER+, estrogen independent, LY

117018, TAM, and ICI cross-resistant, MCF-7 variant derived by

selection against the Raloxifene analog LY 117018) [20] were

routinely grown in improved minimal essential medium without

phenol red and supplemented with 5% charcoal stripped calf serum

(CCS-IMEM; Biofluids). We confirmed the genetic lineage of the

three variant cell lines as being derived from the original MCF-7 cell

line by DNA fingerprinting using genetic markers at nine different

loci. All cells were maintained at 37uC in a humidified incubator

with 95% air:5% CO2 atmosphere. ICI was obtained from Tocris

Bioscience (Ellisville, MO) and 3-methyladenine (3MA) from Sigma

Aldrich (St. Louis, MO). Acridine orange was obtained from EMD

Biosciences (San Diego, CA) and ethidium bromide from Invitrogen

(Carlsbad, CA). YC137 was kindly provided by Dr. York Tomita

(Georgetown University) [44].

Figure 6. BECN1 knockdown and BCL-W/BCL2 co-inhibition decreases cell proliferation through increased apoptosis in resistant
cells. (A) Whole cell lysates were subjected to Western blot analysis with a specific BECN1 monoclonal antibody. Bars represent the mean6SE of the
relative BECN1:actin ratio (normalized to control cells) for three independent experiments. (B) shRNA infected MCF-7/LCC9 cells were treated with
YC137 and/or ICI for 7-days. Bars represent the mean6SE of relative cell proliferation (normalized to EtOH treated controls) for a single representative
experiment performed in triplicate. (C) shRNA infected MCF-7/LCC9 cells were treated with YC137, ICI, or a combination of YC137 and ICI. Bars
represent the mean6SE of the relative Annexin V staining (normalized to empty vector controls) for three independent experiments. (D) Bars
represent the mean6SE of the relative PI staining (normalized to empty vector controls) for three independent experiments.
doi:10.1371/journal.pone.0008604.g006
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RNA Isolation and Quantitative Real-Time PCR
Total RNA was isolated using the Trizol method. For each cDNA

sample a qPCR reaction and a standard curve were established using

TaqMan Universal PCR Master Mix and the following TaqMan

primers (Applied Biosystems): BCL2 = Hs00608023_m1; BCL-W

(BCL2L2) = Hs00187848_m1; RPLP0 (housekeeping gene) =

Hs99999902_m1. Each reaction (10 ml) was run in triplicate on an

ABI Prism 7900HT Sequence Detection System using the

manufacturer’s absolute quantification protocol. Expression data

for each reaction was estimated relative to expression of RPLP0.

Transient Transfection and Promoter-Reporter Assays
Cells were plated at 60,000 cells/well and maintained for 24 hr

prior to co-transfection with 0.4 mg of full length BCL2 promoter-

luciferase reporter plasmid [45] (a generous gift from Dr. Linda

Boxer, Stanford University Medical Center) and 0.004 mg of the

phRL-SV40-Renilla control plasmid containing the Renilla lucif-

erase gene (Promega, Madison, WI). Activation of the BCL2

promoter was measured using the Dual Luciferase Assay Kit

(Promega) and luminescence measured using a Lumat LB 9501

luminator (EG&G Berthold, Bundoora, Australia).

siRNA Transfection and Lentiviral shRNA Infection
Cells were plated at 100,000 cells/well and BCL2, BCL-W

(Dharmacon, Lafayette, CO), and control siRNA (Santa Cruz

Biotechnology, Santa Cruz, CA) were each diluted to 100 nM.

Transfection was performed according to Dharmacon’s protocol

using Lipofectamine 2000 (Invitrogen). Twenty-four hours after

transfection, cells were treated with ICI, 3MA, a combination of

the two, or ethanol vehicle for 48 hr. For the lentiviral infection,

cells were plated at 10,000 cells/well and allowed to incubate

for 24 hr prior to shRNA infection. BECN1 lentiviral particles

and control lentiviral particles were purchased from Dharma-

con. The infection was carried out according to the Dharmacon

SMARTvector shRNA lentiviral protocol using Polybrene

(Millipore).

Western Blotting
Cells were treated as appropriate and lysed in radioimmuno-

precipitation assay buffer [150 mmol/L NaCl, 50 mmol/L Tris

(pH 7.5), 1% Igepal CA-630, and 0.5% deoxycholate] supple-

mented with Complete Mini protease inhibitor cocktail tablets

(Roche) and 1 mmol/L sodium orthovanadate phosphatase

inhibitor (Sigma). The primary antibodies used were: mouse

monoclonal BCL2 primary antibody (1:1000; Assay Designs,

Ann Arbor, MI), rabbit monoclonal BCL-W primary antibody

(1:500; Cell Signaling, Danvers, MA), rabbit polyclonal LC3B

primary antibody (1:500; Cell Signaling), mouse monoclonal

p62/SQSTM1 primary antibody (1:500; Abcam, Cambridge,

MA) overnight. Antigen-antibody complexes were visualized

using the ECL detection system (Amersham Biosciences) and

SuperSignal Chemiluminescent Substrate (Thermoscientific).

Protein expression was quantified using densitometric analysis;

data (mean6SE) are presented as the ratio of target protein:

bactin signals.

Cell Proliferation
5,000 cells/well were treated as appropriate for 7-days.

Following treatment, cells were stained with a crystal violet

staining solution [46]. Sodium citrate buffer was added to each

well and absorbance measured at 550 nM using a microplate

reader (Biorad, Hercules, CA).

Cell Cycle, Apoptosis, Necrosis, and Autophagy
Fluorescence activated cell sorting (FACS) was performed by

the Lombardi Comprehensive Cancer Center Flow Cytometry

Shared Resource. For cell cycle analysis, cells were plated at

80,000–100,000 cells/well, treated as appropriate for 48 hr, fixed,

and analyzed by FACS. To measure apoptosis, cells were treated

for 48 hr and stained as described in the TACS Annexin V Kit

(Trevigen, Gaithersburg, MD). Necrosis was measured by

counting cells stained red by propidium iodide (PI). For

morphologic analysis of necrosis, cells were plated, treated 24 hr

later, and after a further 48 hr stained with acridine orange/

ethidium bromide solution (100 mg/ml acridine orange in

PBS:100 mg/ml ethidium bromide in PBS) and examined using

an Olympus IX-70 confocal microscope with 488 nm and 633 nm

excitation lasers.

To measure autophagy, we performed Western blot analysis to

measure LC3 cleavage and p62/SQSTM1 expression [23]. Cells

treated with 2 mg/ml tunicamycin (EMD Biosciences) for 48 hours

were the positive control for LC3 cleavage. To block functional

autophagy, we treated cells with the autophagy inhibitor 3MA, or

infected cells with lentiviral BECN1 shRNA.

Mitochondrial Membrane Permeability
Cells were treated as appropriate and stained with 100 ml of JC-

1 dye solution (Invitrogen) for 25 min at 37uC. Green fluorescence

(485 nm excitation/535 nm emission) was measured on a Wallac

Viktor2 1420 Multilabel Counter (Perkin-Elmer, Boston, MA).

Statistical Analyses
One-way ANOVA was used to determine overall significant

differences following treatment in the cell proliferation, cell cycle,

apoptosis, and MMP assays. Student’s t-test was used to determine

differences in BCL2, BCL-W, LC3, p62/SQSTM1 expression

and luciferase promoter-reporter activity. All statistical analyses

were performed using SigmaStat version 3.0. The nature of drug

interactions (synergy, antagonism, additivity) was assessed using

the Relative Index (RI) [47]. RI values were obtained by

calculating the expected cell survival (Sexp; the product of survival

obtained with drug A alone and the survival obtained with drug B

alone) and dividing this Sexp by the observed cell survival in the

presence of both drugs (Sobs). Sexp/Sobs.1.0 indicates a synergistic

interaction, ,1.0 indicates an antagonistic interaction, and = 1 is

indicative of an additive interaction between the two drugs used.

Supporting Information

Figure S1 Increased basal BCL2 promoter activity in ICI/

TAM-cross-resistant MCF-7/LCC9 cells. Cells were seeded in 12-

well plates and co-transfected with BCL2 promoter-luciferase and

pCMV-Renilla constructs for 24 h prior to lysis and luminescent

detection (to examine basal promoter activity). Bars represent the

mean6SE of the relative BCL2-luciferase: Renilla luciferase

activity for a single representative experiment performed in

triplicate. p,0.003 for MCF-7/LCC9 vs. MCF-7/LCC1.

Found at: doi:10.1371/journal.pone.0008604.s001 (1.44 MB TIF)

Figure S2 Increased sensitivity to ICI 182,780 in antiestrogen-

sensitive cells. A, MCF-7/LCC1 cells were treated with the

indicated concentrations of YC137 for 5 and 7 days, at which time

cell number was determined. Points represent the mean6SE of

relative proliferation (normalized to empty vector control).

ANOVA p,0.001; p,0.05 for YC137 vs. control. B, MCF-7/

LCC1 cells were treated with ICI or a combination of YC137+ICI

for 5 days, at which time cell number was determined. Points
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represent the mean6SE of relative proliferation (normalized to

empty vector control). ANOVA p,0.001; p,0.001 for

YC137+ICI treated cells vs. ICI treated cells.

Found at: doi:10.1371/journal.pone.0008604.s002 (1.01 MB TIF)

Figure S3 BCL-W/BCL2 inhibition decreases cell proliferation

in ICI 182,780 treated resistant LY2 cells. Cells were treated with

ICI, YC137, or a combination of the two for 7 days to examine

cell proliferation. Bars represent the mean6SE of relative

proliferation (normalized to empty vector control). ANOVA

p,0.001; p,0.05 for treatment vs. control treated cells and for

YC137+ICI treated cells vs. YC137 and ICI.

Found at: doi:10.1371/journal.pone.0008604.s003 (0.66 MB TIF)

Figure S4 Combined autophagy inhibition and BCL-W/BCL-2

inhibition does not alter cell cycle distribution in the resistant cell

line. Cells were treated with ICI, 3MA, YC137, or a combination

for 48 h prior to ethanol fixation and FACS analysis. ANOVA

p = 0.016; p,0.05 for treatment vs. control, 3MA, or YC137.

Found at: doi:10.1371/journal.pone.0008604.s004 (0.56 MB TIF)

Figure S5 BCL-W and BCL2 indirectly regulate necrosis

through the direct regulation of autophagy and apoptosis. A,

Representation of the relationship between BCL-W/BCL2

overexpression, autophagy, necrosis, and apoptosis in ICI-resistant

cells treated with ICI 182,780. B, Representation of the effect of

BCL-W/BCL2 inhibition on autophagy, necrosis, and apoptosis.

C, Representation of the effect of BCL-W/BCL2 inhibition in

combination with autophagy inhibition on autophagy, necrosis,

and apoptosis.

Found at: doi:10.1371/journal.pone.0008604.s005 (0.16 MB TIF)
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