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Abstract

The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but
population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis
of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and
glurp; the merozoite antigens eba175, ama1, msp’s 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen
sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using
traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes
were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-
merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the
merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the
diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of
merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the
human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a
single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates
significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite
antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to
vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens
to be incorporated into the design of next-generation malaria vaccines.

Citation: Barry AE, Schultz L, Buckee CO, Reeder JC (2009) Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of
the Human Malaria Parasite, Plasmodium falciparum. PLoS ONE 4(12): e8497. doi:10.1371/journal.pone.0008497

Editor: Laurent Rénia, BMSI-A*STAR, Singapore

Received October 28, 2009; Accepted December 7, 2009; Published December 30, 2009

Copyright: � 2009 Barry et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by Project Grant 488221 from the National Health and Medical Research Council of Australia (NHMRC). AEB was supported
by an Innovation Fellowship from the Victorian Endowment for Science Knowledge and Innovation and a NHMRC Howard Florey Centenary Fellowship. JCR is
supported by an NHMRC Research Fellowship. C.O.B. is supported by a Sir Henry Wellcome Trust Postdoctoral Research Fellowship. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alyssa.barry@burnet.edu.au

Introduction

Infection with the protozoan parasite Plasmodium falciparum

causes more than 500 million episodes of clinical malaria and two

million deaths each year [1]. A broadly effective malaria vaccine

would have a significant global health impact on this enormous

public health burden. Over the past 40 years, an intensive

international effort has led to the development of several antigens

from P. falciparum as malaria vaccine candidates. They include

surface exposed proteins from morphologically distinct develop-

mental stages of the parasite lifecycle within the human host

namely the Circumsporozoite Surface Antigen (CSP), Thrombos-

pondin Related Adhesion Protein (TRAP), Liver Stage Antigen 1

(LSA1), Apical Membrane Antigen 1 (AMA1), Erythrocyte

Binding Antigen 175 (EBA175), Merozoite Surface Proteins

(MSPs 1–5), Glutamate Rich Protein (GLURP) and Pfs48/45

([2]; Table 1). Many of these antigens have undergone rigorous

developmental and preclinical testing as subunit vaccines [2] but

only a few have reached advanced clinical trials (e.g. Phase 2b:

CSP (RTS,S); AMA1 (FMP2.1, C1); MSP142 (FMP1); MSP3

(LSP)) [3]. The variable success of candidate malaria vaccines may

be due to the high degree of diversity of P. falciparum antigens [4]

and a variant-specific immune response [5,6], particularly as most

vaccines are formulated with a single polymorphic variant. There

is now increasing recognition that a malaria vaccine may need to

contain multiple variants of the target antigen to be effective

against an entire parasite population [7].

The extent and distribution of genetic diversity of P. falciparum is

for the most part associated with transmission intensity and

geographic origin [8,9], but unique patterns of diversity have been

observed for P. falciparum antigens. Because many antigens are

under immune selection, they are several times more diverse than

the neutral loci used in genome wide analyses. This is the case

even in low transmission regions [10,11,12], suggesting that

vaccines will need to represent a large number of variants

regardless of the region of deployment. The strong geographic

differentiation observed in genome-wide markers [8,9] is also

detectable in genes encoding the sporozoite antigen, csp [13,14,15]
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and to a greater extent, the gametocyte antigen, pfs48/45 [16],

raising the possibility that malaria vaccines may need to be tailored

for specific regions. However, a lack of geographic differentiation

has been observed for blood stage antigens such as ama1

[17,18,19], msp3 [20], msp4,5 [21] and S-antigen [22]. Ama1

variants have recently been shown to cluster into six genetically

distinct subgroups on the basis of antibody cross-reactivity, with all

subgroups being found worldwide. This study illustrated that

immune selection may play a role in structuring the diversity of

this highly polymorphic antigen. Consequently, a small number of

variants from distinct subgroups may give the sought after broad

vaccine coverage [18]. To inform the design of next generation

malaria vaccines, population genetic studies for each candidate

antigen in the spectrum of endemic regions will be essential. Such

analyses will help to prioritize candidates, advance our under-

standing of the geographic distribution of genetic diversity and

provide a framework for testing the immunological significance of

antigen diversity.

An enormous amount of research has highlighted the extensive

diversity of P. falciparum antigens [23], however the majority of

studies have focused on just one or two countries per antigen and

comparisons among studies have rarely taken place. To facilitate the

design of broad-spectrum malaria vaccines, we have summarized

the known global range and distribution of genetic diversity of ten

leading malaria vaccine antigens for which population-level

sequence data was available. We collected sequences from natural

populations and laboratory-isolates and completed a population

genetic analysis using a variety of traditional and more recently

developed clustering tools. By comparative analyses we show

evidence that the diversity of non-merozoite antigens is largely

structured on the basis of geographic origin while for merozoite

antigens, the dominant targets of natural host immunity [24] a

relative lack of geographic structure was observed with the majority

of diversity being contained within each location. This meta-

population genetic analysis of ten leading malaria vaccine

candidates provides a framework by which to consider parasite

diversity in the design of the next generation of malaria vaccines.

Results

Data summary
More than 4500 sequences with an average length of 0.8 kb

were compiled from GenBank and the published literature for the

genes encoding twelve antigens that matched the inclusion criteria

(Tables 1, S1 and S2). Although msp2 and msp5 matched the

criteria we did not complete the population genetic analyses. For

msp2, this was due to the majority of sequences being comprised of

highly polymorphic repeats (with many gaps) flanked by only short

regions of unique sequence. Haplotypes could therefore only be

defined on the basis of differing numbers of repeats, resulting in an

overestimation of biologically significant diversity. For msp5, there

were only five haplotypes and preliminary analyses showed that

they were not structured within nor among populations (data not

shown), so diversity in this antigen was also unlikely to have major

biological significance. Among the remaining ten antigens, the

number of nonsynonymous polymorphisms (dN) was several-fold

greater than the number of synonymous polymorphisms (dS;

Table 1), which is an indication of immune selection in the P.

falciparum genome [4]. The population dataset included sequences

from the natural parasite populations of between 2 and 13

countries and a minimum of 2 geographical regions (namely

Americas (Central and South), Asia Pacific or Africa, Table S1).

The median sample size was 31 sequences (range = 8–1368) per

country, and each country contained a median number of 8

distinct haplotypes (range = 1–68) (Table 2). Only small sample

sizes were available for glurp and pfs48/45 so we caution that the

results for these antigens may be biased and thus should be

interpreted with care. To focus the analysis on the putative

antigenic diversity (i.e. polymorphisms that change protein

structure) the nonsynonymous single nucleotide polymorphism

(nsSNP) haplotypes were derived for all antigen sequences, except

for msp1, for which the majority of the data comprised only a 5

amino acid haplotype (corresponding to polymorphisms found

only in the MSP119 domain), so the remaining msp1 DNA

sequences were converted to the corresponding amino acid

Table 1. Summary of population genetic data collected for the genes encoding twelve P. falciparum vaccine antigens.

GENE EXPRESSION* LOCUS* DOMAIN NUCLEOTIDES n dN dS

csp Sporozoite PFC0210c C-terminal 909–1140 604 20 3

trap Sporozoite PF13_0201 N-terminal 1–993 100 70 4

lsa1 Liver stages PF10_0356 N-terminal 1–397 74 12 2

ama1 Merozoite PF11_0344 Region I 448–903 572 46 11

eba175 Sporozoite, Merozoite MAL7P1.176 Region II 433–2169 135 23 2

msp1 Merozoite PFI475w MSP119 4813–5863 2237 5{ n.d.

msp2 Merozoite PFB0300c Blocks 2 & 3 1–816 392 n.d. n.d.

msp3 Merozoite PF10_0345 Dimorphic repeat{ 106–523 124 75 18

msp4 Sporozoite, Merozoite PFB0310c All 1–816 142 16 3

msp5 Merozoite PFB0305c All 1–819 70 4 3

glurp Sporozoite, Liver, Blood, Gametocyte PF10_0344 Region 0 106–1353 48 22 7

pfs48/45 Gametocyte PF13_0247 All 1–1326 55 25 15

MEDIAN 817.5 129.5 22.5 3.5

TOTAL 10419 4553 313 68

*Source: PlasmoDB, www.plasmodb.org.
{gaps were deleted.
{analysis was done only with 5 amino acid polymorphisms, n = number of sequences; dN = number of nonsynonymous polymorphisms; number of synonymous
polymorphisms; n.d. = not done.

doi:10.1371/journal.pone.0008497.t001
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haplotype. It is important to note that haplotypes are simple

combinations of nucleotides or amino acids with no particular

weight placed upon any position or change, rather all of the

following analyses were based on whether each polymorphic site

was the same or different.

Polymorphism and haplotype diversity
Comparing among countries for each antigen, the genes

encoding the non-merozoite antigens (csp, trap, lsa1, glurp and

pfs48/45; Table 1) showed variation in diversity as measured by

the polymorphism (k and P) and haplotype diversity (Hd)

statistics. Whereas, the genes encoding each of the merozoite

antigens (ama1, eba175 and msp1, msp3 and msp4; Table 1) each

showed similar levels of diversity among countries and regions

(Table 2). For example, csp was significantly more diverse in

African compared to Asia-Pacific countries (P,0.01) while for

ama1 there were no significant differences between African and

Asia-Pacific countries (P.0.05). Furthermore, for non-merozoite

antigens the degree of haplotype diversity was strongly correlated

with the amount of polymorphism (r = 0.63, P,0.01), whereas

for the merozoite antigens, the amount of polymorphism (k and

P) varied widely among antigens but Hd was almost always high

(Figure 1; Table 2; r = 0.13; P.0.05). Therefore, haplotype

diversity varied widely among countries and regions for non-

merozoite antigens in association with transmission intensity and

polymorphism, but was consistently high for the merozoite

antigens irrespective of transmission intensity and levels of

polymorphism suggesting that the latter are under stronger

balancing selection.

Genetic differentiation and gene flow
To determine how the observed diversity was distributed among

countries, population structure was first inferred by measuring

genetic differentiation among countries both within and among

regions. To do this we calculated FST from haplotype-frequencies

and pairwise DNA sequence diversity, although only the former

was calculated for MSP1 (see Materials and Methods). The

haplotype frequency-based statistics are more sensitive for small

sample sizes, while the sequence based statistic is a more sensitive

method for detecting population structure in highly polymorphic

loci [25], (see Text S1 for specific examples). Significant

differentiation was identified among regions for all P. falciparum

vaccine antigens, albeit to a lesser degree for lsa1, ama1, eba175 and

Table 2. Estimates of diversity for the genes encoding ten P.
falciparum vaccine antigens.

GENE REGION COUNTRY n S k
p
(61023) h Hd

csp Americas Brazil 31 5 1.35 5.85 3 0.28

Venezuela 10 13 6.24 27.9 6 0.89

Asia Pacific Vanuatu 136 2 0.62 2.7 2 0.31

Indonesia 36 8 0.65 2.83 5 0.26

Vietnam 143 14 2.06 8.9 20 0.7

Thailand 26 13 2.95 12.76 8 0.76

Myanmar 25 6 1.08 4.68 4 0.41

India 11 2 0.8 4.25 3 0.47

Iran 91 3 1.08 4.68 5 0.6

Africa Kenya 18 17 5.73 25.29 13 0.93

Cameroon 9 12 4.56 19.72 7 0.94

The Gambia 44 18 5.97 25.83 21 0.95

Senegal 10 10 4.73 20.49 8 0.96

trap Asia Pacific Thailand 29 22 5.6 6.12 25 0.99

India 8 30 9.89 10.86 8 1

Africa The Gambia 48 46 11.58 12.13 37 0.98

lsa1 Americas Brazil 19 8 1.81 4.83 6 0.7

Asia Pacific Papua New
Guinea

20 7 2.31 6.07 7 0.88

Malaysia 10 3 1.02 3.97 3 0.51

Africa Kenya 22 8 2.18 6.12 7 0.83

ama1 Americas Venezuela 10 19 7.27 18.71 6 0.78

Asia Pacific Papua New
Guinea

162 34 11.11 26.3 27 0.94

Thailand 55 30 10.75 25.5 19 0.94

India 101 44 9.72 24.31 68 0.99

Africa Kenya 8 24 9.54 24.2 8 1

Nigeria 51 34 11.39 27.14 35 0.98

Mali 61 37 11.1 26.97 40 0.98

Benin 22 30 9.99 25.08 20 0.99

eba175 Asia Pacific Thailand 48 18 6.23 3.81 17 0.9

Africa Kenya 39 18 6.01 3.47 23 0.9

Nigeria 30 16 5.53 3.19 15 0.81

msp1 Americas Brazil 138 n.a. n.a. n.a. 7 0.71

Peru 135 n.a. n.a. n.a. 1 0

Asia Pacific Solomon Is. 77 n.a. n.a. n.a. 4 0.61

Vanuatu 140 n.a. n.a. n.a. 3 0.61

Phillippines 57 n.a. n.a. n.a. 5 0.74

Vietnam 77 n.a. n.a. n.a. 5 0.56

Thailand 72 n.a. n.a. n.a. 5 0.64

India 51 n.a. n.a. n.a. 10 0.83

Iran 92 n.a. n.a. n.a. 5 0.8

Africa Kenya 18 n.a. n.a. n.a. 6 0.77

Mali 1368 n.a. n.a. n.a. 15 0.76

msp3 Asia Pacific Thailand 50 75 27.94 96.62 9 0.71

Africa Nigeria 51 86 30.33 106.63 12 0.81

msp4 Asia Pacific Papua New
Guinea

42 9 2.42 3.1 14 0.92

Cambodia 12 9 2.74 3.36 9 0.94

Thailand 15 9 2.8 3.43 10 0.93

GENE REGION COUNTRY n S k
p
(61023) h Hd

Africa Senegal 41 15 2.88 3.87 23 0.95

glurp Americas Brazil 9 9 4.78 3.85 5 0.72

Asia Pacific Myanmar 10 9 3.2 2.58 9 0.98

Africa Senegal 11 1 0.18 0.15 2 0.18

pfs48/45 Americas Venezuela 9 12 2.94 3.06 6 0.83

Asia Pacific Thailand 10 4 0.8 0.6 2 0.2

India 10 8 1.91 1.59 4 0.53

Africa Kenya 15 11 2.67 3.94 8 0.88

n = number of sequences, S = number of variant sites, h = number of haplotypes,
Hd = haplotype diversity, k = average number of pairwise differences,
P = nucleotide diversity.
doi:10.1371/journal.pone.0008497.t002

Table 2. Cont.
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msp4 compared to the other 6 antigens (Table 3A,B). This regional

differentiation was accompanied by limited gene flow (Nm) for all

antigens except for low-moderate levels for lsa1, ama1 and eba175

and very high for msp4 (Table 3C). Differentiation was also

detected within the Americas for csp and msp1 (the only antigens

for which we had multiple populations within this region), within

the Asia Pacific for csp, trap, ama1 and msp1, and significant but low

levels of differentiation within Africa for ama1 (Table 3). For

MSP1, the Asia-Pacific countries spanned a broad area.

Accordingly, pairwise comparisons identified differentiation be-

tween the Pacific and mainland Asian countries (FST = 0.06–0.31;

P,0.01). Significant differentiation was also observed in pairwise

comparisons of countries from East (Vietnam, Thailand) and West

(India, Iran) mainland Asia (FST = 0.09–0.27; P,0.001) with no

structure among countries within these subregions (FST = 0,

P.0.05; 0.03, P,0.05 respectively). Additional structure was

detected among the Pacific island nations (FST = 0.07–0.21;

P,0.01). We also observed significant differentiation between

local populations such as Vanuatu’s islands for csp (Pentecost

compared to Gaua: FST = 0.14; P = 0.02; and Malakula:

FST = 0.19; P,0.01) and MSP1 (all comparisons, FST = 0.17–

0.54; P,0.01) and distant locations of India for MSP1 (FST = 0.32;

P,0.001). No such structuring was observed for csp within Brazil

or Myanmar, ama1 in PNG or Thailand, msp1 in Vietnam, nor

msp4 in Senegal (Table S1).

Clustering and networks
In the analysis so far, individuals were grouped by geographic

location, assuming that geography (or other associated variables

e.g. host genetics, vector species) will be the dominant barrier to

gene flow. It is possible that these somewhat arbitrary groupings

might incorrectly estimate population structure, or fail to identify

within population subdivision, although where possible, we

measured genetic differentiation within a country as described

above (Table S1). To address this, and to identify subgroups of

related nsSNP (or for MSP1, amino acid) haplotypes that are

genetically and thus potentially antigenically distinct, we also used

a Bayesian clustering algorithm [26,27] and confirmed the results

using network analysis (see Materials and Methods). The Bayesian

algorithm groups related haplotypes into a predefined number of

clusters (K) on the basis of shared allele frequencies. Each

haplotype is then assigned a membership coefficient (Q) to each

of the clusters with the majority of the haplotypes being assigned to

only one cluster at ‘‘true’’ K (Figure 2 A–J) and variability in the

data increasing thereafter (Figure S1; [26,27]). Using this

approach we found a small number of distinct clusters for all

antigens (Kmean = 4.5, Krange = 3–6). Although admixed haplotypes

(,75% membership to any one cluster) were prevalent for trap,

ama1, eba175 and msp4 (Figure 2 B, D, E and H), increased

estimates of K resulted in even higher proportions of admixed

haplotypes (Figure S2) thus confirming that the distribution of the

Figure 1. The relationship between polymorphism and haplo-
type diversity of the genes encoding ten P. falciparum vaccine
antigens. Non-merozoite antigens are represented by a solid symbol
and merozoite antigens by an open symbol.
doi:10.1371/journal.pone.0008497.g001

Table 3. Estimates of genetic differentiation and gene flow
for the genes encoding ten P. falciparum vaccine antigens.

AMONG COUNTRIES AMONG REGIONS

AFRICA ASIA PACIFIC AMERICAS

A.

csp 0.02** 0.08*** 0.27*** 0.21***

trap n.a. 0.0021 n.a. 0.007**

lsa1 n.a. 0.05* n.a. 0.09***

ama1 ,0.01 0.02*** n.a. 0.03***

eba175 0.01 n.a. n.a. 0.05***

msp1 0.03 0.18*** 0.42*** 0.22***

msp3 n.a. n.a. n.a. 0.07***

msp4 n.a. 0.01 n.a. 0.02**

glurp n.a. n.a. n.a. 0.30***

pfs48/45 n.a. 0.03 n.a. 0.20***

B.

csp 0.02 0.08*** 0.29*** 0.25***

trap n.a. 0.12*** n.a. 0.12***

lsa1 n.a. 0.03ns n.a. 0.09**

ama1 0.01* 0.02*** n.a. 0.03***

eba175 ,0 n.a. n.a. 0.07***

msp1 n.a. n.a. n.a. n.a.

msp3 n.a. n.a. n.a. 0.11***

msp4 n.a. 0.01 n.a. 0.02*

glurp n.a. n.a. n.a. 0.40***

pfs48/45 n.a. ,0 n.a. 0.22***

C.

csp 10.56 2.24 0.37 0.70

trap n.a. 0.30 n.a. 0.40

lsa1 n.a. 3.37 n.a. 1.76

ama1 6.63 8.34 n.a. 3.36

eba175 239.11 n.a. n.a. 2.03

msp1 8.08 1.14 0.35 0.89

msp3 n.a. n.a. n.a. 0.85

msp4 n.a. 222.24 n.a. 38.48

glurp n.a. n.a. n.a. 0.18

pfs48/45 n.a. 24.82 n.a. 0.65

*0.01,P,0.05.
**0.001,P,0.01; P,0.001; n.a. not applicable.
For each antigen, FST statistics were calculated from both (A) haplotype
frequencies and (B) sequence diversity (except for MSP1 for which only
haplotype frequencies were used) and (C) gene flow (Nm). Nm.1 is considered
a high level of gene flow. The P-values shown in the key are for FST only and
were not available for Nm.
doi:10.1371/journal.pone.0008497.t003
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haplotypes was best explained by the K presented in Figure 2 (A–J).

Network analysis differs in that it simply shows connectivity among

all haplotypes on the basis of shared SNPs and allows for the

visualization of recombinant haplotypes that bridge the major

subgroups. If haplotypes differed by fewer nsSNPs than the

predefined threshold (t), they were connected, and if greater than t

they were not. We used a t-value that connected the majority of

haplotypes so all relationships could be examined in one network,

and for clarity. The results supported the cluster analysis with

haplotypes grouping into a small number of tightly connected

lobes that corresponded to each of the structure defined subgroups

(Figure S3). Bridging connections were predominantly character-

ized by admixed haplotypes or entire subgroups (e.g. ama1, msp4)

as defined by the cluster analysis and suggest that these comprise

recombinant haplotypes (Figure S3).

To determine whether the above-defined ‘‘subgroups’’ were

geographically restricted, for the Bayesian cluster data we plotted

the average Q for each country (Figure 2 K–T), and calculated the

average frequency of haplotypes with membership to the

predominant subgroup (fm) and the population diversity (Pd) a

simple measure of the distribution of clusters that is analogous to

the Hd (see above and Materials and Methods). Globally (i.e.

comparisons among all countries), the cluster analysis supported

the high levels of differentiation among regions for the non-

merozoite antigens with a high frequency of haplotypes belonging

to one subgroup (fm = 69.568%) and low population diversity

(Pd = 0.4060.07), albeit lsa1 showed low to medium frequencies of

all clusters in PNG (Pd = 0.80) and Kenya (Pd = 0.74; Figure 2 M;

Table S3). In contrast, all of the merozoite antigens showed low to

medium frequencies of all clusters in all countries (fm = 45.867%)

and high population diversity (Pd = 0.6460.07), although the

frequency of each cluster was variable among countries (Figure 2

N–R; Table S3). These variations in frequency were consistent

with the moderate geographic differentiation described above.

The network analysis further supported these results with the non-

merozoite antigen haplotypes being most strongly connected with

others originating from the same geographic region (Figure 3 A–C,

I, J), whereas for the merozoite antigens, haplotypes from different

regions often connected within the same lobes of the network

(Figure 3 D–H). These analyses also supported the diversity

analyses with (for example) the highly diverse African csp and trap

haplotypes being loosely or disconnected from the main network

(Figure 3 A, B), whereas geographic origin did not correlate with

the connectivity of the ubiquitously diverse merozoite antigen

haplotypes to the network (Figure 3 D–H).

Within regions, the significant differentiation detected in the

Americas for both csp and MSP1 (Table 3), was supported by the

cluster analysis (note that network analysis is not presented at this

or any finer resolution). For csp the majority of haplotypes showed

membership to one cluster, albeit different clusters for each

country (Figure 2K; Table S3). For MSP1, a single cluster was

found in Peru (1 haplotype, Table 2) and 4 clusters (7 haplotypes;

including that found in Peru) were found in Brazil (Figure 2P;

Table S3). In the Asia-Pacific region, for trap the differentiation

between Thailand and India was supported by the cluster analysis

(Figure 2L; Table S3). Whereas, for csp, lsa1, ama1 and MSP1

varying degrees of support were given to the differentiation

Figure 2. Global population structure of the genes encoding
ten P. falciparum vaccine antigens based on Bayesian cluster
analysis. Membership coefficients for A–J) individual nsSNP haplo-
types and K–T) the population average for the estimated number of
clusters (K, shown on the left of the two histograms). In the latter,
countries from different continents are separated by a blank space and

organised from east on the left, to west on the right with vaccine
haplotypes on the far right hand side. An asterisk denotes countries for
which fewer than 8 haplotypes were available that were taken from
dataset 2 (Table S2). Dark blue = cluster 1; Red = cluster 2; Green =
cluster 3; Purple = cluster 4; Light blue = cluster 5; Orange = cluster 6.
doi:10.1371/journal.pone.0008497.g002
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observed with the same clusters being found in all Asia Pacific

countries albeit at variable frequencies (Figure 2 K, M, N and P).

For csp, a single cluster was predominant among all Asia-Pacific

countries, with low frequencies of haplotypes belonging to a

second cluster. The majority of Iranian haplotypes clustered with

the Asia-Pacific cluster and a minor proportion with the African

cluster, a structure that is consistent with Iran’s central location

between these two regions. For lsa1, all clusters were found in

PNG, but only 2 in Malaysia. A limited degree of differentiation

between the two countries (Table 3), and lower diversity in

Malaysia (Table 2) suggests that it shares haplotypes with PNG.

For ama1, all clusters were present in each country at variable

frequencies and high population diversity (Figure 2N, Table S3).

This is consistent with a previous report [18], albeit our dataset

contained 3.6 times the number of haplotypes (Table 1). For

MSP1, the differentiation seen among Asia-Pacific subregions was

supported by variable frequencies of the four clusters (Figure 2 P;

Table S3). The remaining two antigens studied in the Asia Pacific,

msp4 and pfs48/45, showed strong similarities in the cluster

analysis (Figure 2 R, T) demonstrating a lack of population

structure for these antigens in this region. Among African

countries, the cluster analysis confirmed a lack of population

structure with strong similarities among countries for the four

antigens for which multiple African sites were sampled (Figure 2

K, N–P). To identify local population structure, we investigated

differences among locations within the same country. The results

show that only MSP1 and pfs48/45 were structured among locales

within a country (Figure S4).

Prevalence of vaccine haplotypes
The majority of haplotypes upon which current vaccines are

based were found to be present, but at extremely low frequencies

in the global parasite population, with higher frequencies observed

only for lsa1 and MSP1 vaccine haplotypes (Table 4). Because

distinct haplotypes may be different by as few as one nsSNP, which

is less likely to encode antigenic differences than multiple nsSNPs,

the breadth of biologically significant similarities may be

underestimated by this analysis. Therefore, we also included

vaccine haplotypes in the cluster (Figure 2 K–T) and network

analysis (Figure 3) to identify their associated subgroups. MSP1

vaccine haplotypes grouped with three distinct subgroups of the

four defined (Figure 2 P; Figure S3 F), each representing the most

common haplotypes. For the remaining antigens, the subgroups to

Figure 3. Global population structure of the genes encoding
ten P. falciparum vaccine antigens based on network analysis.
Networks of nsSNP haplotypes were drawn by first removing multiple
copies of each haplotype , leaving only one copy per country for the
analysis. Hence, identical haplotypes from different regions, but not
within regions were included. Each node (coloured circle) represents a
haplotype, shaded by region of origin: Red = Africa, Green = Asia,
Blue = Americas. Nodes are tied by edges (black lines) demonstrating
that they share a predefined threshold (t) of nsSNPs for csp = 24;
trap = 67; lsa1 = 8; ama1 = 48; eba175 = 18; msp1 = 5; msp3 = 63;
msp4 = 19; glurp = 18; pfs48/45 = 23. Vaccine haplotypes are shaded in
yellow. Haplotypes originating from isolates with unknown origin are
shaded in white (unless they were vaccine haplotypes).
doi:10.1371/journal.pone.0008497.g003

Table 4. Worldwide prevalence of P. falciparum antigen
haplotypes that are components of malaria vaccines.

GENE VACCINE* HAPLOTYPE PREVALENCE

csp 3D7 1 0.01

trap T9/96 59 0.01

lsa1 3D7 1 0.23

ama1 3D7, FVO 2, 3 0.06, 0.06

eba175 FVO 2 0.13

msp1 3D7, FVO, FUP 1, 2, 3 0.16, 0.28, 0.26

msp3 FC27 6 0.10

msp4 3D7 1 0.13

glurp FVO 8 0.06

pfs48/45 NF54 11 0.09

*Names of laboratory isolates used for vaccine development.
doi:10.1371/journal.pone.0008497.t004
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which vaccine haplotypes associated were of a limited prevalence

in all populations (ama1, eba175, msp3, msp4, glurp, pfs48/45)

(Figure 2) or were geographically restricted (csp, trap, lsa1) (Figure 2,

3). All of the laboratory isolates (Table S2) were also included in

the cluster and network analysis. This allowed the assignment of

these isolates to haplotypes and structure defined clusters, thus

providing a framework for experiments to test the biological

significance of diversity and identifying the most distinct

haplotypes for diversity-covering vaccines (Table S4; [18]).

Discussion

To provide a rational framework for incorporating diversity into

the next generation of malaria vaccines, we have completed a

meta-population genetic analysis and thus summarised the known

global range and natural distribution of diversity for ten leading

malaria vaccine candidates. There are many natural population

datasets available from previous studies and there is a strong

precedent for comparing multiple datasets for such studies even

when only small numbers of samples are available (e.g. [17,28]).

Sample size was a limitation for the population genetic analysis of

some antigens and locations, however the majority of natural

populations (.70%) were represented by at least 20 sequences.

For populations with less than this number of sequences the results

should be interpreted with care. Despite these small sample sizes,

similar results to other countries from the same region were

observed. For example, Indian csp sequences (n = 11) showed a

similar pattern of diversity to other Asian countries with larger

sample sizes (n = 25–143), as did Thai and Indian pfs48/45

sequences (n = 10 for both). We also used haplotype frequencies to

measure differentiation, which has been shown to be more reliable

than sequence diversity for smaller sample sizes [25] but results for

both statistics were similar for antigens with smaller sample sizes

(lsa1, glurp, pfs48/45). The patterns of diversity and geographic

population structure observed for these antigens warrant further

investigation by deep sampling in each geographic region. Another

potential source of bias is the combination of data from different

time points and from patients with different clinical status (Table

S1). Frequency dependant selection acts on antigens under strong

immune selection [29] resulting in changes in allele frequency over

time, and thus may exaggerate differentiation or alter cluster

frequencies seen among countries within the same region, such as

that observed for ama1 and MSP1 in the Asia-Pacific. Clinical

samples may also be biased toward particular antigen haplotypes

[30,31,32,33]. Nevertheless the differences among countries

(particularly evident in the large Asia-Pacific region) appeared to

increase with geographic distance, independently of both time and

clinical definition (Table S1), so these factors should not change

the overall conclusions of this study. A phenomenal amount of

additional sampling and sequencing, requiring a vastly inflated

budget and a major international consortium would be needed to

address these sampling issues. Our strategy, in using population

genetic data already generated and freely available has revealed

important insights into the overall organization of genetic diversity

of vaccine antigens and provides a framework for future studies to

improve malaria vaccine design.

By comparing the diversity found in different countries

worldwide we demonstrated that csp, and to a lesser extent trap

and lsa1 showed similar patterns to that of putatively neutrally

evolving microsatellite and SNP markers [8,34,35]. The highest

levels of diversity were found in Africa where transmission is

holoendemic (very high), the lowest in the Americas where it is

hypoendemic (low) and moderate levels in the Asia-Pacific where

transmission ranges from meso-hyperendemic (medium to high).

This suggests that transmission plays a predominant role in the

diversification of these non-merozoite antigens, and the similarities

to neutral markers suggest that these genes are not under strong

balancing selection. Glurp and pfs48/45 also showed similarly

variable diversity but there was no apparent trend for higher

diversity in Africa compared to other regions and as mentioned

above the small sample size for these antigens makes it difficult to

draw solid conclusions. For the merozoite antigens, the observa-

tion of high levels of haplotype diversity among countries at

different ends of transmission spectrum even for antigens with low

levels of polymorphism (e.g. eba175, msp4) suggests that recombi-

nation generates a number of different haplotypes even where

significant functional constraints exist. Together with immunolog-

ical evidence that blood stage antigens are major targets of natural

host immunity [24], this is a strong indication of balancing (e.g.

immune) selection. Immune selection favours a low-medium

frequency of distinct haplotypes and thus increased probability

of newly infecting parasites carrying antigenically distinct haplo-

types to those previously encountered by the host. Therefore, if

vaccine candidates are prioritized on the basis of low levels of

polymorphism, careful consideration must also be given to

distribution of haplotypes within natural populations.

A successful malaria vaccine will need to target a large

proportion of the parasite population, but it would not be feasible

to vaccinate individuals with the large numbers of haplotypes we

have described. A single haplotype will have some capacity to elicit

cross-reactive responses against those that are genetically similar but

the exact amount of polymorphism that defines antigenically

different haplotypes is not well understood. Recent work has

shown that ama1 haplotypes were organized into six strongly

differentiated subgroups by the Bayesian algorithm implemented

in the program structure [27,36]. In this study, evidence from

invasion inhibition assays suggested that haplotypes from the same

subgroup were antigenically similar and thus able to elicit cross-

reactive antibody responses, whilst those from different subgroups

were antigenically distinct [18]. Therefore, clustering tools may be

useful in defining biologically significant variation in P. falciparum

antigens. Our analysis used two different clustering tools to

subgroup the compiled haplotypes, namely the Bayesian clustering

and network analysis. Our dataset contained a much larger

number of ama1 sequences (n = 572, compared to 158 in the

previous study [18]), with several additional natural populations,

yet did not identify any further subgroups. By completing these

analyses for all of the leading vaccine antigens in our study we

found as few as three, and no more than six subgroups for any

antigen in the worldwide parasite population. This suggests that

for all ten of the leading vaccine antigens, it may be feasible to

cover diversity by inclusion of a small number of carefully selected

haplotypes from each subgroup. However, a large number of

admixed haplotypes in the cluster analyses or bridging connections

among major lobes in the network analyses indicates recombina-

tion occurs among subgroups and that there is potential for the

evolution of further antigenically distinct haplotypes. Notably,

three of the four antigens for which these putative recombinants

were common were merozoite antigens (ama1, eba175 and msp4). A

series of experiments now needs to be done for each antigen to

verify the immunological relevance of the patterns observed, the

haplotypes from each subgroup that will elicit broadly protective

immune responses, and to quantify the contribution of each

polymorphism to antigenic diversity.

The geographic distribution of the defined diversity must also be

a consideration in the design of a broad-spectrum malaria vaccine

because significant variation among regions would suggest a need

for vaccines to be tailored accordingly. When we investigated the
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geographic distribution of diversity for each of the ten vaccine

antigens we found stark contrasts among antigens from the

different developmental stages of the parasite lifecycle. Although

tests of genetic differentiation and gene flow among countries

suggested among-region structuring of diversity for all antigens,

stronger differentiation among countries and/or regions was found

for the non-merozoite antigens. The cluster and network analyses

supported strong among region structure (and lower within

location diversity) for csp, pfs48/45 and glurp and that within

regions for trap and lsa1, albeit much weaker geographic

structuring for the latter antigen. By contrast, the merozoite

antigens generally had lower levels of among and within region

differentiation and gene flow, and haplotypes formed subgroups

independent of geographic origin with uniformly high levels of

within population diversity. These comparative analyses confirm

that there are extreme differences in the population structure of

different types of antigens and thus may explain why paradoxical

estimates of the most recent common ancestor of P. falciparum have

been obtained in the past by evolutionary biologists using these

markers (reviewed in [37]). Interestingly, the cluster analyses also

showed differing frequencies of shared subgroups among coun-

tries, which were previously shown to vary over time for ama1 [18].

This may reflect both geographic isolation and natural fluctuations

over time as a result of frequency dependent selection or may

simply be the result of the variable sample collection mentioned

above. For MSP1, strong differentiation and a variable cluster

frequency among sub-regions and island nations of the Asia-

Pacific suggests that the biogeography of this region constitutes a

strong barrier to gene flow. If the subgrouping of haplotypes is

immunologically significant, current vaccine formulations may

only target parasites carrying haplotypes from the same subgroup,

giving those carrying haplotypes from distinct subgroups a

selective advantage. To give a greater probability of broad

efficacy, a population-specific vaccine strategy incorporating

haplotypes representative for the region may be effective for the

non-merozoite antigens while a diversity-covering approach may

be necessary for the merozoite antigens.

There are a number of possible explanations for the contrasting

population structures of P. falciparum antigens. The stronger

geographic population structure observed in the non-merozoite

compared to the merozoite antigens may at least in part driven by

the biology and kinetics of the lifecycle, with shorter, less frequent

exposures to human immunity. Therefore, a background of

geographic barriers or other location-specific environmental

factors will shift the distribution of diversity among populations.

This is a possibility for csp and trap which are expressed on the

surface of a small number of sporozoites (,20 parasites) that

rapidly migrate to the liver after inoculation into the human host

by the mosquito and pfs48/45 which is expressed only in the

mosquito stages [38,39,40,41,42]. Similarly, lsa1 is expressed by

liver schizonts but is a strong target of naturally acquired

immunity [39,43,44], in agreement with the weaker geographic

structuring of this antigen. Glurp is unusual because it is expressed

in a number of stages exposed to the human immune response

including on the sporozoite, liver schizont, merozoite and

gametocyte [38] and shows very strong geographic structuring,

however it is possible that the small sample size for each

population has overemphasised the diversity among locales. Other

region-specific factors that may decrease gene flow among P.

falciparum populations include human genetic polymorphisms that

confer resistance to malaria [45] and adaptation to different

anophelene species that transmit P. falciparum worldwide [46].

These ‘‘bottlenecks’’ may lead to population structure in genes

expressed during the human or mosquito stages respectively, and

in neutral loci as markers of the underlying population biology

[8,35]. For the merozoite antigens the diversity within populations

may be high as a result of exposure to the host immune response.

These antigens are all exclusively expressed during the merozoite

stage except for eba175 and msp4, which are also expressed in the

sporozoite [47,48,49]. Merozoite exposure is brief (,2 mins), but

it occurs repeatedly at a high parasitemia (.10,000 parasites in the

first cycle, thereafter increasing exponentially) so there are many

opportunities for immune selection. Some diversification of

merozoite antigens may be adaptations to polymorphisms in

erythrocyte receptors essential for parasite invasion [50]. Finally,

antigens from both groups that are expressed in the mosquito

stages (i.e. csp, trap, eba175, msp4, glurp and pfs48/45) may be

exposed to immune selection by the anophelene vector (e.g. csp

[14]). In support of the biological significance of the contrasting

population structures observed, balancing selection has been

detected in all of the merozoite antigens [51,52,53,54,55] whereas

for the non-merozoite antigens, balancing selection was detected

in trap and pfs48/45 [56,57] but not in csp [57] and lsa1 [58] (glurp

has not been investigated). Furthermore, a vaccine-mediated

haplotype-specific immune response was detected for recombinant

vaccines based upon msp1 [59] and msp2 [6] but not for csp [60,61]

suggesting that different haplotypes are antigenically distinct for

the former two antigens. The results of our study are consistent

with the structuring of diversity by balancing selection for the

merozoite but not for the non-merozoite antigens.

This investigation has revealed a possible framework by which

to formulate malaria vaccines with a greater potential for broad

protection against the enormous diversity of parasite antigens. It

may be possible to tackle the neglected problem of antigen

diversity in malaria vaccine design by inclusion of the most

prevalent haplotype(s), or a diversity-covering vaccine with

inclusion of at least one representative haplotype from each of

the defined subgroups of haplotypes. Because they show different

population structures, the former approach may be more

appropriate for the non-merozoite antigens, and the latter for

the merozoite antigens. The haplotype and subgroup classification

for a number of laboratory isolates are available in the supporting

online material (Table S4) as a first step to guide the selection of

such haplotypes, and to help define immunological correlates of

protection which are now urgently needed to support these

important findings. Nevertheless, if these contrasting population

genetic structures of the genes encoding P. falciparum antigens are

considered in the design of next generation vaccines, perhaps the

best test of biological relevance will be the outcome of the ensuing

vaccine trials.

Materials and Methods

Data collection
The P. falciparum antigens selected for the study were key

components of malaria vaccines in the late stages of development

or in recent trials [2,3]. To be included in the study, we searched

for population data - which we defined as 8 or more sequences

from a defined location (e.g. a village or town) - for a minimum of

two countries for each antigen. DNA sequences (and amino acid

polymorphisms for MSP1) were then obtained for the twelve

antigens meeting these criteria, including surface proteins

expressed during several different lifecycle stages (Table 1).

Sequences were collected from GenBank and further sequences

or haplotypes were reconstructed from published data. If only the

haplotypes and frequencies were available the appropriate number

of copies for each allele was added to the dataset to ensure natural

population frequencies (Table S1). Additional sequence data from
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cultured or field isolates not fitting the above criteria were also

collected, including those upon which vaccines have been based

(Table S2). These sequences were included in the calculation of

the (known) extent of diversity worldwide (Table 1) and in the

cluster analyses to maximize the sample number and provide a

reference for vaccine development. Tables S1 and S2 contain

summary information (e.g. GenBank accession numbers, refer-

ence) for each of these dataset. The sequences and haplotypes are

available from the authors upon request. For msp1 and msp2 all

DNA sequences were translated using TranSeq (http://www.ebi.

ac.uk/Tools/emboss/transeq/). For simple multiple alignments

with few gaps, DNA sequences were aligned using Sequencher 4.8

(Gene Codes, Ann Arbor, MI). Amino acid alignments (MSP1 and

MSP2) were done using Clustal W [62]. Gaps were removed from

all alignments because indels and repeats evolve by different

mechanisms to SNPs and may result in false estimates of

biologically significant diversity. We also removed invariant sites

and synonymous SNPs to simplify the haplotype and focus the

analysis only on the putative antigenic diversity. The resultant

nonsynonymous SNP (nsSNP) haplotypes or polymorphic amino

acid haplotypes (for MSP1 and MSP2) were then used for

population genetic analysis.

Population Genetics
Population genetic analyses were first done with the complete

dataset (Tables S1 and S2) to investigate the global range of

diversity as well as the frequency of haplotypes being used in

vaccine development, while the population dataset (Table S1) was

used to investigate the range and distribution of diversity within

and among the natural P. falciparum populations of individual

countries. Population genetic parameters were determined using

DnaSP v. 4.20.2 [63]. However, for MSP1 and MSP2 amino acid

sequences we used Arlequin v. 3.1.1 [64] because DnaSP only

handles DNA sequences. As measures of diversity we defined the

polymorphism by counting the total number of synonymous (dS) and

number of nonsynonymous (dN) SNPs; and by calculating from

nsSNP haplotypes, the number of polymorphic sites (S), the

average pairwise number of polymorphisms (k) and from complete

DNA sequences (minus any gaps) the nucleotide diversity (P), the

latter being a proportional measure of polymorphism that can be

compared among antigens. Additional measures of diversity

calculated included the number of distinct haplotypes (h) (although

this is heavily biased by sample size) and the haplotype diversity which

is analogous to the heterozygosity (Hd = [n/(n21)][(12S(fi)
2)]

where n is the sample size and f is the frequency of the i th allele)

and can also be compared among antigens. The Mann-Whitney

test was used to compare polymorphism or diversity among

regions where at least 3 countries were included per region (or

subregion). Spearman’s rank correlation coefficient (r) was used to

measure associations between polymorphism (P) and diversity

(Hd). Statistical analysis was done using SPSS v. 17.

To assess population structure we first estimated the genetic

differentiation (i.e. the difference in the average diversity within

compared to that among populations) for each antigen by

calculating FST from both haplotype frequencies and pairwise

sequence diversity. For comparisons among countries or regions

for all antigens except MSP1, two transformed FST statistics

available in DnaSP, were calculated namely HST which is loosely

based on Hd, and KST* based on k. Importantly, both HST and

KST* are weighted for variable population size [25]. Significance

was tested by comparison with 95% confidence intervals from

1000 permutations [25]. For comparisons among defined natural

populations within a country (i.e. .8 sequences in each) we

calculated Weir and Cockerhams h [64] from the pairwise

sequence diversity (i.e. analogous to KST*) in Arlequin. For

MSP1 we measured the equivalent to HST available in Arlequin

software, namely Weir and Cockerhams h [64] calculated from

haplotype frequencies. Significance was tested by the permutation

test. Gene flow (Nm) was calculated using the method of Hudson et

al. [65]. Population structure was also assessed using the Bayesian

clustering algorithm implemented in structure v. 2.2 [27,36], which

assigns individual multi-locus genotypes probabilistically to a user-

defined number of clusters (K) [27]. For each set of antigen

haplotypes, structure was run 20 times for K = 1–10 for 10,000

Monte Carlo Markov Chain (MCMC) iterations after a burn-in

period of 10,000 [66] using the admixture model and correlated

allele frequencies. The mean log probability of the data (LnP[D])

and its standard deviation was plotted to predict the optimal value

for K. Membership coefficients (Q) were then averaged across

individuals within countries and/or regions to reveal any

geographic association of the resultant clusters. To quantify the

distribution of clusters within a geographically defined region we

developed a population diversity statistic, Pd, where Pd = 12g( f i )2,

where fi is the frequency of the ith cluster (analogous to Hd). A low

Pd (,0.5) indicated that the geographically defined population

(e.g.. country, village) has parasites with predominant membership

to one cluster, and high Pd (.0.5) indicated membership to

multiple clusters with low-medium frequencies. We confirmed the

cluster analysis by visualizing the relationships between isolates

using a transparent network analysis technique which simply

connects isolates, represented as nodes within a network, based

on shared SNPs. Unlike phylogenetic methods there is no

evolutionary model behind network construction, but a simple

threshold was used to define where an edge was drawn. For each

antigen, this threshold was defined so as best to visualize the

relationships between isolates, and in particular the recombinant

isolates. The software program R and the ‘network’ package was

used to construct and visualize the antigen networks [67,68].

Supporting Information

Text S1 Haplotype-frequency vs. sequence based F-statistics and

supporting references

Found at: doi:10.1371/journal.pone.0008497.s001 (0.13 MB

DOC)

Figure S1 Log probability of the data plots for Bayesian cluster

analysis. LnP(D) is shown for nsSNP haplotypes of (A) csp, (B) trap,

(C) lsa1, (D) ama1, (E) eba175, (F) msp1, (G) msp3, (H) msp4, (I) glurp

and (J) pfs48/45. A plot of the log probability of the data, LnP(D)

against all estimates of the number of clusters, K, was used to

estimate the true value of K. LnP(D) typically plateaus or continues

to increase slightly when true K has been reached (68). The error

bars represent the mean value of 20 replicate runs at each K value.

For some antigens, LnP(D) did not plateau with increasing K, in

which case the lowest value that captured the major structure in

the data was chosen (69).

Found at: doi:10.1371/journal.pone.0008497.s002 (0.36 MB TIF)

Figure S2 Bayesian cluster analysis of nsSNP haplotypes for

optimum K 6 1. Note the excess of admixed individuals for K+1.

Subgroups: Dark blue = 1; Red = 2; Green = 3; Purple = 4; Light

blue = POP5; Orange = 6.

Found at: doi:10.1371/journal.pone.0008497.s003 (1.48 MB

PDF)

Figure S3 Comparison of Bayesian cluster and network analysis

for ten P. falciparum vaccine antigen genes. Subgroups: Dark

blue = 1; Red = 2; Green = 3; Purple = 4; Light blue = 5;

Orange = 6.
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Found at: doi:10.1371/journal.pone.0008497.s004 (0.66 MB TIF)

Figure S4 Local population structure for P. falciparum vaccine

antigens based on Bayesian cluster analysis. Comparison of

Bayesian cluster and network analysis for ten P. falciparum vaccine

antigen genes. Networks (as shown in Figure 3) are shown with

individuals shaded by the structure-defined subgroups (as shown in

Figure 2). Subgroups: Dark blue = 1; Red = 2; Green = 3;

Purple = 4; Light blue = 5; Orange = 6; Admixed haplotypes (those

having ,75% membership to any one cluster) are shown in white,

vaccine haplotypes are shown in yellow.

Found at: doi:10.1371/journal.pone.0008497.s005 (0.90 MB TIF)

Table S1 Population dataset for twelve P. falciparum vaccine

antigen genes.

Found at: doi:10.1371/journal.pone.0008497.s006 (0.04 MB

XLS)

Table S2 Dataset 2: Sequences from laboratory and other

isolates for twelve P. falciparum vaccine antigen genes.

Found at: doi:10.1371/journal.pone.0008497.s007 (0.02 MB

XLS)

Table S3 Analysis of structure results for ten P. falciparum vaccine

antigens.

Found at: doi:10.1371/journal.pone.0008497.s008 (0.02 MB

XLS)

Table S4 Haplotype and cluster membership for laboratory

isolates.

Found at: doi:10.1371/journal.pone.0008497.s009 (0.03 MB

XLS)
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