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Abstract

Recent studies have shown evidence for the coevolution of functionally-related genes. This coevolution is a result of
constraints to maintain functional relationships between interacting proteins. The studies have focused on the correlation in
gene tree branch lengths of proteins that are directly interacting with each other. We here hypothesize that the correlation
in branch lengths is not limited only to proteins that directly interact, but also to proteins that operate within the same
pathway. Using generalized linear models as a basis of identifying correlation, we attempted to predict the gene ontology
(GO) terms of a gene based on its gene tree branch lengths. We applied our method to a dataset consisting of proteins from
ten prokaryotic species. We found that the degree of accuracy to which we could predict the function of the proteins from
their gene tree varied substantially with different GO terms. In particular, our model could accurately predict genes involved
in translation and certain ribosomal activities with the area of the receiver-operator curve of up to 92%. Further analysis
showed that the similarity between the trees of genes labeled with similar GO terms was not limited to genes that physically
interacted, but also extended to genes functioning within the same pathway. We discuss the relevance of our findings as it
relates to the use of phylogenetic methods in comparative genomics.

Citation: Li WLS, Rodrigo AG (2009) Covariation of Branch Lengths in Phylogenies of Functionally Related Genes. PLoS ONE 4(12): e8487. doi:10.1371/
journal.pone.0008487

Editor: Wayne Delport, University of California San Diego, United States of America

Received June 23, 2009; Accepted November 25, 2009; Published December 29, 2009

Copyright: � 2009 Li, Rodrigo. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Wai Lok Sibon Li was partially funded by Biomatters during the period of research outlined in this paper. The commercial funder was not involved in
any of the following aspects of the research: study design; collection, analysis, and interpretation of data; writing of the paper; or decision to submit for
publication. An early revision of the manuscript was first reviewed by the funder, but no changes were made as a result of the review. The algorithm described
here may be implemented in the funding company’s software packages. This will pose no restrictions toward anyone interested in reproducing or building on the
algorithm, as the described algorithm uses generic statistical methods that are not exclusive to the authors’ study, and that have previously been published. No
patents have been placed on the methodology described. In addition, all data used in this paper is publicly available. The involvement of the funder does not alter
the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

Competing Interests: Wai Lok Sibon Li was partially funded by Biomatters during the period of research outlined in this paper. The commercial funder was not
involved in any of the following aspects of the research: study design; collection, analysis, and interpretation of data; writing of the paper; or decision to submit
for publication. An early revision of the manuscript was first reviewed by the funder, but no changes were made as a result of the review. The algorithm described
here may be implemented in the funding company’s software packages. This will pose no restrictions toward anyone interested in reproducing or building on the
algorithm, as the described algorithm uses generic statistical methods that are not exclusive to our study and that have previously been published. No patents
have been placed on the methodology described. In addition, all data used in this paper is publicly available. The involvement of the funder does not alter the
authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: a.rodrigo@auckland.ac.nz

Introduction

Estimating lineage-specific substitution rates and divergence

dates has become an increasingly important aspect of the

reconstruction of evolutionary history [1–4]. Differences in

substitution rates from lineage to lineage have been attributed to

variation in neutral rates of substitution, population size,

generation times, and selective forces. These together are

responsible for the non-ultrametric distances on a tree [5,6] and

gives rise to lineage-specific variation in molecular evolutionary

rates.

More recently there has been focus on the possibility of lineage-

gene-specific differences in substitution rate [7,8]. The number of

substitutions acquired by a protein-coding gene may increase

during periods of rapid adaptive change or decrease because of

strong structural or functional constraints on the coded protein.

The molecular evidence for such specific selection-mediated

substitutions has been the subject of much research since the

pioneering paper of Messier and Stewart [9,10–14]. These

selection-mediated substitutions are by definition non-neutral

and therefore would not be expected to be consistent across genes

or across lineages.

The proteins that genes encode do not function individually but

rather within entire pathways, though this is usually ignored in

models of genic evolution [15]. In fact, it is reasonable to suggest

that natural selection acts on a group of genes that collectively

perform a biological function. Under the presence of selection,

both functional and structural constraints will be expected to cause

the divergence rates of functionally-related genes to covary.

Physically interacting genes are known to co-evolve, in the sense

that there are correlated rates of substitution between genes of

interacting proteins [16–20]. The way proteins function as

physical structures can constrain the mutations that are allowed

to persist. This is particularly evident in protein domains involved

in direct physical interactions with other proteins, where protein

interaction may fail if mutations that change the protein structure

occur at the site of interaction. Correlated substitutions that occur

within a species lineage can result in similarities in substitution

rates across species. In addition to this, different lineages undergo

different extents of selection pressure for any given biological
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function. Due to this effect of coevolution, the selection pressures

applied to a function are reflected on many or all the genes

involved in that function. These two effects in combination have

been shown to cause the coevolution of genes [21,22].

Accordingly, there is resemblance in branch lengths in the gene

trees of interacting protein coding genes [23]. Pazos and Valencia

[24] were the first to use this observed pattern of coevolution

across species to predict the interaction between genes. In their

study, they were able to predict pairwise interaction of gene

products with 79% accuracy in the dataset used [25]. Other

approaches to predicting gene interactions using coevolution have

also been devised that utilize methods similar to Pazos and

Valencia [21,26–32].

We argue here that coevolution and similarities in substitution

rates across species are not limited purely to interacting gene pairs.

Our hypothesis differs from that of Fryxell’s [23] in that we suggest

a more general evolutionary relationship: coevolution occurs not

only specifically amongst genes that interact with each other but

also amongst genes that are known to be involved in the same

biological function. Coevolution is partially driven by similarity in

selective pressures acting on functionally related genes [33]. Also,

as all genes that interact ultimately form a network in metabolic

pathways, it is expected that some ‘‘contagious’’ correlation will

extend to functionally related genes. Our argument is supported

by recent studies, which show that there is correlation in patterns

of evolution amongst genes involved in related biological processes

[21,33–39]. In particular, recent studies by Juan et al. [21] have

found patterns of coevolution across genes from the interactomes

of the NADH-quinone oxidoreductase complex and the flagellar

assembly machinery, though the study did not explicitly state

whether or not direct physical interactions occurred between these

genes.

Though our hypothesis is supported by literature in theory and

results, it has been found that genes operating within the same

pathway can vary in selective pressures. A study by Rausher et al.

[40] and its follow up study by Lu et al. [41] have demonstrated

that differing selection pressures occur between upstream and

downstream genes of the anthocyanin pathway in the Ipomoea

genus. Hence it should be noted that correlation in evolutionary

rates does not necessarily occur amongst genes in all pathways.

The aim of our study was to find how the correlation in branch

length varies across the different biological functions. This matter

is particularly important for phylogenetic inference and studies of

comparative genomics. In particular, we aimed to determine

whether the similarities in gene tree branch lengths that are seen in

genes that have physically interacting gene products also exist

between genes that are functionally related. As a comparison to

Rausher et al.’s results, we attempt to determine whether the mode

of selection is common within the different pathways in our set of

species. In our study, we found that there is a correlation in

branches lengths of genes trees from functionally related genes that

do not necessarily have physical interactions. Results show that the

degree of correlation varies greatly across different biological

functions. We also discuss the findings of our study towards gene

choice when computing species divergences.

Materials and Methods

The aim of our study is to predict the relationship between

genes that are functionally related. We hypothesize that correla-

tion between genes can be used to infer the function when the

function of some genes in a correlated set is known. The species

phylogeny is used here as a basis to detect changes in substitution

rate across lineages.

Visualizing Substitution Patterns amongst Genes and
Lineages As a Matrix

First we consider a new scheme of visualizing variation in

substitution rates amongst genes and lineages which uses a matrix of

gene tree branch lengths. Consider a collection of orthologous genes

from a set of species. If the true species topology is known and

assumed to be the same for all genes, all the gene trees can be built

with the topology constrained. This results in a set of genes trees

with the same branches but optimized to have gene-specific branch

lengths. We can consider a matrix, B, of dimensions M6N, where M

is the number of genes, and N is the number of branches on the tree,

N (N is equal to 2n-3 in an unrooted tree, where n is the number of

taxa). Each entry Bij of the matrix represents the length of branch j

in gene tree i. It should be noted that the order of branches and

genes in the matrix is arbitrary, but constant across all genes.

Matrix Transformation
The first step of our analysis procedure is to transform the

branch lengths to allow for our models to take into account global

species-specific effects (e.g. the faster rate of evolution on the

lineages of mice and rats compared to larger longer-lived

mammals such as humans). We introduce a procedure to

transform within the matrix notation. The procedures described

here are analogous to standard procedures used in data

transformation in microarray analysis [42].

In this procedure, all zero branch lengths are replaced with the

minimum non-zero value in the matrix. In the analysis of our

dataset, the lower bound of zero was never reached. All values of

the matrix were then log transformed. The empirical distribution

of branch lengths across all genes for a particular branch tends to

be significantly skewed. An example of this is shown in Figure S1,

where this distribution can be seen clearly. Matrix entries are

therefore log transformed to obtain values that are less skewed.

Generalized Linear Models
We use Generalized Linear Models (GLM) as a method to

predict the function of a gene by its evolution pattern. A GLM is a

least squares regression method that uses a link function to model

the relationship between sets of independent random variables and

the response variable. Binary functions can be modeled by

comparing the value predicted by the GLM to cut-offs which

determine whether or not the observation is predicted to be

involved in the process. A range of cut-off values can be iterated

through to control for different false positive and false negative

error rates.

In our case, the independent random variables are from rows of

the matrix B’, where each variable corresponds to the normalized

length of a branch for a given gene tree. The response variable was

a binary variable representing whether the gene was involved in a

particular biological function. Specifically, we are testing whether

each gene is involved in the respective function. By using

individual binary GLMs to model each biological function, each

gene can be classified as being involved in multiple functions. Probit

was used as the link function.

An advantage of using GLMs as our method of identifying

correlation is that the method automatically takes into account

variation within the same variable. Thus, the method will take into

account any variation within a given branch across all the genes,

such as effects from the natural species distances.

Dataset Compilation
We take our dataset from that used in Pazos et al. [25] which

consists of amino-acid alignments of Escherichia coli genes against

Gene Phylogenies and Function
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orthologs in other prokaryotic species. Pazos et al. obtained these

alignments by BLASTing [43] of the E. coli protein sequences

against the genomes of other prokaryotic species. Pazos et al.

included in the dataset the top hits that have an E-value above a

chosen cut-off point.

As the number of species included increases, the number of

genes that are homologous between all the species decreases. We

wanted to choose a set of species that not only allowed for a

reasonable number of branches in the gene trees, but also had a

sufficient number of orthologous genes. We chose our species set

by finding the ten species that were most frequently present in

Pazos et al.’s dataset and took the gene alignments that contained

all ten species (Bacillus subtilis, Mesorhizobium loti, Caulobacter

crescentus, Escherichia coli, Salmonella typhi, Salmonella typhimurium,

Yersinia pestis, Pasteurella multocida, Vibrio cholerae and Pseudomonas

aeruginosa).

Recovering Species and Gene Tree Topologies
As the dataset consists of prokaryotes, gene tree topologies can

differ from the species topology as a result of horizontal gene

transfers (HGT). To filter out genes where the gene relationship

may not reflect the underlying species relationships, MCMC

analyses were performed using MrBayes [44]. For each of the

genes, we computed two runs, each with one cold chain and three

heated chains, under a mixed amino-acid model with four gamma

(c) rate categories and allowing invariable sites (i). Prior

distributions of tree branch lengths and the gamma shape

parameter were set to exponential distributions with l = 10 and

the starting tree was set to random. The chains were run for

1100000 steps and sampled every 200 steps, with the first 500 trees

discarded.

The posterior distributions were taken and used to determine

the correct relationships amongst the species. Probabilities of each

tree topology from the 95% credible set of trees was taken for each

gene. The probabilities of each topology for each gene were

multiplied to get the joint posterior probability of each topology

over all genes, assuming independence of genes. The tree with the

highest joint posterior probability was chosen as the best estimate

of phylogeny. The procedure here is justified by the fact that if the

tree priors for each gene are assumed to be equal, and the genes

are unlinked, then this calculation is monotonic with the joint

posterior probability, as follows. The posterior probability of a

given tree, t, over all genes, Di, is:

P t jD1,D2, . . . ,DNð Þ

!P D1,D2, . . . ,DN jtð ÞP tð Þ

~ P
N

i~1
P Dijtð ÞP tð Þ

ð1Þ

If the posterior probabilities are obtained separately for each

gene then:

P t jD1ð Þ|P t jD2ð Þ| . . . |P t jDNð Þ

!P D1jtð ÞP tð Þ|P D2jtð ÞP tð Þ| . . . |P DN jtð ÞP tð Þ

~ P
N

i~1
P Dijtð ÞP tð ÞN

ð2Þ

As can be seen, Eqn (2) is monotically (but non-linearly)

proportional to Eqn (1).

When a particular topology is not found in a gene, a minimum

probability is assigned, equivalent to one divided by the number of

samples taken in the MCMC analysis. According to this criterion,

the most probable tree topology yielded a log probability of

22289.62. In contrast, the second most probable tree had a log

probability of 22814.34. The most probable species topology

found from our MCMC analysis concurs with the one used in

Pazos et al.’s study, which is derived from neighbor-joining trees of

distances in the 16S rRNA gene.

As the issue of HGT needed to be addressed, any genes that had

significant uncertainty as to whether they had the species topology

were filtered from the dataset. Genes were excluded if the

MrBayes analysis did not contain the species topology we found to

be the most probable within the 95% credible set of trees. As a

result, 222 genes out of 471 were excluded from the dataset.

Dataset Annotation
Gene Ontology (GO) [45] annotations on biological processes

and molecular functions that the E. coli genes are involved in were

obtained from the UniProt [46] and iProClass [47] databases.

iProClass contains functional annotations that were electronically

determined. These annotations are determined by high sequence

similarity to genes of known function in other species. These

annotations were used to increase the amount of annotation for

our gene set, as there are insufficient annotations in E. coli that

have been experimentally identified. Genes containing no GO

annotation for known process or function were removed from our

dataset. All GO terms used took into account exact synonyms for

the same term. The resulting dataset contained alignments of 219

homologous genes from the 10 prokaryotic species.

For every possible combination of GO biological process and

molecular function, we found the number of genes that were

involved in both GO terms. We use pairings of GO process and

function here as a representation of distinct biological functions.

Our justification for this is that using only one of biological process

or molecular function will group together genes that are not

necessarily functionally related. Each gene was labeled with the

process-function pairs that it is involved in. This information is

later used in training and benchmarking GLMs of each function.

We filtered out process-function pairs that had less than 7 genes

involved because training models with a low number of positive

cases can lead to biased and badly fit models [48]. An assumption

made here is that the biological function of each gene is identical

across the species in the alignment.

Algorithm Implementation
Our program was written in Java 1.5 and utilizes some of the

functions and classes from the Phylogenetic Analysis Library (PAL)

package version 1.5 [49].

Phylogenetic Analysis
Each of the gene trees were constructed by maximum likelihood

with PHYML 3.0 [50]. Gene tree topologies were constrained to

the species topology that we found previously. A Dayhoff + c + i

model with 8 relative substitution rate categories was used [51]

Equilibrium amino-acid frequencies, proportion of invariable sites

and distribution shape were estimated from sequence data of each

gene.

Results

A leave-one-out test was used to benchmark the accuracy of the

GLMs. We constructed GLMs, each time training the models with

all but one of the genes. The trained models were applied to get a

Gene Phylogenies and Function
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numerical prediction of the excluded gene. This was repeated with

each of the genes in the dataset. The predictions from the GLMs

were converted to estimates of whether the gene is involved in a

process for a range of cut-off values. This was carried out for each

of the process-function pairs to obtain the overall prediction

accuracy of each term pair. As measures of accuracy, false positive

error rates, true positive error rates and the Receiver Operator

Characteristics (ROC) area under the curve were calculated with

the ROCR package in R [52].

Table 1 shows a list of process-function pairs used and the

accuracy of the models as assessed by ROC area. For values of

ROC area, an area of 0.5 indicates that the classifier performs

randomly. In contrast, an area of 1.0 would be achieved by a

perfect classifier. It can be seen from Table 1 that the ROC areas

for classification appears to vary greatly across the terms. There

appears to be good correlation in genes that are identified as being

involved in both the GO process of ‘‘translation’’ and GO function

of ‘‘structural constituent of ribosome’’, with a ROC area of 0.92

when trying to predict the function of these genes. From Figure 1a,

it can be seen that the false positive rate of predicting gene

involvement in this particular function was in general very low

across.

The accurate prediction also extends to genes that are identified

as being in other ribosomal related functions within ‘‘translation’’,

with ROC areas of 0.80, 0.88 and 0.82 in ‘‘tRNA binding’’,

‘‘rRNA binding’’ and ‘‘RNA binding’’ (‘‘RNA binding’’ is a

generalization of both types of RNA), respectively (Figure 1b–d).

Upon closer inspection, these four ‘‘translation’’ related RNA

functions contain genes that overlap, such that the genes involved

in one of the functions were often involved in some of the others.

This ROC area indicates low correlation between the trees of

genes annotated as being involved in this process. In contrast, for a

majority of the process-function pairs, correlation in gene tree

branch lengths was not seen between genes identified as having the

same GO terms, with the GLMs performing approximately at

random.

Randomization tests were carried out to determine whether the

high correlations in our processes-function pairs are statistically

significant. For each pair, a null distribution of 1000 sample

replicates was constructed. Each replicate was generated by

randomly selecting genes in the dataset to be involved in a null

biological function. The number of genes selected to be involved in

the null function in each replicate is equivalent to the number of

genes involved in the process-function term. A leave-one-out test

Table 1. Prediction accuracy of the GLMs for the leave-one out tests, measured by the ROC area under the curve.

GO biological process(es) GO molecular function(s)
Number of
genes ROC area

Adjusted
p-value

translation structural constituent of ribosome 38 0.92 0.00

translation rRNA binding 28 0.88 0.00

translation RNA binding 34 0.82 0.00

translation tRNA binding 7 0.80 0.01

translation protein binding 22 0.69 0.03

translation aminoacyl-tRNA ligase activity; ATP binding; ligase activity 12 0.71 0.05

regulation of transcription, DNA-dependent protein binding 8 0.70 0.10

transport protein binding 7 0.69 0.10

protein folding protein binding 7 0.66 0.17

DNA replication protein binding 8 0.67 0.19

tRNA aminoacylation for
protein translation

aminoacyl-tRNA ligase activity; ATP binding; ligase
activity; nucleotide binding

7 0.62 0.23

DNA repair hydrolase activity 8 0.61 0.23

translation nucleotide binding 15 0.59 0.23

response to DNA damage stimulus hydrolase activity 7 0.55 0.37

transport ATP binding 7 0.54 0.41

DNA replication DNA binding 7 0.52 0.41

SOS response DNA binding 7 0.49 0.52

metabolic process transferase activity 10 0.48 0.58

regulation of transcription, DNA-dependent RNA binding 7 0.43 0.67

metabolic process protein binding 7 0.39 0.74

metabolic process catalytic activity 13 0.42 0.74

DNA repair; response to DNA damage stimulus DNA binding 11 0.41 0.74

cell cycle; cell division nucleotide binding 8 0.38 0.74

DNA repair; response to DNA damage stimulus ATP binding; nucleotide binding 7 0.33 0.80

transcription DNA binding 7 0.29 0.86

transcription protein binding 8 0.25 0.91

Different GO process terms and function terms often shared the exact same set of genes. For example the functions of ‘‘aminoacyl-tRNA ligase activity’’, ‘‘ATP binding’’
and ‘‘ligase activity’’ within the ‘‘translation’’ process have the same genes involved in them. These are grouped as a single category in the table.
doi:10.1371/journal.pone.0008487.t001
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was carried out on each of the replicates and the ROC area

calculated. From these randomizations the p-values of obtaining

the actual ROC areas for each GO term combination were

calculated. p-values were adjusted with false discovery rate

correction [53] to correct for multiple comparisons (shown in

Table 1). It can be seen that the correlation observed in the

ribosomal functions of translation was highly significant to a 5%

error rate. This indicates that the high ROC areas produced by

these gene grouping were unlikely caused by sampling effects.

Apart from the translation related functions, there were no other

functions that were significant.

As a control, we tested whether the accuracy of the prediction

was directly correlated to the number of genes that were used to

train the models. It is a known issue in statistics that under-trained

models with too few cases of each class produce biased and

inaccurate predictions. We computed a linear fit of the number of

genes involved in each process against the accuracy of each

process in ROC area. The coefficient of determination (r2) was

calculated from the linear fit to be 0.39 (p = 0.0007). This indicates

bias towards GLMs predicting for functions that have a higher

number of genes involved in the function. As seen from the results

in Table 1, pathways that contained fewer genes in general

indicated no correlation in branch length between the genes. We

would hence expect better results in some of these pathways as

some of these functions become more thoroughly annotated.

For our most significantly correlated process-function of

‘‘translation’’ and ‘‘structural constituent of ribosome’’, tests were

expanded to further investigate the correlation. The size of the null

distribution was increased to 10000 replicates. It is noted here that

even when the replicates was increased, the p-value remained at

0.0, indicating that there is ,0.0001 chance that the correlation

seen was obtained at random. Therefore we have strong evidence

to reject the null hypothesis that the correlation in gene tree

phylogeny between genes labeled with GO terms ‘‘translation’’

and ‘‘structural constituent of ribosome’’ was due to random

effects.

We computed physical comparisons of the characteristics of

proteins involved in this process, relative to other genes and

processes. We tested whether the correlation in phylogeny occurs

only amongst physically interacting genes, or whether correlation

extends to non-interacting genes of related function. To test this,

the most significantly correlated process-function pair of ‘‘trans-

lation’’ and ‘‘structural constituent of ribosome’’ was again used.

The known interactions between the genes involved in this

biological function were obtained from the Database of Interacting

Proteins [54]. Figure 2a shows the interaction network of the

proteins in our dataset labeled with these particular GO terms.

Although a large number of interactions within this pathway occur

between the genes, not all the genes contain an interaction with

another. In fact some of the proteins contain few interactions to

any of the other proteins. Yet, the correlation in gene tree branch

length amongst the proteins shown here was clearly shown in the

results of the leave-one-out test. Hence, it can be seen that the

correlation in phylogeny between genes is not purely limited to

physically interacting genes, but the correlations also exist between

functionally related genes operating within the same pathway.

Figure 1. Plots of true positive rate against false positive rate for a few example GO process-function pairs. The predictions from the
GLMs of each function were estimated using different values of the cut-off point (shown by the colored scale on the right), and error rates calculated
from these predictions. (a)–(d) shows the accuracy of four related ribosomal functions within the GO process of ‘‘translation’’. The four GO functions
are ‘‘structural constituent of ribosome’’, ‘‘tRNA binding’’, ‘‘rRNA binding’’ and ‘‘RNA binding’’, respectively.
doi:10.1371/journal.pone.0008487.g001

Gene Phylogenies and Function
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Figure 2. A detailed analysis of the proteins in our dataset annotated as being involved in GO process ‘‘translation’’ and GO
function ‘‘structural constituent of ribosome’’. (a) The pathway interaction network of these proteins, as shown in Cytoscape [64]. Proteins
P02378, P02371, P02373 and P02372 (in the first column) contain no known physical interactions to any other proteins in our list. (b) Example gene
trees of proteins from our dataset. From top left to bottom right, the trees are from gene P02386, P02410 (a protein known to physically interact with
P02386), P02351 (a protein that does not interact with either of the previous genes but contributes to the pathway) and the consensus of all gene
trees in our dataset not labeled with these two GO terms. (c) The models built by the GLMs for (i) the proteins labeled with the two GO terms and (ii)
for the 10000 randomizations of the null distribution. The end predicted value is obtained by adding the products of each coefficient and its
corresponding predictor value, and the intercept value.
doi:10.1371/journal.pone.0008487.g002
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Figure 2b shows an example of gene trees from proteins within

this pathway. From the example it can be seen that there are

similarities in branch lengths between proteins functioning within

the same pathway, which is not limited to only proteins that

directly interact. These similarities also show distinction from

other proteins, as is seen by the dissimilarities of the gene trees to

the consensus tree of proteins not involved in the pathway.

Figure 2c shows the coefficients of the GLMs from modeling the

correlation from these proteins. As a comparison, the average

values of each coefficient from the 10000 randomizations

generated is shown. It should be noted that the coefficients here

model the variation in loge transformed branch lengths; therefore a

large proportion of the predictor values will be negative, as branch

lengths are generally small. From Figure 2c, we see that the

coefficients from the actual process-function term itself differ

greatly from that of the randomizations. This indicates that there is

a distinction in the branch lengths of proteins in this pathway. As

the intercept value and end predicted value differ between the two

models, comparisons cannot be made.

Previous studies have found that for phylogenetic profiling [55]

the number and choice of species affects how informative the

profiles are [56,57]. As the underlying concept of our analysis is

similar to phylogenetic profiling, this may cause a bias in our

results. To test whether the high correlations seen here are biased

by species choice, we repeated the leave-one-out analysis. Each

time it was repeated, we simulated a single taxa removal by

excluding and combining columns corresponding to the branches.

With the removal of taxa, the ROC area that was produced by the

GLMs of ‘‘translation’’ and ‘‘structural constituent of ribosome’’

did not alter greatly from our original result. From the 10

individual species removals, the ROC areas ranged from 0.89 to

0.94, with a mean of 0.91. Therefore, the significant correlation is

unlikely an effect of bias due to choice of species used in our

analysis.

Discussion

We have shown here that there are correlations between a

protein’s function and its gene tree branch lengths. This

correlation in phylogeny is most likely attributable to the

coevolution of genes that have functionally related gene products.

Previous studies of inference from coevolution have focused

primarily on the relationship between genes that have physically

interacting gene products. We show that correlation in branch

lengths extends to genes that are involved in the same functional

pathway.

Hakes et al. [33] proposed the hypothesis of common selection

pressures occurring on these genes to account for correlated

evolutionary rates in functionally-related genes. We may also

imagine that the correlations can be caused by the ‘‘contagious’’

propagation of mutations across the genes in the biological

pathways responsible for the function. Specifically, mutations in

one gene in a pathway may lead to direct compensatory mutations

in a set of related genes which in turn can cause compensatory

changes in other related genes, causing a cascade of mutations

throughout the pathway. Alternatively, it may be that a change in

the selective environment leads to changes in the selective pressure

to maintain the structures of proteins involved in a given function,

so that changes in substitution rates (and branch-lengths) are

observed along different lineages.

In our study, we found that the correlation in branch length was

particularly high in proteins involved in translation and ribosomal

activities. This was most significant in proteins labeled with GO

terms ‘‘translation’’ and ‘‘structural constituent of ribosome’’. We

found that the overall tree lengths of these proteins are shorter

than that of other proteins (average of 2.96 in ribosomal genes and

6.30 in others). This indicates that there is an overall effect across

species of purifying selection acting towards the genes coding for

these proteins. This is in agreement with literature stating that

strong selective pressure occurs across ribosomal and translational

genes [58,59]. An explanation for the purifying selection across

these genes is that functions such as translation are crucial for an

organism’s basic function and therefore any changes to the protein

sequence may cause disruption towards this essential pathway. It

can also be seen that the degree to which purifying selection occurs

differs across each species lineage. This is indicated by the

coefficient values shown in Figure 2c, as each coefficient varies a

different amount to what is expected on average.

In our analysis, uncovering correlation is limited to identifying

genes that experience similar selective regimes. The assumption is

that genes with functionally related proteins would undergo similar

rates of evolution; yet it is possible for functionally unrelated genes

to have undergone rate similarities. A subset of this effect is when

trying to find correlations amongst genes from a common

biological function where the genes are evolving neutrally or near

neutrally. Gene trees of any other neutrally evolving genes will

have similarities in branch length to gene trees of this function.

This can confuse general classification and correlation methods

into believing that these genes should be grouped within this

function. This is noted as a limitation to our method but it will also

confound any method that is based on identifying equivalent

lineage-specific rates of evolution.

Despite the high significance seen in the correlation of some of

the functions, a majority of the functions performed only

marginally better than random. This suggests that the correlation

in branch lengths is weak amongst genes annotated as being

involved in those processes. The low correlation may be explained

by a range of factors. Firstly, such biases in different processes are

possibly due to issues within our dataset. A low number of genes

involved in a function to train the model can lead to biased

models. As mentioned previously, it is commonly known in

statistics that a reasonable number of each case type relative to

number of features is required to train accurate models [48]. The

test in correlation showed that there was a significant correlation

between the number of positive test cases in the processes and the

ROC area. It is likely that this effect caused some bias in our study

where functions with a larger number of genes involved are

favored.

In addition, errors in the prediction can be caused by incorrect

and incomplete functional annotations. Gene annotations in

databases are often incomplete and contain errors. In particular

for some biological processes such as gene translation, the specific

functions of each gene involved in these processes are better

known. Relevant processes will therefore have more complete and

less erroneous annotations.

A second factor contributing to the discrepancy in correlation is

natural variation in amount of selection pressure and gene

constraint. Observed coevolution is an effect of similar selection

pressures acting on functionally related proteins [33]. Where the

selection pressures are weak, lesser correlations in substitution

rates are expected. In cases where the compensatory mutations are

crucial towards the coevolution, weaker structural constraints

between genes with interacting products will result in less

coevolution. Often mutations in amino-acid sequence cause no

or small changes to the outcome of protein structure [60,61].

While some protein interactions necessarily require coevolution,

others are known to naturally have structural flexibility and can

allow for changes in interaction partners without having to make
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changes to itself [60,62]. Less constraint between genes would

mean that correlated mutations are often inessential thereby

resulting in less similarity in substitution rates. This effect is more

likely in genes where the sequence of the binding surfaces is

proportionally short. In these cases mutations may not have great

structural modifications to the gene and compensatory mutations

may not occur. As a result similarities in branches will be less

evident. In addition to this, it is possible for functionally related

genes to not share common patterns of evolution. As shown by

Rausher et al. [40] and Lu et al. [41], genes that produce

functionally related proteins can undergo different degrees of

selection, as a result of relaxed constraint on some of the genes. It

is possible that in our dataset certain genes have become relaxed

in one or more species. As a result, there can be a lack of corre-

lation between such genes and other genes in the pathway it is

involved in.

Another explanation for weaker correlation between genes is the

definitions of function provided by GO terms. GO provides a set

of text vocabularies used to categorize sequences by the general

attributes of their biological function. These vocabularies cannot

distinguish between different pathway organizations within the

function. Hence, it is often the case that functionally unrelated

genes may be annotated similarly in GO.

In addition, GO terms provide no indication towards the

specificity of each term. Some function terms are very specific (for

example, ‘‘protein secretion by the type II secretion system’’,

‘‘small GTPase mediated signal transduction’’) whilst others are

very general (for example, ‘‘metabolic process’’, ‘‘cell cycle’’).

As part of the study, we applied the same tests to the

OrthoMam dataset (version 4.0) [63]. After filtering we obtained

a substantial dataset containing 730 genes that were orthologous

among 24 mammalian species. Results of this analysis showed no

significant correlation between any genes involved in a particular

function and the gene tree branch lengths for the genes. Though

the data itself is abundant, the terms that were common among the

genes were uninformative. For example the most abundant

processes-function pairs were: ‘‘regulation of transcription, DNA-

dependent’’ with ‘‘DNA binding’’, ‘‘signal transduction’’ with

‘‘protein binding’’, and ‘‘regulation of transcription, DNA-

dependent’’ with ‘‘transcription factor activity’’. These terms

contain limited information on the underlying pathways them-

selves. It is likely that not all the genes function within the same

pathway. The lack of correlation may also potentially be

attributable to the distance between species (the overall tree length

of this dataset was roughly 7.5 times shorter than that of the

bacterial dataset) and the positive test case to negative test case

ratio (the most abundant process-function pair only contained

5.9% of the 730 genes), which is known to cause under-fitting in

model fitting.

Our study also suggests that when estimating divergence times,

care should be taken because gene tree branch lengths may be

biased by the function of the gene. Correlated changes in genes are

more prominent in genes with gene products of related function;

these will affect rate estimation if these genes are treated as

multiple ‘‘independent’’ loci. An implication of our finding

towards estimating species divergence times in comparative

biology is that it is erroneous to estimate species distances using

a small number of functionally-related genes. Though these effects

have been to some degree recognized, they are often not

considered when carrying out comparative analysis between

species. A suggestion from our results is that estimating species

distances should be performed using multiple loci from genes of a

wide range of functions. Our findings support the suggestion made

by Thorne and Kishino [15] of taking into account the correlation

of genes when using multiple loci. Thorne and Kishino suggested

that when estimating distances using concatenation of genes, to

add parameters, models and priors which consider the correlation

of substitution rates amongst the genes. Our result provides

support to the use of Thorne and Kishino’s techniques and as a

result raises questions towards the common assumption of

independence in substitution rate of gene trees.

Supporting Information

Figure S1 Histogram of the gene tree branch lengths on the P.

multocida branch. The length of branches is approximately

distributed exponentially. The lengths of other branches on the

tree also follow similar distributions.

Found at: doi:10.1371/journal.pone.0008487.s001 (0.08 MB TIF)
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