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Abstract

Background: Mathematical models of tuberculosis (TB) transmission have been used to characterize disease dynamics,
investigate the potential effects of public health interventions, and prioritize control measures. While previous work has
addressed the mathematical description of TB natural history, the impact of demography on the behaviour of TB models
has not been assessed.

Methods: A simple model of TB transmission, with alternative assumptions about survivorship, is used to explore the effect
of age structure on the prevalence of infection, disease, basic reproductive ratio and the projected impact of control
interventions. We focus our analytic arguments on the differences between constant and exponentially distributed lifespans
and use an individual-based model to investigate the range of behaviour arising from realistic distributions of survivorship.

Results: The choice of age structure and natural (non-disease related) mortality strongly affects steady-state dynamics,
parameter estimation and predictions about the effectiveness of control interventions. Since most individuals infected with
TB develop an asymptomatic latent infection and never progress to active disease, we find that assuming a constant
mortality rate results in a larger reproductive ratio and an overestimation of the effort required for disease control in
comparison to using more realistic age-specific mortality rates.

Conclusions: Demographic modelling assumptions should be considered in the interpretation of models of chronic
infectious diseases such as TB. For simple models, we find that assuming constant lifetimes, rather than exponential
lifetimes, produces dynamics more representative of models with realistic age structure.
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Introduction

Mathematical models of tuberculosis (TB) are important tools

for investigating the dynamics of epidemics and identifying

strategies for disease control [1–6]. Models have guided the choice

of case finding strategies, treatment approaches, and identified

operational targets aimed at achieving TB elimination [5,7,8]. The

rise of the HIV epidemic [9] and the emergence of highly drug-

resistant Mycobacterium tuberculosis [7,10] complicate TB control and

emphasize the need for accurate mathematical descriptions that

can be used to project the potential effects of new diagnostics,

therapeutic approaches or vaccines [11–13].

Transmission of TB occurs when people with infectious

pulmonary disease cough, sneeze, talk or otherwise aerosolize

tubercle bacilli which may be inhaled by others. Among those

infected, approximately 5% develop active disease within the first

few years but the majority remain asymptomatically infected. Of

these, 5–10% are expected to reactivate their latent infection and

develop TB disease later in life [14,15].

Most mathematical models of TB transmission classify individ-

uals as either susceptible (S), exposed (E), infectious, (I) or

recovered (R) [16]. Previous work has focused on capturing the

complex natural history of TB and consequently, most current

models include a variation on a standard set of compartments

[2–4,17]. In contrast, there has been little attention and no

consensus on the inclusion of demographic patterns that determine

age structure. Since the time course of TB infection is of the same

order as the human lifespan and the majority of infected

individuals eventually die of causes unrelated to TB, demographic

effects are likely to be important for predictions about control

interventions.

Compartmental SEIR models capture demographic trends by

assigning rates of births and age-specific mortality. Despite being

unrealistic for most human populations [18], a constant mortality

rate is a widely accepted simplification because it has a minimal

impact on the dynamics of acute infections [16,19], which is

largely because the infectious period is not affected by assumptions

about non-disease related mortality [20,21]. Considering realistic
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demography has been shown to alter the average age of infection

[22,23], although the explicit effect of age structure on chronic

disease transmission has not been investigated.

In this paper, we explore the impact of age structure on TB model

dynamics. We investigate the role of survivorship by comparing

model outcomes using constant, exponentially distributed and

Gompertz-like lifespans. Of these approaches, the Gompertz

function produces the most realistic patterns of human mortality

by allowing the risk of death to increase exponentially with age

[24,25]. Using a simple model that captures the essential features of

TB natural history, we consider analytic approximations for the

basic reproductive ratio (R0) and the steady-state prevalence of

infection and disease. We discuss the implications of using simplified

survivorship functions by comparing the results with realistic

distributions and investigate the impact of survivorship function

on parameter estimation and assessments of the relative success of

control interventions when models are calibrated to the same data.

Methods

We begin by describing a simple age-structured model of TB

transmission with alternative assumptions about survivorship. We

use analytic approximations of the prevalence of infection

and disease and the basic reproductive ratio as the basis for

investigating the effect of changing survivorship in models with

otherwise identical natural history assumptions. Finally, we use an

individual-based model to examine how age structure may affect

the projected impact control interventions. Full details of the

models and equations are contained in Technical Appendix S1.

TB Natural History
We capture the natural history of TB by classifying individuals

based on age and infection status using an SEIR compartmental

model [2,16,25,26]. We assume that all individuals start life

susceptible to infection without prior exposure (S) and die due to

non-TB causes at an age dependent rate m(a). Susceptible

individuals become infected at a time varying rate (l(t)) which

reflects the total prevalence of disease and the probability of

transmission given an encounter between an infectious case and a

susceptible individual (transmission rate b). We assume that a

small fraction of infected persons develops active disease (I )

immediately after infection while the remainder develop a chronic

latent asymptomatic infection (E). For consistency with previous

TB models [2,6,8,13,17,27], we assume that the risk of progressing

from latency to active infectious disease is constant for adult ages

(progression rate s). Latently infected individuals are able to be

reinfected with a decreased probability representing partial

immunity. Infectious individuals recover (R) or die due to disease.

Survivorship
Mortality in infectious disease models is commonly included as a

constant age-independent mortality rate, m(a)~m [2,19,30], which

results in exponentially distributed life expectancies with an average

life span of L~1=m years. An alternative model is one where an

individual survives until a particular age L and then dies [18,30]

(Fig. 1). The survivorship function, l(a), and the mortality rate, m(a),
can be described in terms of age a and life expectancy, L:

Constant lifespan : m(a)~

0 aƒL

? awL

8>>><
>>>:

l(a)~

1 aƒL

0 awL

8><
>:

ð1Þ

Exponential lifespan : m(a)~1=L l(a)~e{ma ð2Þ

where l(a)~ exp ({
Ð a

0
m(t)dt) gives the probability of surviving

until age a. A constant lifespan underestimates early mortality,

although produces an excellent approximation for populations with

high infant survival [25], while an exponential lifespan overesti-

mates mortality in younger ages and underestimates mortality in

older age groups, resulting in an underestimation of early survival

(Fig. 1).

Figure 1. Mortality and survival functions fitted Ukraine 1959 and 2006 data. (A) The age-specific mortality rate in Ukraine in 1959 (green
solid line) and 2006 (black solid line), arising from constant (dashed red line), exponential (solid blue line) and Gompertz-like (dot-dashed grey line)
lifespans, fitted to Ukraine 2006 data. (B) The probability of surviving until a given age for the same three types of survival functions: constant,
exponential and Gompertz-like lifespans. The probability of survival for Ukraine in 2006 is taken from the life tables in [28]. The life expectancy was 69
years and the fitted Gompertz parameters were a~3|10{4 and f~7:35|10{2.
doi:10.1371/journal.pone.0008479.g001
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Human survivorship is better characterized by a mortality

rate that increases exponentially with age (Fig. 1) [18]. This type

of mortality is described by a Gompertz function for positive

parameters a and f:

Gompertz : m(a)~a exp (fa) l(a)~ exp (a(1{ exp (fa))=f) ð3Þ

We use mortality data from Ukraine in 2006 as a country with

detailed population data [28] and a substantial TB prevalence

[29]. Using the mortality data, we calculated a life expectancy

of 69 years and Gompertz parameters a~3|10{4 and

f~7:35|10{2 (Fig. 1B). While the Gompertz function is more

realistic, we note that it does not capture infant mortality nor

produce the classic bell-shaped age distribution that arises due to

growing populations. Further discussion of Gompertz parameters

can be found in Technical Appendix S1.

Results

Prevalence of Infection and Disease
TB models are usually calibrated to an observed prevalence of

disease by varying the transmission parameters [2,6,8]. The basic

reproductive ratio is generally used as a target for disease control,

rather than for describing early epidemic growth rates. To

quantify the effect of survivorship on inferences from epidemic

models, we compared the prevalence of infection, disease and

basic reproductive ratio under models with alternative descriptions

of survival.

Natural mortality affects steady state dynamics in two ways: by

reducing the length of time an individual is infectious and by

decreasing the probability of a secondary infection progressing to

active disease during their lifetime. Assuming constant lifetimes

increases the lifespan for the majority of individuals and because

the population size is fixed, there is slower population turnover.

This affects the number of individuals in each infection state: the

numbers of susceptible persons and infectious cases are increased,

but the number of latently infected persons is reduced.

For given TB parameters, the proportion of the population not

exposed to disease is up to 50% greater with constant lifetimes.

New cases of active disease are modelled as resulting from a recent

primary infection (S?I ) or an existing latent infection (E?I ).

With constant lifetimes, the number of recent infections is greater

due to the larger pool of susceptible individuals and the number of

cases due to reactivation or reinfection is also greater due to the

increased probability of progressing from latency to disease. The

remainder of the population is classified as latently infected,

therefore constant lifetimes result in smaller estimates of the

prevalence of infection.

Rather than fixing parameters, TB models are generally fitted to

an observed prevalence. We show that the type of survivorship

directly affects estimates of epidemiological parameters by

absorbing the difference in life-years. For a fixed prevalence,

constant lifespans are consistent with lower parameter estimates

than exponential lifespans. For example, if we require equal

numbers of latently infected individuals to progress to disease in

both models, then we must assume a smaller progression rate for

the constant lifetime model. This can be seen analytically by

rearranging the equations for prevalence of disease so that

sconst
vsexpo (see Technical Appendix S1). Therefore, if the two

models are calibrated to the same data, individuals will progress

from latency to active disease at a slower rate in the model with

constant lifespans and any interventions aimed at reducing

reactivation or reinfection would have a smaller impact.

The Basic Reproductive Ratio
We use the basic reproductive ratio (R0) to investigate how

realistic age structure affects the ease with which a theoretical TB-

like disease could be eradicated in a population. The basic

reproductive ratio is defined as the average number of secondary

cases produced by a single infectious case and therefore encom-

passes the average number of secondary infections per case and the

probability that a secondary infection will lead to disease. Natural

mortality affects R0 by modifying the infectious period and the

probability of a secondary infection progressing to disease. R0 for

both constant and exponential models can be calculated using the

survivorship function – see Technical Appendix S1 and [33,34].

A model with constant lifespans results in a smaller effective

infectious period, although for a mean infectious period of less

than 15 years the estimates differ by less than 5%. A larger

difference arises when we consider the probability of progressing

from latency to active disease in each of the models. In a model

with exponential lifespans, the probability of progressing from

latency to active disease is up to twice as likely (Fig. 2A). This

means that when we calculate R0 for both systems, the exponential

model yields a greater value. The difference between these

estimates of R0 can be approximated by considering the latent

period less than the life expectancy, sƒ1=L, an infectious period

less than the average latent period and life expectancy, dwws
and exp ({dL)&0 so that:

Rconst
0 ƒ0:7 R

expo
0 :

Our analysis indicates that the main effects of including realistic

age structure are to alter our estimates of the proportion of people

with latent infections and the proportion that are expected to

progress from latency to active disease. A further manifestation is

that a model with exponential lifespans will predict at least 25%

more disease due to reactivation and reinfection than a model with

constant lifespans (Fig. 2B).

The Influence of Survivorship Function on the Effect of
Interventions

To illustrate our results further, we fit three individual-based

models, differing only in survivorship function, to the same observed

data. In each case we explore the effect of control interventions by

examining the level of interventions required for disease eradication.

The age structure and natural history parameters for each model

are determined by the type of survivorship.

We fit each model separately to Ukraine prevalence of 350/

100,000 [29] by varying the transmission rate, b (Fig. 3A).

Consistent with our analytic results, a constant lifespan yields a

lower estimate of the transmission rate. On a scale between the

constant and exponential estimates, the Gompertz estimate lies

within 10% of the constant value:

bconst~6:24, bexpo~7:23 and bGomp~6:32:

The basic reproductive ratio, calculated using equations derived

in Technical Appendix S1, is greater for an exponential lifespan:

Rconst
0 &4:74 and R

expo
0 &7:75:

The higher value of R
expo
0 is confirmed by examining the early

growth rates of the epidemics (Fig. 3B). We find that the growth

Survivorship in TB Models
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rate under Gompertz mortality is better approximated by a model

with a constant lifespan. In this scenario, 26% and 18% of active

TB cases are due to primary progression with constant and

exponential lifespans respectively. Reactivation causes 0.9% and

1.3% of cases respectively, and with these parameters, the

majority, 74% and 81%, of infection is due to fast progression

from latency following reinfection. These values are sensitive to the

prevalence of disease and parameter estimates.

Using the above parameters, we consider the necessary

reduction in transmission to eradicate disease in each of the

models. All three models predict similar reductions in prevalence

for decreases in transmission rate of less than 10% (Fig. 4A). The

model with constant lifespans requires a 20% reduction in

transmission, whereas the model with exponential lifespans

requires a 30% reduction. The model with Gompertz mortality

requires a 22% reduction in transmission, differing from the

constant model by 15% and from the exponential model by 28%.

The behaviour of the model with Gompertz survival was also

quantitatively similar to the model with constant lifespans.

For reductions in the average infectious period, the model with

constant lifespans requires the smallest reduction in order to

achieve disease eradication. An average infectious period of 16.2

months is needed for eradication in the constant lifespan model,

whereas the exponential lifespan model requires a further

reduction to 12.2 months. The estimate of 15.4 months from the

Gompertz model is 25 days less than the constant lifespan model

estimate and 100 days greater than the exponential model estimate

(Fig. 4B). Absolute reductions of the parameters have the greatest

effect on prevalence in the model with constant lifespans. This has

the practical effect that intervention strategies assessed through a

Figure 3. TB epidemics produced using three models with alternative assumptions about mortality. Red dashed lines: all individuals live
for a constant lifetime; blue solid lines: individuals experience a constant mortality rate and have exponentially distributed lifespans; grey dot-dashed
lines: mortality increases exponentially with age (Gompertz mortality). Each model is fitted to an equilibrium prevalence rate of 350/100,000 by
allowing the transmission rate to vary. (Baseline parameters given in Table S1 of Technical Appendix S1). (A) The epidemic profile in time. (B) The
epidemic growth rate as a function of prevalence. The initial period of epidemic growth is highlighted using the thick shaded lines in both figure (A)
and (B).
doi:10.1371/journal.pone.0008479.g003

Figure 2. A comparison of two models with alternative assumptions about mortality. Red dashed lines: all individuals live for a constant
lifetime; blue solid lines: individuals experience a constant mortality rate and have exponentially distributed lifetimes. (A) The basic reproductive ratio
(R0) for TB as a function of the progression rate from latency to disease, s. As the latent period decreases, s??, the SEIR models approach an SIR
description. Conversely, as s?0, estimates from models with constant and exponential lifetimes diverge. (B) The percentage of R0 that is contributed
by slow progressors to TB disease as a function of progression rate, s. In all scenarios, the exponential model predicts that a greater proportion of
disease is due to reactivation.
doi:10.1371/journal.pone.0008479.g002
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mathematical model that assumed an exponential lifespan will

predict less dramatic benefits than we actually observe when

survivorship is better described by a constant lifespan.

Discussion

Our analysis illustrates that natural (non-disease related)

mortality and age structure play an important role in the dynamics

of chronic infectious diseases such as TB. We explored three

common characterisations of survivorship: constant or fixed

lifetimes, exponentially-distributed lifetimes and lifetimes resulting

from a Gompertz mortality function (mortality that increases

exponentially with age). Our results indicate that the choice of

survivorship strongly affects steady-state dynamics, parameter

estimation and predictions about the effectiveness of control

interventions.

Our findings are consistent with previous investigations into the

effects of realistic infectious periods of acute diseases [20,21]. For

example, we find that constant lifetimes result in a greater

prevalence of disease than exponential lifetimes. However, this

difference in prevalence is exaggerated for chronic infectious

diseases. For diseases with a prolonged period of latency, we also

find that the number of people with latent infection and the

proportion of individuals that progress from latency to active

disease differ between models that assume different patterns of

survivorship. In an exponential lifetime model, fewer individuals

progress from latency to disease due to the variability in latent

periods.

In addition to exploring the effect of mortality on steady-state

dynamics, we also investigated the public health implications of

mortality assumptions in mathematical models that are used to

inform recommendations for disease control. We find that models

that assume exponential lifetimes result in larger parameter

estimates and overestimate the effect of treating TB disease and

underestimate the effect of treating latent TB infection when

compared to the same interventions in models with more realistic

lifetimes. Quantifying the importance of particular routes to

disease is important for balancing individual- and population-level

control interventions that will lead to a reduction in disease

burden.

Age-structure and natural mortality have not been a focus of

TB models. Assumptions about survivorship are often hidden;

our results suggest that these modelling assumptions should be

more explicitly stated given their impact on model dynamics and

results. Two types of mortality patterns are commonly used in

models of TB epidemics. The majority of non-age structured

TB models implicitly assume that lifetimes are exponentially

distributed [2,6,13,35]. More detailed numerical approaches

often use vital statistics to obtain age-specific fertility and

mortality rates [4,8,32,36,37]. Our work suggests that these

two approaches can produce different results and that parameter

estimates are not easily transferred between models with different

survivorship functions. For simple models, we find that assuming

constant lifetimes, rather than exponential lifetimes, produces

dynamics more representative of models with realistic age

structure.

The aim of our analysis was to quantify the differences

resulting from commonly used modelling assumptions about

natural mortality. Additional complexity resulting from altered

living standards, treatment rates and co-morbidity with other

diseases are important features that could potentially confound

the effects of altered survivorship. We focused on TB natural

history in otherwise healthy populations; the interaction between

the HIV and TB affects both TB natural history and the

underlying demography [38]. Our analysis would suggest that

increased TB progression rates associated with HIV-TB co-

infection would reduce the effects of incorrectly modelling

survivorship, however including the reduction of life expectancy

associated the HIV epidemic could potentially re-introduce the

differences. Host demography plays an important role in the

manifestation of chronic infectious diseases such as TB;

incorporating the effects of survivorship into transmission models

will help to understand the mechanisms of TB epidemics in

ageing or growing populations.

Supporting Information

Technical Appendix S1 Technical Appendix S1 contains

details of the model equations and baseline TB parameters,

further discussion of Gompertz parameters, analytic derivations of

main results and discussion of model generality.

Found at: doi:10.1371/journal.pone.0008479.s001 (0.07 MB

PDF)

Figure 4. Investigation into epidemic control for a model with three types of survival. Red dashed lines: constant lifespan; solid blue lines:
exponential lifespan and black dot-dashed lines Gompertz survival. In each case, we determined the necessary decrease in parameters for the
prevalence to fall to zero. (A) Reduction in transmission rate, b, and (B) reduction in average infectious period, 1=c. The lines denote the average of 10
model runs.
doi:10.1371/journal.pone.0008479.g004
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