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Abstract

Background: Despite the short length of their reads, micro-read sequencing technologies have shown their usefulness for
de novo sequencing. However, especially in eukaryotic genomes, complex repeat patterns are an obstacle to large
assemblies.

Principal Findings: We present a novel heuristic algorithm, Pebble, which uses paired-end read information to resolve
repeats and scaffold contigs to produce large-scale assemblies. In simulations, we can achieve weighted median scaffold
lengths (N50) of above 1 Mbp in Bacteria and above 100 kbp in more complex organisms. Using real datasets we obtained a
96 kbp N50 in Pseudomonas syringae and a unique 147 kbp scaffold of a ferret BAC clone. We also present an efficient
algorithm called Rock Band for the resolution of repeats in the case of mixed length assemblies, where different sequencing
platforms are combined to obtain a cost-effective assembly.

Conclusions: These algorithms extend the utility of short read only assemblies into large complex genomes. They have
been implemented and made available within the open-source Velvet short-read de novo assembler.
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Introduction

Next-generation sequencing (NGS) technologies, thanks to their

high throughput and cost effectiveness, present many experimental

opportunities for molecular biologists. These tools are gaining

wide popularity, for example in SNP detection [1] structural

variant detection [2] and DNA assays [3]. However, all these

methods rely on the existence of a finished reference genome onto

which the data is mapped. The use of this short-read data to

reconstruct, or assemble, de novo genomes has progressed much

more slowly.

The NGS platforms currently on the market can be divided into

two categories. Firstly, 454 sequencers [4]produce 400 to 500 base

pair (bp) fragments, or reads. They have been used in some de novo

studies [5]. The Illumina [6] and SOLiD [7] platforms produce

much shorter reads: 50 to 70 bp and 35 to 50 bp, respectively.

These micro-reads are much more difficult to assemble because

their short lengths, and therefore short overlaps, prevent from

distinguishing ambiguous repeat copies in a genome [8].

Despite this difficulty, assembly software has been developed to

solve this problem, such as EULER-SR [9], SSAKE [10],

VCAKE [11], SHARCGS [12] ALLPATHS [13], EDENA

[14], ABySS [15] and our own program, Velvet [16]. These tools

have shown that micro-reads can already be used to obtain draft

assemblies of bacterial genomes. However, assemblies of eukary-

otic genomes remain fragmented due to the complex repeats in

these genomes.

To overcome this obstacle, paired-end reads have been widely

considered as a promising solution. Sequencing both ends of a DNA

fragment of known length produces not only two sequences but also

their relative placement information, which can be exploited to

constrain the space of possible assemblies. This approach has been

studied in projects such as ARACHNE [17] and BAMBUS [18]. In

all of these examples paired-end information was used to order and

orient, or scaffold, contigs, and test the validity of these contig

assemblies.

EULER-DB [19] presented the idea of extracting the sequence

between contigs, even though it belonged to collapsed repeated

regions. Read-pairs were tested separately to check if they could

constrain the scaffolding problem by defining a unique path between

two contigs. ALLPATHS [13] extended this idea by bundling all the

read-pairs connecting two contigs to reduce calculations.

The SHORTY algorithm [20] additionally used sets of mate-

pairs which were all anchored on one end to a unique word of

length k, or k-mer. This allowed the algorithm to obtain

localisation information at the scale of the insert length variance.

In our previous paper [16] we presented a simple scaffolding

algorithm, Breadcrumb, which was inspired by the initial SHORTY
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algorithm, but used long contigs instead of k-mers to anchor groups

of mate-pairs. Breadcrumb could resolve simpler repeats but was

quickly limited in the case of mammalian genomes.

In a subsequent paper, Hossain et al. [21] presented improve-

ments on the SHORTY algorithm, based on the use of either long

reads or pre-computed contigs to bundle mate-pairs together.

Moreover, their method now uses a priori knowledge of the insert

length distribution to estimate the gaps between contigs.

We describe here a new read-pair resolution algorithm, Pebble,

which exploits the knowledge of insert lengths to resolve more

complex situations. This use of insert lengths not only allows the

algorithm to localise mate-pairs much more efficiently using only

short unique contigs, but is also instrumental in resolving the

sequence of complex repeat copies.

Another approach to resolving repeats is through mixing long

and short reads, to improve assemblies by benefiting from the

respective advantages of the different technologies. We present a

simple method, named Rock Band, to exploit sparse long read

datasets within a short-read assembly to resolve repeats and extend

contigs.

We tested our solutions on simulated datasets then extended to

experimental data from Pseudomonas syringae and ferret. We

obtained scaffold N50s above 100 kbp with few missassemblies,

and compared our method to a leading alternative de Bruijn

assembler, EULER-USR [22].

Results

The Pebble and Rock Band algorithms were designed to

function within the Velvet assembler, and as such are based on the

de Bruijn graph structure presented in detail in [23] and [16]. In

both algorithms, a number of assembly contigs, or graph nodes,

are identified as being unique. Both algorithms then try to find the

correct path which connect consecutive contigs.

Identifying Unique Nodes
To resolve repeats with confidence it is necessary to determine

which contigs in the assembly are unique. Various methods based

on topology have been used [23,24] but in its current

implementation, Velvet only relies on contig coverage values,

using a statistic derived from the A-statistic [25]. The high density

of read start positions offered by next-generation sequencing data

makes it easier to consider a contig coverage measurement as a

sum of independent measurements, thus introducing the contig

length as an added parameter (cf. Methods).

Pebble: Using Paired-End Information
Pebble tries to connect the unique nodes identified previously,

but using the paired-end information. For each unique node,

chosen in an arbitrary order, it iteratively estimates distances from

that node, extends it to the next unique node, then merges the

distance information provided by both nodes.

Building a primary scaffold. Before resolving repeats, it is

necessary to organise read-pair information in a condensed and

convenient structure. For any two nodes in the graph, Velvet

enumerates the reads or mate-pairs which connect them. Using

the maximum likelihood estimator (MLE) described in [26], it

estimates the distance between them. The complete set of

estimated inter-node distances is called the primary scaffold.

Because each contig is represented by two nodes, one for each

strand, orientation is retained.

This approach makes a number of simplifying assumptions.

Firstly, it supposes that each insert library has a normal length

distribution. Secondly, it only accounts for read-pairs which

successfully connect two given nodes, thus biasing the insert length

distribution by interval censoring. To be exhaustive, the MLE

would have to consider the likelihood of the read-pairs which fail

to connect the two nodes. However, this formalization would be

much more expensive to calculate, because of the quadratic

number of operations, as the information of each read-pair would

have to be integrated in many MLE calculations simultaneously.

Construction of a secondary scaffold. Before trying to

extend a unique node A, it is necessary to establish which other

nodes are in its vicinity. Pebble starts by extracting the primary

scaffold information relative to A. However, this set of distances is

generally insufficient to extend it. If the insert length is longer than

A’s length, then there is no primary information on its immediate

neighbourhood. For this reason Pebble computes a set of local

distances, or secondary scaffold, relative to A.

The SHORTY [21] and Breadcrumb [16] algorithms were

respectively based on the concept of projecting the image of a

unique k-mer or a unique node onto its neighbourhood, using

paired-end reads. In Pebble, the approach is slightly different:

for a given unique node, we enumerate the neighbouring unique

nodes which project onto it, then use those to estimate distances

around it.

Figure 1 describes the process used to construct the secondary

scaffold. We call primary neighbours the unique nodes which

share a connection with A in the primary scaffold. Pebble extracts

all the primary connections of these nodes, and flags the nodes to

which they lead, which we call secondary neighbours. Using the known

primary distance estimates, it is possible, by a simple subtraction,

to derive an estimate of the distance between A and the secondary

neighbours.

The secondary scaffold takes into account orientation by using

algebraic distances. Contigs which are upstream of the reference

point are assigned negative distances, whereas contigs downstream

are assigned positive ones. This notation allows Pebble to subtract

distances without any constraint.

However, derived distance estimates have to be handled with

caution, because secondary neighbours are not necessarily unique.

It is possible that the distance estimate from a unique contig to a

repeated one is actually based on the distances from the unique

node to separate copies of the repeat. This means that distances in

the secondary scaffold tend to be fuzzy.

Figure 1. Construction of the secondary scaffold. From a unique
node A, Pebble starts by incorporating all the distances relative to this
node found in the primary scaffold. For every unique node B which is
connected to A, Pebble then follows the primary connections
associated to B, thus flagging secondary neighbours of A. Assuming
that all the nodes are laid out on a line, we can estimate that the
distance from A to C is equal to the distance from A to B, minus that
from B to A.
doi:10.1371/journal.pone.0008407.g001

Repeat Resolution in Velvet
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Heuristic search through the local scaffold. Once Pebble

has determined a set of distance estimates from node A, it attempts

to find a plausible path through its secondary neighbours connecting

it to the nearest unique node. The strategy employed is a heuristic

depth-first search (cf. Text S1). Pebble advances through the graph,

from one secondary neighbour to the next, over the existing arcs.

At each iteration, it searches through the outgoing arcs, and

chooses the direct neighbour which is putatively closest to the

starting point. To avoid loops, priority is systematically given to

nodes which have not yet been visited, or have been visited the

fewest amount of times.

If a path is found to the next unique node, then the sequence

associated to the path and the sequence of the destination node are

appended to the starting node. All the read information from the

destination is transposed onto the starting node. The destination

node can then be deleted.

Reads belonging to the path are left in place. By default the nodes

along the path are considered to be potential repeats. This is why

Pebble does not track the position reads within resolved repeats.

Rock Band: Using Long Read Information
The advantage of the de Bruijn graph over the more traditional

overlap graph is to allow the mixture of read-lengths. If long reads

are available, they can be easily used to connect the nodes of the

graph after error correction, using a simple procedure called Rock

Band. The main idea is that if all the long reads which go out of

one unique node go consistently to another unique node and vice-

versa, then both nodes can be confidently merged.

Examining every unique node in an arbitrary order, Rock Band

iteratively tries to extend that node to the next unique node. It

enumerates the long reads which go out of that node, and follows

them to the next unique node, as described in Figure 2. If all the

long reads go to the same destination, then Rock Band merges the

two unique nodes, using the long reads’ sequences to fill the gap

between the two contigs.

At the next iteration, some of the reads used previously to find a

path may come to an end. However, merging the nodes involves

also merging the sets of reads, possibly incorporating new reads

which allows the process to continue.

Simulations
We tested our software on simulated datasets generated from

genomic regions from 4 different species, namely E. coli, S.

cerevisiae, C. elegans and H. sapiens. To factor out genome length, we

chose a 5 Mb region from each of these genomes, except for E. coli

where the whole 4.8 Mb genome was used.

Randomly placed reads were generated according to three

different scenarios. In the first case, perfect reads were generated

from the reference sequence. In the second, single substitution

base-pair errors were inserted at a rate of 1%. Finally, we

simulated a diploid sequencing project. We generated an alternate

version of the reference where artificial SNPs were introduced

randomly at a rate of 1 per 500 bp. One half of the reads was

generated from the original reference, the other from the modified

reference. All reads contained random errors as above.

Paired-end assemblies. In the first simulation, we tested

various insert lengths, from 100 bp to 12kb in short read format

(35 bp) alone. The results in Figure 3 show that as the insert length

increases, the N50 also increases, until it stabilises, and eventually

decreases. The initial rise is simply due to the increased insert

lengths, thus increasing the probability for nearby unique regions

to be connected by mate-pairs. The final degradation is linked to

the higher variance of the insert lengths, which can cause Pebble

to detect possible misassemblies and interrupt its progression

(cf. Methods).

Pebble can integrate multiple read pair libraries, but the length

of the scaffolds produced is governed mainly by the size of the

longest library as long as the variance in the insert length is

reasonable, in practice around 10% of the insert length. Larger

variance in insert sizes degrades the N50.

Figure 2. Resolution of repeats through the Rock Band assembly. In this simplified diagram, contigs are represented as boxes, and long
reads as thick curved lines. Instead of performing a pair-wise comparison of reads, the algorithm only examines the reads going out of unique node
A. Two of the reads (1 and 2) go to node B. Node 3 is disregarded because it is not confirmed by another read. The algorithm then examines the reads
going into node B. They all come from node A, except read 4, which is disregarded because unconfirmed, and read 5 which is not in contradiction
with the assembly of contigs A and B. Finally, read 6, despite its overlap with the other reads, is disregarded throughout the analysis, as it goes
through neither nodes A nor B.
doi:10.1371/journal.pone.0008407.g002

Repeat Resolution in Velvet
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Mixed-length assemblies. In the second experiment, we

tested various mixtures of long and short reads. The results, shown

in Figure 4, are qualitatively as one would expect. The more long

reads are available, the more repeats are covered, the more contigs

are merged together. Similarly, as long reads get longer, then the

number of repeats which can potentially be bridged goes up, so the

resulting contigs are longer.

However there is a fixed ceiling for each read length, due to the

repeat structure of long repeats in genomes. The level and

behaviour of this ceiling varies according to the genome and the

length of the long reads. For E. coli, S. cerevisiae and C.elegans this

ceiling is reached at a similar coverage depth, and it increases

regularly with the length of the reads. However, in human there is

a sharp distinction between 200 bp reads on one hand and 400

and 500 bp reads on the other. The former are shorter than Alu

sequences and produce an N50 below 5 Kbp, whereas the latter

allow the construction of much longer contigs. Because of the

density of repeats in the human genomes, a higher coverage of

long reads is required to reach the ceiling.

In the case of reads with errors, at very high coverage depths the

N50 diminishes. This would be due to the accumulation of errors

which become more difficult to distinguish from genuine sequence,

and then prevent the Rock Band algorithm from resolving repeats.

Higher N50 contig lengths were obtained in this experiment

(,1 Mbp in bacteria, ,100 Kbp in human) than in the previous

simulations with mixed length reads. This difference is due to the

fact that inserts can be much longer than long reads. Pebble is able

to effectively exploit these very long insert lengths through the

construction of the secondary scaffold. However, for comparable

lengths, high density paired-end reads consistently produce slightly

longer scaffolds than long reads, as shown on Figure 5. This is due

to the fact that in these simulations, the physical density of paired-

end reads is much higher than that of long-reads (in this case 20x).

This result argues in favour of dense read-pairs to resolve repeats

over long reads. In our experience, longer reads do not

significantly improve assemblies, as the insert length is the

principal factor which determines the quality of the assembly.

Sequencing Pseudomonas syringae
Pebble was tested on actual Illumina data, generated from

Pseudomonas syringae [27]. 6073272 36 bp reads were collected with

an average insert length of 400 bp. After running Velvet, 274

Figure 3. Results of simulations using various insert lengths. Final scaffold N50 as a function of insert length, in four different species and
three different simulations scenarios. The horizontal red lines represent the initial N50 after error removal and before repeat resolution. The dashed
blue lines represent the highest possible N50, namely the length of the sequence being sampled.
doi:10.1371/journal.pone.0008407.g003

Repeat Resolution in Velvet

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e8407



contigs longer than 100 bp where obtained, with an N50

supercontig length of 104 kbp and a maximum supercontig length

of 314 kbp. The run took in total 5 min 38 s and required 1.2 GB

of RAM.

Only 15 short contigs did not align to the reference,

representing a total of 26 kbp. 10 of those contigs represented

the copies of a common repeat, which did not align perfectly to the

reference genome. The other contigs only aligned partially to the

reference, and presented novel sequence, possibly due to minor

contamination. For example, one of them aligned to a Xanthomas

campestris insertion sequence. None of them presented a concat-

enation of distant Pseudomonas sequences.

If scaffolding is turned off then the contig N50 goes down to

24 kbp. However, many of the buffers are very short. If the contigs

are only broken up at buffers which are estimated to be strictly

longer than 1 bp, then the N50 of the ‘‘near-contigs’’ becomes

48 kbp

These results were compared to those obtained with EULER-

USR [23]. EULER was found to be the leading paired-end micro-

read assembler [15]. The ALLPATHS assembler [13] could not

be used because it is designed to function with two different insert

lengths, unlike Velvet which can handle one or several libraries

indifferently.

The details of this comparison are in Table 1. Whereas Euler does

produce longer contigs, Velvet’s near-contigs are comparable to

Euler’s contigs. Moreover, Velvet’s scaffolds are significantly longer.

Sequencing Ferret BACs
Finally, Pebble was tested on Illumina data from a ferret BAC.

690,494 36+36 bp read pairs were generated with a 270 bp insert

length. This assembly produced a single contig 147.362 bp long,

which aligned with a 0.02% global error rate. These results show

that microreads can be used to obtain contigs of significant length

even on complex genomes.

Discussion

Pebble is a new de Bruijn graph algorithm which can use read

pairs to extend genomic assembly contigs using the dense paired-end

information produced by next-generation sequencing platforms. We

Figure 4. Results of simulations using various long/short read mixtures. Final contig N50 as a function of long read concentration, in four
different species, and three different simulation scenarios. The length of the long reads is represented by the colour of the curves: 100 (black) 200
(red) 400 (green) 500 (blue) and 1000 bp (light blue).
doi:10.1371/journal.pone.0008407.g004
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tested this method on simulated as well as experimental datasets. The

length weighted median contig length (N50) in simulations is within

that reached in traditional ‘‘draft’’ assemblies, and for all genomes is

greater than the median gene length. Although not the focus of this

paper, a light coverage of longer insert lengths (such as fosmid end

pairs) will be able to easily super-scaffold these scaffold-contigs into

even longer collinear components. Thus using only short reads,

useful assemblies can be generated for complex organisms.

The RockBand algorithm fills a similar role using single long

reads added to the genome. Long reads in this context might be

Figure 5. Comparison of the Rock Band and Pebble methods. The red and black curves represent the final scaffold N50 after the execution of
the Rock Band or Pebble algorithms respectively, as a function of long read or insert length, in four different species and three different simulations
scenarios, as described in figures 3 and 4.
doi:10.1371/journal.pone.0008407.g005

Table 1. Comparison of Velvet and EULER assemblies.

Assembly N50 length (kbp) Maximum length (kbp) Contig or scaffold count Coverage (%)

EULER contigs 40 215 598 103.0

Velvet contigs 24 134 595 97.9

Velvet near-contigs 48 157 430 97.9

EULER scaffolds 51 215 620 107.8

Velvet scaffolds 96 314 274 98.4

Comparison of Velvet and Euler assemblies. The contig or scaffold count corresponds to the number of contigs or scaffolds longer than 100 bp. Near-contigs are
defined as scaffolds which are broken up only if the distance between two contigs is estimated to be strictly greater than 1 bp.
doi:10.1371/journal.pone.0008407.t001

Repeat Resolution in Velvet
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from 454 data, or traditional Sanger reads, with not enough

coverage for assembly by other means. In many cases there are

already partial long read datasets which can be leveraged now with

the addition of short reads. For reads as long as short-read paired-

end inserts, Rock Band and Pebble produces comparable N50s.

However, Pebble is also able to resolve repeats using longer insert

lengths. This study confirms the intuition of many genomic

researchers that the generation of longer length inserts (3 Kbp-

10 Kbp) will be very valuable for resolving genomic features.

The Pebble algorithm requires tracking of each short read

through the error correction processes of tip clipping and TourBus

described in our previous paper. This tracking information

produces a large memory requirement, with 120 Mbp assemblies

needing 50 to 100 GB of physical memory. This means that

currently the main limitation for using Velvet on larger genomes

are engineering (rather than algorithmic) issues. The ABySS de

Bruijn graph system works on a distributed memory system and

can handle larger genomes [15]. However, resolving the complex

repeat structures at such a scale and producing long contigs is still

a difficult task. The next focus will be to improve the engineering

to provide a robust, large-scale de Bruijn assembler.

In this paper we have explored these algorithms by simulation

and with two real datasets. These algorithms have been available

in partial form in the Velvet package for around one year, and a

variety of other groups have already reported good results with

these methods, such as [27]. There is a growing community of

researchers who are using Velvet regularly, and these algorithms

extend the utility of this tool.

Materials and Methods

Pebble Implementation
Removing false connections in the primary scaffold.

After establishing for each unique node a list of its primary

neighbours, Pebble removes connections between unique nodes

which are not supported by enough evidence. To start with, it

discards distance estimates which were derived from less than a

given cutoff (by default 4) of mate-pairs. Assuming that the

distance estimate is correct, it then estimates the expected number

of mate-pairs which should connect the two contigs (cf. below). If

the observed number is below 10% of that expected values, then

the distance estimate is deleted.

Estimating the expected number of paired-end connec-

tions between two contigs. For each pair of contigs connected

by read pairs, and for each insert library, we call A the length of the

longer node, B the length of the shorter one, D the estimated distance

between the two, and r the density of paired-end reads on the longer

node. The paired-end reads are characterised by the mean m and the

standard deviation s of the insert length distribution.

We first define a few variables:

a~
D{m

s

b~
DzB{m

s

c~
DzA{m

s

d~
DzAzB{m

s

We finally obtain an estimate of the expected number X of

paired-end connections between the two contigs (cf. Text S1),

using the probability density Q and the standard error function erf

associated to the normal distribution:

X&rs að Þ{ bð Þ{ a

2
erf

bffiffiffi
2
p
� �

{erf
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2
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erf
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� �
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2
p
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2
erf
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p
� �

{erf
cffiffiffi
2
p
� �� �� �

Scaffold merging. As two unique nodes are being merged

into one, it is vital to also merge the corresponding scaffolding

information, to keep the process going. This operation is directly

based on the original construction of the local scaffold, since the

formula allows us to incrementally add information, both from

primary and derived distances.

Admittedly this use of the formula ignores the fact that the

derived distances around one node are not necessarily indepen-

dent from those around a neighbouring node. Nonetheless, this

bias is neglected for the sake of computational speed.

Interrupted searches. It is not always possible to extend a

node to another unique contig. This can be due to coverage gaps,

or to anomalies detected by Pebble as described below. However,

the search for a path between two contigs is asymmetric,

depending on which of the two the local scaffold was built around.

Whenever Pebble estimates that two contigs, using read-pair

information, should be neighbours, but fails to find a path from

both ends, it finally scaffolds the two together. They are merged as

if a path were found, but separated by a buffer sequence of

undetermined nucleotides (marked as N’s). The length of this

buffer is equal to the distance estimate between the nodes.

Avoiding misassemblies. Because Pebble is a greedy algo-

rithm, special care must be taken to avoid creating misassemblies.

These can be detected through inconsistencies in contig distances.

When extending a unique contig, Pebble checks that it terminates on

the nearest unique contig in the local scaffold, and did not step

directly to a farther one. Such inconsistencies can be caused by the

variance in the distance estimator, especially when using mate-pair

libraries with high insert length variance. However, for the sake of

precaution, Pebble stops whenever it meets such an occurrence.

Avoiding infinite loops. Another pitfall of this heuristic

depth-first search is looping within highly repetitive regions of the

graph before eventually finding the correct path out. In its current

implementation, Pebble does not try to resolve these regions, but

simply jumps over them.

To prevent looping, Pebble stops whenever it visits the same

node twice, without having visited a new node in between.

Rock Band Implementation
Identifying unique nodes. We denote by Xi the number of

read starts on k-mer i of a given contig and assume that the

distribution of Xi is a Poisson distribution of mean and variance

both equal to the expected density r. In practice, this expected

density is determined empirically, after running the first stages of

Velvet. The distribution of the average contig coverage depths is

used to set the expected coverage either visually with a histogram

or with a formula such as the length-weighted median.

We assume that the multiplicity within each contig’s k-mers is

constant, because of the properties of the de Bruijn graph. In other

words, a node is either unique or repeated r times, but it should not

be a mixture of unique and repeated k-mers.

Repeat Resolution in Velvet
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According to the Central Limit Theorem, the mean of all the Xi

inside a node of length n, follows a distribution which converges

towards a normal distribution of mean r and standard deviationffiffiffiffiffiffiffiffi
r=n

p
. To decide whether a node is unique or not, we calculate

the log-odds ratio of the node being unique over that of it being

twice in the genome. Given an observed mean density of X , we

thus obtain the function:

F X ,n,r
� �

~
log2

2
zn

r2{
X

2

2
2r

To ensure specificity, we impose a uniqueness cutoff of F$5.

For practical reasons, the short read coverage is used as a proxy for

the number of short reads, on the assumption that the short reads

have a near constant length.

Dealing with errors and variation. To reduce calculations,

long reads are clipped at their ends so that all their tips are

mapped onto unique nodes. This clipping can potentially

completely erase long reads which are apparently included in

repeated regions. Nonetheless, this is quite rare, as in our

experience, even within eukaryotic repeats short unique regions

can be found.

To reduce noise, a path between two unique nodes is neglected

if it is not validated by two reads or more. When confronted with

discrepancies between long reads, Rock Band interrupts its

progression, and flags the corresponding node as non-unique.

Paired-End Simulations
Random 35 bp paired-end short reads were generated at a

constant coverage of 50x. The simulated insert lengths were either:

100, 200, 300, 400, 500, 600, 700, 800, 1600, 3200, 6400, or

12800 bp long. The actual insert lengths were randomly varied

around the expected value with a standard deviation of 10% of

that length.

Mixed-Length Simulations
In this set of simulations, random 35 bp short reads were

generated at a constant coverage of 50x. Random long reads were

generated at varying coverage values, namely all integer values

from 1 to 20x. The long reads were either 100, 200, 400, 500 or

1000 bp long.

P. syringae Sequencing
The 36 bp reads from Pseudomonas syringae are available in the

Short Read Archive under accession number ERA000095 and

came from lane 7 of run 20708_20H04AAXX_R1 on machine

ID49. They were assembled using k-mer length 21 bp and the

following parameters, ‘‘-cov_cutoff 7 -exp_cov 13 –ins_length

400’’.

To set these parameters, we ran several assemblies without any

options other than a varying k-mer length, and chose the one

which produced the highest N50 length. From that preliminary

assembly, 13x was the mode of the contig coverage distribution,

and 7x was chosen as just above half the previous value. Finally,

the insert length was determined by the fragment length selection

performed by the authors of the experiment [27].

The contigs were aligned to the reference using exonerate [28]

with options ‘‘-m ner –bestn 1’’. Contigs which were found to have

an alignment onto the reference at least 50 bp shorter than their

actual length were then examined using BLASTZ [29].

Ferret Sequencing
The ferret Illumina dataset is available in the Short Read

Archive under the accession number SRA009025. The 36 bp

reads correspond to sample 149, run on lanes 3 and 4 of flowcell

30GTEAAXX (2 December 2008). The BAC corresponds to

clone CH237-509L18, accession number AC170700. Velvet was

run with a hash length of 31 bp and the following parameters,

‘‘-cov_cutoff 20 -exp_cov 40 -ins_length 270’’.

Availability
Velvet is implemented in C, and has been tested on various

Linux, MacOS and Sparc/Solaris systems. It is freely available

under GPL 2 license at www.ebi.ac.uk/,zerbino/velvet. The

package includes a manual which describes the parameter setting.

Supporting Information

Text S1 This additional text provides more details on the

methods described in the main manuscript.

Found at: doi:10.1371/journal.pone.0008407.s001 (0.23 MB

DOC)
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