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Abstract

Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend
heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently,
comprehensive exome capture arrays have become available for targeting approximately 33 Mb or ,180,000 coding
exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new
experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based
studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family
pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of $3, 86% at a read
depth of $10, and over 50% of all targets were covered with $20 reads. We identified up to 14,284 SNPs and small indels
per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative
genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips
genotypes was 95.2% at $10x sequence. Further, we propose an advantageous genotype calling strategy for low covered
targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data.
Application of this method was able to detect .99% of SNPs covered $8x. Our results offer guidance for ‘‘real-world’’
applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and
reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.
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Introduction

Despite the continued increases in next-generation sequencing

(NGS) platform throughput, the cost of obtaining and analyzing

full genome sequences on a large number of human individuals

remains prohibitive. Therefore, at least for the near future, large

scale human genetic studies will rely on techniques that select and

enrich for chromosomal regions of interest prior to sequencing.

This approach will allow for the efficient evaluation of the

hundreds of individual samples typically required to detect risk-

associated genetic variation in common complex disorders. In

addition to the adaptation of PCR and microfluidics-based

techniques to select genomic regions of interest [1,2], new versions

of array-based and solution-based hybridization methods provide

promising genomic enrichment approaches [3–9]. Recently,

Roche Nimblegen has made available a microarray-based

sequence capture system that targets the majority of coding exons

as listed in the Consensus Coding Sequences (CCDS) collection.

This human exome capture array covers 33 Mb of genomic

sequence, comprising ,180,000 exons and over 500 miRNA

genes. Since captured DNA fragments have an average size of

500 bp, NGS sequence reads frequently extend beyond targeted

coding exons into the intron/exon boundary.

Although sequence variants in non-coding regulatory loci

clearly have potential to result in pathology, Mendelian disease

studies suggest that a large portion of disease-associated variation

lies within coding exons [10,11]. Recent studies seeking to identify

clusters of rare variants related to complex phenotypes have also

focused on coding exons [12–15], in part because available in silico

tools allow for rapid assessment of the potential functional

consequences of any novel variants.

While the sequences of five exomes have been examined in the

context of full human genome sequences [16–20], to date 13

exome-scale sequences derived from capture methods followed by
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NGS sequencing have been described [3,21]. These, along with

smaller-scale studies, [6,22] have carefully examined the efficiency,

reproducibility, and uniformity of targeted genomic capture/

enrichment using array-based methodologies, as well as the extent

to which allelic bias and GC-content influence results.

Here, we present the results from eight complete exomes

captured via 2.1 M feature capture arrays (Roche). NGS was

carried out on the 454 Genome Sequencer FLX (GS FLX)

platform (Roche). Eight individuals were selected from a three

generation pedigree. This approach allowed for cross-validation of

segregating variants and facilitated genotype evaluation. The

samples used in this study were extracted from peripheral blood,

and DNA was stored for 13 years, representing conditions that are

not uncommon for larger human genetic disease sample

collections. We outline an empirical optimization approach to

genotype calling in individual exomes, assess the reliability of

genotype calling, and provide an overall evaluation of array-based

exome capture followed by NGS analysis on the 454 platform.

Methods

Human Subjects and DNA Samples
We examined eight individuals from a three generation family

pedigree (Fig. 1). All family members are of self-reported

European descent. Written informed consent for genetic studies

was obtained prior to initiating this study in agreement with

protocols approved by the institutional review board (IRB) at the

University of Miami Miller School of Medicine. DNA was

extracted from peripheral blood leukocytes using automated

DNA extraction. DNA samples were stored for approximately

13 years at the Biorepository of the John P. Hussman Institute for

Human Genomics, University of Miami. Before usage in this

study, DNA aliquots were re-precipitated and treated with RNAse

to remove proteins and RNA remnants (Fig. S1).

Exome Capture
Exome capture was performed using 5 ug of input DNA

according to the manufacturer’s protocol (Roche Nimblegen).

Briefly, genomic DNA was nebulized for 1 minute using 45psi of

pressure. Sheared DNA fragments were subsequently cleaned with

the DNA Clean & Concentrator-25 Kit (Zymo Research) and a

fragment size distribution ranging from 300 bp to 500 bp was

verified via Bioanalyzer (Agilent). After end-polishing of the

genomic fragments, the GS FLX Titanium adaptors were ligated

to the sheared genomic fragments. Ligated fragments were next

hybridized to the 2.1 M exome array within Maui hybridization

stations, followed by washing and elution of array-bound

fragmentsfrom the arrays within elution chambers (Nimblegen).

Captured fragments were next subjected to 27 rounds of PCR

amplification using primers targeting the Nimblegen linkers.

Following elution, the capture efficiency was evaluated via q-

PCR reactions. For additional details, see manufacturer’s protocol

that was modified for the human exome arrays (http://www.

nimblegen.com/products/lit/SeqCap_UserGuide_Tit_Del_v1p0.

pdf).

Next-Generation Sequencing
Captured DNA samples were subjected to standard sample

preparation procedures for 454 GS FLX sequencing as recom-

mended by the manufacturer (Roche Inc.). Two full 454 GS FLX

(Titanium) runs were performed for each of the eight samples with

the exception of individual 10039, which was sequenced using a

total of four full 454 GS FLX runs.

Array-Based Genotyping
We processed all individuals on the Illumina 1 M Duo

BeadChip, following the manufacturer’s recommendations (Illu-

mina Inc.). BeadChip arrays were scanned on the iScan

instrument, and preliminary analysis was conducted using

Illumina BeadStudio v3.29 software. Quality-control tests for

genotyping calls included the following measures: samples were

required to have an overall genotype call efficiency of $0.98;

Mendelian inconsistency checks were performed using WASP

[23]; reported gender and genetically determined gender were

examined with the use of X-linked SNPs, and we required a

conservative gencall score of 0.25. Variant loci with more than

10% missing genotypes and SNPs with minor allele frequency

,1% across all individuals were dropped from the analysis. To

determine high quality SNPs we applied the PLINK software [24].

Capillary Sequencing
For follow-up confirmation of identified novel variants we also

applied capillary sequencing. PCR primers were designed flanking

approximately 200 bp of a given variant and sequenced on an ABI

3730 capillary sequencing instrument following standard proce-

dures (Life Technologies). Capillary sequence reads were analyzed

using the Sequencher software package (GeneCodes Inc.).

Bioinformatics and Statistical Analyses
Next-generation sequencing data were initially processed using

the GSMapper software package (Roche Inc.) supplied with the

GS FLX instrument. High quality sequencing reads were aligned

to the human genome reference sequence NCBI 36.1. Variants

with respect to NCBI 36.1 reference sequence were identified

with the GSMapper software (AllDiff and HCDiff reports). The

AllDiff (all differences) strategy (output in the GSMapper AllDiff

file) requires the following criteria for a variant to be reported: (1)

At least two reads differ either from the reference sequence or

Figure 1. Studied three-generational pedigree. Pedigree of eight
individuals of European descent that was studied with exome capture
arrays.
doi:10.1371/journal.pone.0008232.g001
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from other reads aligned at a specific location. (2) there must be at

least two non-duplicate reads that a) show the difference, b) have

at least 5 bases on both sides of the difference, and c) have few

other isolated sequence differences in the read. HCDiff (high

confidence differences) requires the following criteria for a

variant to be reported: 1) There must be at least 3 reads with the

difference.; 2) There must be both forward and reverse reads

showing the difference, unless there are at least 5 reads with

quality scores over 20 (or 30 if the difference involves a 5-mer or

higher).; 3) If the difference is a single-base overcall or undercall,

then the reads with the difference must form the consensus of the

sequenced reads. Coverage depth at all detected variants and at

all positions corresponding to an Illumina 1 M genotype were

extracted for the purpose of comparison with the output files

HCDiff and AllDiff generated by the Roche GeneMapper

software.

Empirical Optimization of Genotype Calling
To determine empirical allele frequency threshold values for

assigning sequence-derived genotypes in our study, we obtained

genotype data for each individual in our study from a set of

44,513 Illumina 1 M Duo SNPs that fell within our targeted

exonic regions. The data set was arbitrarily divided into two

approximately equal SNP sets. We used the first set as a training

set to establish calling thresholds, and the second set was used for

the validation of the calling strategy. We defined lower (cl) and

upper (cu) thresholds such that if the percent of non-reference

reads is less than cl, then the genotype is called homozygous for

the reference allele; if the percent of non-reference reads was

between cl and cu the genotype is called heterozygous; and if the

percent of variant reads was greater than cu the genotype is called

homozygous for the non-reference allele. For each given depth of

coverage, we determined the threshold values for assigning

genotypes (based on the frequency of non-reference alleles

present among the set of sequence fragments) such that the

genotyping calls yielded the highest percent identity with the

Illumina training data set. Due to the nature of NGS data, more

training data were available for some call depths than others. We

required a minimum of 50 genotypes be present in the training

set to set a threshold at a given coverage depth. Using these

criteria, we established calling thresholds for the range of 3X to

23X coverage.

Results and Discussion

Exome Capture
Prior to exome capture, all DNA samples underwent quality

controls, including agarose gel runs and spectrophotometric

quantification (Fig. S1). The capture/enrichment of targeted

exons using the human exome array was carried out following the

manufacturer’s recommendations (see Methods). Successful en-

richment was initially evaluated by four real-time qPCR control

targets present on the array. After elution of the sequence capture

reactions, an estimated enrichment of control targets ranging from

53 to 102-fold over background was measured based on qPCR

data (Table S1).

NGS Run Statistics
For each of eight individuals we obtained between 0.7 and

1.3 Gb of genomic sequence from two GS FLX runs. One subject

(10039) was sequenced with a total of four GS FLX runs, resulting

in ,2 Gb of data. The average read length obtained was 340 bp

(Table 1). Fragment sizes ranged from 50 bp (the minimal length

used for analysis) to a maximum of 835 bp. All sequencing runs

yielded comparable average sequence lengths and total sequence

amounts. Run statistics for each sample are given in Table 1.

Target Coverage
Initial analysis of the NGS sequence results was conducted using

the GSMapper software package, which is optimized for the long

read alignment produced by the GS FLX platform. By applying

default GSMapper settings, which exclude low quality reads from

alignment, .99% of all remaining sequence fragments mapped to

the human genome reference NCBI36.1 (Table 1). Between

71.6% and 82.9% of all reads from each individual fell within a

region targeted by the human exome array, yielding an average

capture efficiency of 77.9% (Table 1). For comparison, we would

expect ,2% of reads to uniquely map to targeted regions were no

enrichment strategy employed. Our capture efficiencies resulted in

91% to 94% of all targeted bases being covered by at least three

sequence reads (Fig. 2). On average, two full 454 FLX runs (or

,1 Gb of sequence) resulted in ,50% of all targets being covered

by ten or more reads and ,30% of all targets covered by a depth

of greater than 15x (Fig. 2). The average coverage over all

individuals was 8.82. In individual (10039), with 2 Gb of sequence

Table 1. NGS run statistics for eight exomes aligning high-quality sequencing reads.

Individual
mapped bases (bp)/ %
of total bases

# mapped unique
reads1/ % of total reads

Unique reads1in target
region/ % of all reads

Target Base
Coverage

Average read
length (bp)

Max read
length * (bp)

10032 926,438,032 (99.79%) 2459464 (99.35%) 1854613 (78.02%) 92.50% 369 677

10033 814,175,547 (99.73%) 2275083 (99.26%) 1570217 (71.60%) 91.20% 345 635

10034 750,594,870 (99.76%) 2169892 (99.33%) 1532537 (73.18%) 90.90% 335 732

10035 1,146,776,462 (99.69%) 3293074 (99.28%) 2457890 (77.45%) 93.60% 339 755

10036 1,333,018,529 (99.71%) 3995447 (99.21%) 3099809 (80.26%) 93.20% 328 728

10037 892,370,696 (99.75%) 2421459 (99.30%) 1875210 (80.15%) 92.80% 360 736

10039 912,259,209 (99.78%) 2583714 (99.29%) 1984028 (79.68%) 94.20% 347 755

10082 670,270,644 (99.63%) 2197618 (98.80%) 1753660 (82.92%) 92.20% 299 835

Average 930,737,999(99.73%) 2,674,468 (99.23%) 2,015,995 (77.91%) 92.58% 340 732

#Number of.
*The minimum read length required was 50 bp.
1Before alignment, all raw reads were screened for duplicate reads, which are introduced by amplification steps during library preparation on next-generation platforms.
Only the first two runs are shown for better comparison.
doi:10.1371/journal.pone.0008232.t001
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data available, 98% of targets were covered at $3X, 86% of all

targets were covered at $10X, and ,70% of targets were covered

$15x (Fig. 2).

Variant Detection and Genotype Designation
Variant detection was performed using a combination of

different sequence read stringencies with the GSMapper software,

resulting in the generation of high confidence variant detection

(HCDiff) and a less conservative approach to detect all possible

sequence variants (AllDiff) (see Methods). Across all eight (related)

individuals that were sequenced with two full 454 runs, we

identified 21,533 unique variants, including SNPs and small

insertions and deletions (indels). Per individual we found 6790 –

11,038 loci heterozygous or homozygous for a variant allele based

on HCDiff; an average of 8744 (Table 2). Between 444 and 1163

variants per individual were not reported in dbSNP (v128) and

were thus categorized as putative novel alleles. On average 297

putative novel non-synonymous alleles were identified per

individual (Table 2). Individual 10036 yielded the most SNPs

and individual 10034 showed the least variants of all samples

(Table 2). As expected, this generally corresponds with the number

of mapped reads covering targeted regions in these samples, where

10036 had the most (4.0 M) and 10034 the least number of reads

(2.2 M) of all samples (Table 1). We note, however, that the

greatest benefits for SNP detection from adding additional read

data occurs as reads are increased in the range of 1 to

approximately 2.6 M reads, with more modest detection increases

observed as data is added beyond 2.6 M reads. We also searched

for variants that occurred +/2 2 bp from an exon boundary as

they have a high potential to interfere with exon/intron splicing

activity. We identified on average 54 such variants per individual

(Table S2). Individual 10039 was sequenced with two additional

GS FLX runs, yielding nearly twice the number of sequencing

reads and increased target coverage. In 10039 we identified 14,284

variants (88% known to dbSNP) with 624 of them being novel

non-synonymous SNPs (Table S3).

In order to take advantage of having sequenced related

individuals within a known pedigree structure, we also combined

raw sequencing read data from three siblings (10082, 10033,

10039) and analyzed them as a quasi single individual. As these

individuals share parental origin, we hoped to detect additional

variants above calling thresholds at regions of low coverage.

Indeed we were able to identify 17,498 variants based on HCDiff

in the combined dataset compared to 15,545 unique variants

in the original HCDiff files. Thus, the detection of an additional

11% of variants renders this approach an attractive strategy for

maximizing variant detection. A possible application would be the

combination of data from multiple affected individuals within a

single pedigree in order to maximize the probability of sampling a

risk-associated allele in the context of low overall sequence

coverage. In this case, even though the actual risk locus may

receive inadequate coverage within any given affected individual,

the pooling of reads at the locus across a group of such individuals

would greatly increase the probability of the mutant allele being

detected.

Sensitivity of Variant Identification
Ideally, error estimates for genotype calling should be based on

independently obtained and validated sequence data. In lieu of the

availability of known exome sequences for our eight individuals,

we genotyped all eight samples with the Illumina 1 M Duo

BeadChip, which contains ,16106 SNP markers. We applied a

number of stringent quality checks to all genotype calls derived

from these arrays to define a subset of high quality SNPs (see

Methods). Only genotypes that overlapped with targeted exons

were retained for further analysis. This resulted in 44,513 high

quality SNP loci for comparison to NGS data, which we used to

calculate sensitivity levels. Here, we define false negative as the

frequency at which individuals heterozygous or homozygous for

the variant alleles are incorrectly called as homozygous for the

reference allele. This relaxed definition of false negatives

recognizes that many exome capture studies will have genetic

variant discovery as a primary goal. When using the two different

outputs from GSMapper, ALLDiff and HCDiff, compared to the

Illumina BeadChip genotypes, a range is observed for the false

negative rates. Applying more inclusive AllDiff criteria, the false

Figure 2. Sequence coverage of targeted exons. The graph illustrates the cumulative coverage of targeted bases after sequencing 0.5 Gbp
(red), 1 Gbp (blue), 1.5 Gbp (green), and 2 Gbp (purple). 1 Gb resulted in nearly 10x coverage of 50% of all targets; 2 Gb of data increase this number
to 88%. Depending on a studies goal, maximum coverage might not always be required.
doi:10.1371/journal.pone.0008232.g002
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negative rate was 6% at 8x and 1.8% at 15x coverage. When using

the very conservative HCDiff criteria a false negative rate of 21%

at 8x and 4% at 15x was calculated (Fig. 3). A potentially more

practical approach to calculating false negative rates is the

cumulative false negative rate, which considers all targets covered

at a given depth and higher. Under this assumption, targets

covered $8x were incorrectly called reference in 6.7% of all tested

SNPs for HCDiff and in 2% for ALLDiff.

Empirical Coverage-Based Variant Assessment
A significant parameter that must be determined when assigning

genotypes based on NGS data is the cut-off proportion of variant

allele reads for a genotype to be called heterozygous or

homozygous. Several end-user software packages (e.g. Lasergene,

CLC) allow for a static, but adjustable, cut-off threshold across all

covered nucleotide positions. More sophisticated strategies have

been developed, relying on maximum likelihood (e.g.,[26]) and

prior knowledge of allele frequencies ([27]), and these have

been implemented to target data from short-read sequencing

platforms. To empirically determine genotype-calling thresholds

on a coverage dependent basis we used Illumina genotype data to

optimize our genotype calling cut-offs (and thereby variant

detection). Rather than applying a rigid cut-off rate for

heterozygous variant reads across all loci (e.g. .30% variant

reads), the optimal calling threshold was defined as that frequency

which maximizes the number of correct NGS genotype calls

Table 2. Genomic variants detected in eight exomes based on 2 454 GS FLX runs of aligned data.

Individual 10032 10033 10034 10035 10036 10037 10039 10082 Avg. Range

KNOWN VARIANTS 7962 6342 6346 9480 9875 7924 9398 7165 8062 6342–9875

Non-Synonymous 3467 2687 2749 4059 4257 3363 3952 3108 3455 2687–4257

indel 49 38 34 69 73 41 65 56 53 34–73

SNP 3418 2649 2715 3990 4184 3322 3887 3052 3402 2649–4184

Synonymous 4495 3655 3597 5421 5618 4561 5446 4057 4606 3597–5618

indel 19 20 19 38 35 29 28 30 27 19–38

SNP 4476 3635 3578 5383 5583 4532 5418 4027 4579 3578–5583

NOVEL VARIANTS 607 456 444 844 1163 610 748 591 683 444–1163

Non-Synonymous 344 254 244 486 723 347 402 337 392 244–723

indel 49 44 31 118 296 48 58 115 95 31–296

SNP 295 210 213 368 427 299 344 222 297 210–427

Synonymous 263 202 200 358 440 263 346 254 291 200–440

indel 21 16 19 44 76 21 29 31 32 16–76

SNP 242 186 181 314 364 242 317 223 259 181–364

Total 8569 6798 6790 10324 11038 8534 10146 7756 8744 6790–11038

doi:10.1371/journal.pone.0008232.t002

Figure 3. Estimated error rates. Sensitivity of genotype calling based on HCDiff SNPs, AllDiff SNPs, and the proposed coverage-dependent
genotype calling approach. A) False negative rates are based on concordance with a subset of 44,513 SNPs that overlapped with genotypes obtained
with Illumina 1 M Duo BeadChips. The coverage-dependent variant calling approach that calibrates cut-off rates according to array-based genotypes
is the most sensitive method, detecting .96% of SNPs at 5x coverage and .99% of all SNPs at $8x coverage. B) False positive rates. HCDiff is the
most conservative algorithm, resulting in a smaller false positive rate, while the more relaxed dynamic genotype calling algorithm results in twice as
high error rates at lower coverage.
doi:10.1371/journal.pone.0008232.g003
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(based on comparison to Illumina genotyping data). The resulting

thresholds were determined for each discrete coverage depth (3x,

4x, etc) (Fig. 4). As described below, this empirically determined

variant calling approach improved the overall sensitivity to detect

variants compared to the standard HCDiff variant detection

algorithm, particularly at low coverage targets (Fig. 3A). Typical

cut-off values produced by our method were cl = 12% and

cu = 88% at lower coverage depth and increased to cl = 22%

and cu = 78% at coverage $15 (Fig. 4). Applying this approach,

we were able to identify at 5x coverage more than 96% of all

heterozygous and homozygous changes reported by the Illumina

1 M BeadChip (Fig. 3A). At 8x coverage 99.99% of SNPs were

identified (Fig. 3A). Although this approach allows us to maximize

sensitivity, the rate of erroneously reported variants (specificity) is

modestly increased at coverage depths of #10x (Fig. 3B).

The rationale for this genotype calling approach is derived from

the fact that errors may result from a combination of array-capture

methodology, sequencing technology, as well as from sampling

error at loci. There are a number of difficulties involved in

disentangling these factors. Normal variation in hybridization

conditions and sequencing runs will likely cause the relative

contribution of each of these sources of error to fluctuate between

individual samples and sequencing runs. Furthermore, aspects of

the sequenced population itself (e.g. heterozygosity levels) may also

influence the overall performance of genotype calling strategies.

The empirical optimization method proposed here allows all these

factors to be taken into account without having to independently

assess them. Given the fairly large and representative group of

SNPs evaluated, we expect that this basic approach for generating

cut-off values will generally be valid for other, unrelated samples,

but the exact values will likely prove contingent upon the specific

enrichment and sequencing technologies applied.

Specificity of Variant Identification
Here, we restrict our definition of false positives to the

appearance of an allele at a sequenced locus that is not present

in the Illumina dataset for the individual. This is a conservative

approach as it is likely over-estimating error; differences between

Illumina genotyping data and NGS data, when independently

assessed with capillary sequencing [28], are often resolved in favor

of NGS. We used 112,384 genotypes from the Illumina 1 M to

examine specificity across the targeted exome, regardless of

whether they were present in any of the eight individuals. Of

the three tested approaches, the HCDiff algorithm produced the

lowest false positive rate of 0.7% (Fig. 3B). ALLDiff resulted in an

only marginally higher false positive rate. As expected, the

empirical coverage-based genotype calling approach had de-

creased specificity at lower coverage; the average rate of artifactual

variant calls was 1.5% at targets covered with 3 to 11 reads. For

studies that are willing to accept this rate of specificity, it appears

to be worth considering a more aggressive genotype calling

approach at regions of low coverage. At sequence read coverage

.15x, the differences in error rates between the different variant

calling approaches become negligible.

As another measure of the incidence of false discovery, we also

attempted to confirm 53 randomly chosen HCDiff SNPs across

the exome by capillary sequencing. We found that all 53 SNPs

were correctly called as heterozygous and homozygous variants,

thereby verifying the low rate of incorrect genotypes obtained

from the HCDiff algorithm.

Mendelian Inheritance Checks
Finally, we calculated the total number of Mendelian inconsis-

tencies in the pedigree resulting from NGS genotype calls using

the HCDiff SNPs. These errors could either be attributed to

improper genotype assignment or to authentic de-novo events. As

summarized in Table S4, the Mendelian error is 0.5% at 10x and

0.2% at 15x. As expected, the frequency of Mendelian errors

diminishes as a function of increased sequence depth. This

indicates that a significant component of Mendelian inconsisten-

cies were genotyping errors attributable to sampling error resulting

from insufficient sequencing coverage. The contribution of de

novo events to Mendelian inconsistencies appears low, as we were

not able to confirm any de novo mutation in 47 suspected variants

(see below). Therefore, when lacking available genotyping data to

estimate sensitivity and specificity, Mendelian inconsistencies

derived from available pedigree structures can assist in gauging

overall levels of genotype error and could aid in the optimization

of genotype calling algorithms.

De-Novo Variation
We made use of the available pedigree to search for evidence of

de-novo changes. By filtering the entirety of detected variants

(Table 2) for novel variants that occurred in an offspring (10033),

but not in parents (10035 and 10036), we identified 47 changes

suggestive of de-novo mutation events. However, subsequent

capillary sequencing confirmed none of these variants as true de-

novo events. While this initially suggests a disturbingly high error

rate, it must be considered that by selecting alleles that appear to

be de novo mutants, we are also strongly biasing towards the set of

artifactual SNP calls in the offspring as well as those SNPs we

failed to detect in either parents. Both of these latter categories will

appear identical to de novo events in the pedigree data set. For

comparison, when loci were randomly selected for capillary

sequence validation, we observed dramatically lower levels of error

(see above). Nevertheless, the failure to authenticate any of the

putative de novo mutations does imply a relatively low de-novo

Figure 4. Variant read distribution across eight exomes.
Illustration of the dynamic nature of optimal cut-off rates for calling
heterozygous/homozygous variants. At lower coverage (,10x) the ideal
cut-off is 88% variant reads in our data, while it is 78% at coverage $20.
Optimal usage of data should take advantage even of low covered
targets. Data are based on comparison to Illumina genotyped SNPs.
Green triangles: Illumina heterozygous genotypes, Blue diamonds:
Illumina homozygous genotypes. NGS genotypes are placed according
to their percent variant reads (y axis).
doi:10.1371/journal.pone.0008232.g004
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mutation rate in the exome. If one extrapolates from Nachman

et al. [25], the de-novo mutation rate in the exome should be no

more than two variants per generation (1% of 175 de-novo

mutation events per generation genome-wide), and thus close to

the false positive error rate of the sequencing approach described

here (Fig. 3B). In addition, de novo mutations in coding exons

likely carry an increased risk for compromising organismal

viability, as compared to mutations elsewhere in the genome,

and hence they are less likely to be sampled among successful

births.

Conclusion
Genomic enrichment methods and NGS platforms are currently

undergoing rapid development, leading to leap frog advancements

in genomic discovery tools. The results described here can provide

only a snapshot in time of the possibilities and limitations of a

combined array-based hybridization and NGS strategy. Our data

indicate that exome scale array capture enrichment provides a

powerful tool for genomic targeting and variant detection in NGS

studies.

With the present approach we have achieved $8x coverage of

,90% of all targets with ,2 Gb of aligned sequence reads (Fig. 2).

Our coverage-dependent sensitivity rates suggest that between

80% and 99.99% of all variants (depending on what strategy is

used) will be correctly identified at this coverage level (Fig. 3). We

have detected up to 13,605 SNPs per individual based on the

conservative HCDiff algorithm (Table S3). Taking into account a

sensitivity of 84% with HCDiff (including all targets covered $3

reads) (Fig. 3A), we extrapolate a full set of 15,781 SNPs in

individual 10039; this is comparable to the SNP numbers recently

reported for six Caucasian exomes [29]. This also underlines,

however, that near complete variant detection requires extensive

sequence coverage in order to overcome variability in coverage

depth across target regions.

Since NGS performance is correlated to coverage depth, it is of

key interest for investigators to assess the ‘‘right’’ amount of

sequencing in order to maximize respective study goals within

budgetary constraints. Our data should provide empirical

guidelines for such decisions, which are likely to be generalizable

when using the same technologies (Figs. 2 and 3). Although the

safest strategy appears to be an average coverage $20x, a number

of targets will be covered with less sequencing reads in any study

due to enrichment uniformity issues with hybridization-based

approaches. For at least the next few years, studies involving

hundreds of individuals will find the expense of obtaining optimal

high coverage across all target loci a daunting prospect. Partly

to address such challenges, we have proposed an empirical

coverage-based genotype calling approach. Using this approach

we were able to greatly improve detection of variant alleles at 3x -

15x coverage (Fig. 3A). The ‘‘cost’’ of false positives (i.e. reduced

specificity), although more than twice that of conservative

algorithms, was below 1.5% and might be acceptable for rare

variant discovery studies (Fig. 3B). More conservative calling

approaches will be preferable for other study designs.

In summary, the human exome capture array combined with

GS FLX sequencing provides a powerful means to detect genomic

variation in .90% of all human exons. The results and models

presented here should aid future study designs aiming at detection

of exonic sequence variation.
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gel runs (B) of DNA samples prior to sequence capture were part
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