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Abstract

The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic
brain injury (TBI) using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted
in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties
including a change in the degree distribution, reduced overall strength in connectivity, and increased ‘‘small-worldness’’
from 3 months to 6 months post injury. The findings here indicate that, during recovery from injury, the strength but not
the number of network connections diminishes, so that over the course of recovery, the network begins to approximate
what is observed in healthy adults. These are the first data examining functional connectivity in a disrupted neural system
during recovery.
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Introduction

Advancing the understanding of traumatic brain injury
via functional imaging

Traumatic brain injury (TBI) is a debilitating neurological

disorder defined as an injury from an external source resulting in a

period of altered consciousness and deficits in physical, cognitive,

and/or psychosocial functioning. While examination of behavioral

deficits associated with head trauma has a very long history,

spanning over 60 years, only recently have the consequences of

TBI received attention via functional imaging methods.

‘‘Activation’’ studies using functional MRI and positron

emission tomography have been used to examine TBI-related

deficits in episodic memory [1,2], working memory [3–7], and

executive control [8]. While the results of these studies have

generated working hypotheses regarding how plasticity is ex-

pressed in disrupted neural systems, discrete regions of interest and

localized ‘‘activation’’ results have not been interpreted in the

context of an integrated neural network.

There has been recent emphasis in studies using BOLD fMRI

to approximate brain activity, to incorporate baseline or ‘‘resting’’

measurements of the BOLD signal. Systematic examination of

baseline BOLD signal was first introduced by examining motor

cortex [9] and has recently received significant attention resulting

in demonstration of a discrete system of networks that are non-task

or ‘‘default mode’’ [10,11]. Emanating from these early findings

has been a wellspring of studies examining resting brain states in

the context of cognitive, sensory, and motor functioning. Most

recently, these methods have been applied in cross-sectional work

examining resting BOLD states in the clinical neurosciences.

Resting state fMRI has thus provided unique information about

the behavior of voxels (or ‘‘networks’’) in the absence of direct

stimulation. What has not been examined in this relatively new

literature is if resting states are plastic, and, in particular, if they

are changing after neural disruption. The current study aims to

document change in resting neural networks during recovery from

brain injury by examining macro-level functional connectivity in

the BOLD fMRI signal via graph theory (described below). To date,

there has been no work using serial MRI to examine changes in

neural connectivity during recovery from neurological insult and

such methods may provide additional insight into how neural

plasticity is expressed in the injured brain. Such analyses may offer

insight into how networks adapt to neurological disruption. For

example, it remains unclear if the neural recruitment observed

almost universally in cross-sectional ‘‘activation’’ studies of

working memory deficit is due to formal brain reorganization or

is indicative of neural inefficiency during periods of cognitive

challenge [12,13]. What appears to be a critical element in making

this determination is the nature of this neural recruitment over

time and if the number of neural connections is altered during

recovery. Activation studies in clinical samples can be methodo-

logically challenging [14–17] and one potential method for

examining how plasticity is expressed in the injured brain during

recovery is to first document how resting networks are altered.

Thus, it is an important aim to determine if, during recovery,

networks become more elaborate, including the creation of

additional connections, or if early recruitment of resources reflects

use of available auxiliary networks, that later give way to

diminished connectivity and greater neural efficiency. The

whole-brain network analyses conducted here afford this

opportunity.

Graph theory and Neural networks
Graph theory provides a powerful framework for the mathemat-

ical treatment of complex systems such as neural networks in the

brain [18–22]. The use of graph theory to date has led to important

developments in how neural systems are understood, including

small-world networks [18,19,22], scale-free network properties
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[23], ‘‘robustness for malfunction’’ [19,24], and critical state in

healthy subjects [25]. Furthermore, early application of this type of

network analysis to the study of neurological disorders, such

as Alzheimer’s disease [26,27] and schizophrenia [28,29], has

helped to characterize network abnormalities such as ‘‘neural

disconnection’’.

In the current study, graph theory is used to examine changes in

whole brain resting connectivity during recovery from moderate

and severe TBI. To do so, we analyze ‘‘ resting’’ data in order to

characterize changing network properties during a time period

now well established as a critical window for recovery of cognitive

functioning in TBI [30,31].

There are two over-arching goals in the current study. First, we

aim to examine potential changes in resting connectivity during a

period when behavioral recovery is known to occur after severe

traumatic brain injury. To do so, resting data derived from

working memory task data are analyzed at two time points early

after injury. This approach affords the opportunity to observe the

expression of neural plasticity during this critical window of

recovery. Second, we use graph theory to examine changes in the

resting BOLD response in order to examine whole-brain

alterations in network connectivity over time. This approach

represents a paradigm shift away from traditional cross-sectional

work examining region-of-interest (ROI) changes associated with

behavioral deficits. The inherent advantage to this approach is

that whole-brain data analysis of ‘‘resting state data’’ effectively

circumvents many of the methodological pitfalls associated with

examining ‘‘activation’’ changes in clinical samples (e.g., task

difficulty, performance inequalities) (see [12,15]). Thus, the

current study examines network change after injury via graph

theory analyses in order to identify the how plasticity is expressed

during recovery. Ultimately, these data may offer additional

context for understanding the findings in the current cross-

sectional literature using fMRI to examine deficits in working

memory and rapid decision making.

Results

Strength of Functional Connectivity
The averaged functional connectivity matrices for Time 1 and

Time 2 were calculated by averaging absolute correlation matrices

in the TBI sample (Fig. 1). The strength of functional connectivity

diminished from Time 1 to Time 2, more closely approximating

the results observed in the HC sample.

Figure 2(a) shows group averaged probability distributions P(r)
of absolute partial correlation coefficients for both groups. When

comparing Time 1 and Time 2, lower correlation values ranging

from r = 0.05 to 0.5 increased over time, but correlation values

ranging from r = 0.6 to 0.95 decreased during recovery. The mean

correlation coefficients were significantly different between time-

points (r = 0.4060.05 for Time 1 and 0.3160.01 for Time 2), and

values for Time 2 approximated those observed in the HC sample

(r = 0.3060.03).

Though the sparsity of the network showed a non-significant

difference between time points (Fig. 2(b)), the strength S
significantly decreased at Time 2 (Fig. 2(c)), closely approximating

Figure 1. Mean absolute partial correlation matrix of TBI. The averaged absolute partial correlation matrix of TBI at (a) Time 1 and (b) Time 2,
and Healthy subjects at (c) Time 1 and (d) Time 2. Both matrices consist of correlation coefficients of all pairs of 112 regions. The list of brain regions
we used in this analysis are shown in Table S1. Each component in the matrix indicates the mean absolute strength of the functional connectivity
between a pair of brain regions. The correlation coefficients are color coded.
doi:10.1371/journal.pone.0008220.g001
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the results observed in healthy adults. These results indicate that

the frequency of strong functional connectivity decreased during

recovery, but the overall number of connections in the network

remained relatively stable from Time 1 to Time 2. The specific

values for all indices are summarized in Table 1.

Network Properties of Un-weighted Functional
Connectivity Network

Table 1 summarizes network properties of un-weighted

functional brain networks. All indices characterizing network

statistical properties did not show any significant differences

between time points. Local efficiency El and clustering coefficient

C were higher at Time 1 relative to HC.

Network Properties of Weighted Functional Connectivity
Network

The correlation matrix revealed varying strengths in functional

connectivity dependent upon the brain region pairings (see

correlation matrices, Fig. 1) and the distributions of correlation

coefficients was influenced by time point of measurement (see Fig 2(a)).

These findings suggest that the strength of functional connectivity

may be altered during recovery from TBI. Because un-weighted

network analysis does not consider region-specific connectivity

strengths and relies solely upon a binary description of connectivity

(e.g., 1 or 0), emphasis in the current study was placed upon results

from weighted networks. Figure 3 and Figure 4 show network indices

of weighted functional connectivity network. The global efficiency Eg
(Fig. 3(a)) and local efficiency El (Fig. 3(b)) showed significantly higher

values at Time 1 compared with Time 2 and Control. These findings

are consistent with an overall reduction in ‘‘strength’’ in the

connected network. Because of its inverse relationship to Eg, path

length L (Fig. 3(c)) significantly increased during recovery. Thus, as

network strength (and reciprocally global and local efficiency)

decreased during recovery and these index changes from Time 1 to

Time 2 became more consistent with healthy adults.

The results of indices which were normalized by producing

randomized networks are shown in Fig 4. The components

making up ‘‘small worldness’’, l changed from Time 1 to Time 2,

approximating what was observed in healthy adults over time (see

Fig. 4(a)). The small-worldness index s was significantly lower at

Time 1 compare with Control, indicating the loss of small-

worldness following injury. Of note, the two estimates of ‘‘length’’

in connectivity, path length L and l, were significantly different in

opposite directions. Because l is a measure of path length

standardized via the randomized networks, further discussion

focuses on this finding. The specific values of all indices for

weighted network analysis are summarized in Table 2.

One concern regarding network ‘‘weighting’’ is that findings

may be at least partially attributable to statistical thresholding

effects. When considering alternative statistical thresholds, the

current results were observed to be quite robust; the results are not

altered when comparing significant levels of p,0.05 and p,0.01

(see Tables S2 and S3).

Degree Distribution in Functional Connectivity Network
For both groups the cumulative degree distribution Pc(k)

followed a non-Gaussian distribution with stretch-exponential-like

Figure 2. Properties of functional correlation matrix. (a) The group averaged probability distribution functions of absolute correlation
coefficients with bin-width 0.05. (b) Sparsity and (c) Strength S of the networks from TBI Time 1, Time 2, and Control group. The value of group
averaged mean correlation coefficient r was 0.4060.05 for TBI Time 1, 0.3160.01 for TBI Time 2, and 0.3060.03 for Control, respectively. * indicates
significant difference between Time 1 and Time 2. { indicates significant change from control group.
doi:10.1371/journal.pone.0008220.g002

Table 1. Functional Brain Network properties of ‘‘Un-weighted’’ network with threshold value p,0.05.

Sparsity S b Eg El L C l ª s

TBI (Time 1) 0.5460.04 0.5660.05*{ 3.6560.41*{ 0.7760.02 0.8360.02{ 1.4760.04 0.6660.04{ 1.0060.00 1.0860.05 1.0860.05

TBI (Time 2) 0.5060.02 0.4860.03 4.5860.18 0.7560.01 0.7960.00 1.5060.02 0.5860.01 1.0060.00 1.0960.02 1.0960.02

Healthy 0.5160.01 0.4560.00 4.7860.16 0.7560.00 0.7960.00 1.4960.01 0.5860.01 1.0060.00 1.0760.00 1.0760.00

*indicates significant difference between Time 1 and Time 2.
{indicates significant change from control group.
doi:10.1371/journal.pone.0008220.t001
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heavy tails (Fig. 5). The distribution of Time 2 showed the similar

decay as that of the HC group (Fig. 5(b)). By contrast, the

distribution of Time 1 showed slower decay than that of Time 2

and the HC group, indicating an increase in the number of regions

highly interconnected regions at Time 1 (Fig. 5(a)). Furthermore,

the distribution of Time 1 was similar to the form of power-law

Figure 3. Functional Network properties of weighted networks (1). The weighted network properties; (a) Global efficiency Eg, (b) Local
efficiency El, (c) Characteristic path length L, and (d) Clustering coefficient C, from TBI and Control groups. Here, the value of weight wi,j for each
edge ei,j in the network was defined as wi,j~1{ri,j , where ri,j is the absolute partial correlation coefficient between region i and j. * indicates
significant difference between Time 1 and Time 2. { indicates significant change from control group.
doi:10.1371/journal.pone.0008220.g003

Figure 4. Functional Network properties of weighted networks (2). The weighted network properties; (a) l, (b) c, and (c) s. *indicates
significant difference between Time 1 and Time 2. { indicates significant change from control group.
doi:10.1371/journal.pone.0008220.g004
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with exponential decay P(k)*ka{1f (k=j), compared with Time

2 and the data derived from HCs.

In order to quantify change in the distributions from Time 1 to

Time 2, the stretched exponential function Pc(k)*exp({akb)
was fitted to each, using a range from degree k = 30 to 80. The

resultant averaged fitting value of b was 3.6560.41 for Time 1 and

4.5860.18 for Time 2 (Table 1). The value of b was 4.7860.16 for

Control group. The change in these distributions was significant

between time points and Time 2 more closely approximating the

shape of that observed in healthy adults.

Discussion

We examined changes in functional connectivity at separate

time points during a known period of recovery after TBI [30,31].

To do so, we employed graph theory analyses to document changes

in resting BOLD signal between time points. To the best of our

knowledge, this is the first report examining functional connectiv-

ity during recovery from neurological insult using graph theory.

Un-weighted networks here revealed no significant changes

between time points in neural networks during recovery. There is

compelling evidence, however, that networks ‘‘weighted’’ accord-

ing to a partial correlation matrix maintain important advantages

over ‘‘un-weighted’’ data for understanding network characteris-

tics [32]. That is, weighted networks maintain information not

only about suprathreshold connections, but the magnitude of those

connections which potentially offers greater sensitivity to network

change during a period of functional recovery. For these reasons,

the following discussion focuses on the results of weighted network

analysis.

The current study analyzed ‘‘resting’’ data (as opposed to

BOLD data associated with a known task) that are the result of a

WM task. To provide context for understanding the resting

connectivity data analyzed here, the ‘‘activation’’ findings

achieved using a block design task revealed decreased involvement

of relevant neural substrates (in particular prefrontal cortex) from

Time 1 to time 2 [33,34]. The findings here are consistent with

what we have also observed during tasks of rapid decision making

in TBI where task acclimation and faster reaction times result in

diminished task-induced activation [34].

In a growing functional imaging literature examining deficits in

clinical samples, there remains little work examining how

neurological insult influences connectivity and information

transfer between nodes. That is, important questions remain

Table 2. Functional Brain Network properties of ‘‘Weighted’’ network with threshold value p,0.05.

Eg El L C l ª s

TBI (Time 1) 3.0860.80*{ 3.7961.08*{ 0.5260.07*{ 0.3860.02 1.7160.27*{ 1.0560.04 0.6960.10{

TBI (Time 2) 1.8060.13 2.0060.19 0.6460.03 0.3960.01 1.2060.03 1.0660.01 0.8860.01

Healthy 1.6460.03 1.7960.03 0.6960.01 0.4160.00 1.1960.01 1.0460.00 0.8860.01

*indicates significant difference between Time 1 and Time 2.
{indicates significant change from control group.
doi:10.1371/journal.pone.0008220.t002

Figure 5. Cumulative degree distributions. The group averaged cumulative degree distributions Pc(k) from (a) TBI at Time 1 and (b) Time 2 on
double logarithmic scale. The solid curves are the best fitting stretched exponential function Pc(k)*exp({akb) to the averaged cumulative degree
distributions ranging from degree k = 30 to 80. The value of fitting parameter b was 3.6560.41 for TBI at Time 1 and 4.5860.18 for Time 2,
respectively. For Control group, the value of b was 4.7860.16.
doi:10.1371/journal.pone.0008220.g005

Network Plasticity after TBI

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8220



regarding how neural networks respond to disruption and how

plasticity is expressed in these networks during recovery. Overall,

the results here indicate that recovery from TBI is associated with

three important changes in resting networks: 1) a reduction in the

number of highly significant connections in the overall network

(strength S), or reduced ‘‘cost’’, but little to no change in the

number of connections, or sparsity; 2) a transition of the degree

distribution from a power law with exponential decay at three

months post injury to a stretched exponential decay at six months

post injury; 3) increasing ‘‘small-worldness’’ during recovery, but

residually diminished small-worldness compared to the HC

sample. These findings are highlighted below.

The degree distribution is a fundamental component of the

indices that characterize a small-world network [20]. Again a

‘‘degree’’ is the connectedness of any node to the network and

network distributions take any of several forms including Gaussian,

which is commonly observed in random networks or non-

Gaussian forms including distributions with a fat tail (e.g., scale

free networks). In the current study, the distribution more closely

approximated power-law with exponential decay at Time 1 in the

TBI sample, indicative of greater flexibility and reduced restriction

on network change [35]. This distribution shifted to becoming a

stretched exponential decay distribution by Time 2 which more

closely approximated what was observed in HCs (see Fig. 5).

Thus, changes from Time 1 to Time 2 reflect a change from

power-law with exponential decay to a distribution indicative of a

more restrictive network, such as stretched exponential decay,

which maintains greater constraint on overall network plasticity

[35]. From the viewpoint of statistical physics, such a transition in

the tail of the degree distribution during recovery may be related

to critical phenomena [35,36] and, indeed, recent work has

reported observing characteristics consistent with criticality in the

brain [37,38,23]. Thus, this change in the degree distribution

during recovery from neurological insult may operate to: 1) reduce

‘‘cost’’ in the network, 2) formalize the network, reducing its

malleability and maximizing its efficiency. Earlier after injury, a

distribution that more closely approximating power law might

work to permit greater plasticity in order to accommodate

challenge/disruption in the network. This early brain state may

be neurally ‘‘expensive’’, however, later giving way to a reduction

in the number of highly significant connections and the overall

strength of the network and increased small-worldness after

recovery (i.e., Time 2). Overall, the current findings demonstrate

that the degree distribution may be informative regarding the

changing flexibility in global brain states.

In ‘‘activation’’ studies in the clinical working memory literature a

nearly universal finding is that neurological insult results in

recruitment of additional neural resources during periods of

cognitive challenge (see [33]). In the current resting data, the change

occurs in the context of consistent ‘‘sparsity’’, indicating that the

magnitude of the relationships between nodes is reduced but the

number of connections remains stable. If it can be assumed that not

only the number but also the nature of the connections is essentially

maintained from Time 1 to Time 2, it appears that existing support

networks are recruited to tolerate network disruption and that the

demand for these resources diminishes after recovery. These findings

complement what is observed in cross-sectional studies of TBI

[3,34,5] and in healthy adults during periods of high task load

[39–41] whereby increased involvement of neural resources may be

highly dependent upon performance and does not represent

fundamental changes in the network. That is, the alterations in

neural connections observed during recovery may not signify formal

brain reorganization (e.g., creation of novel connections). Instead

these changes represent utilization of existing support resources early

after neural disruption and this demand on auxiliary resources later

remits resulting in a less costly network with greater neural efficiency.

The current data demonstrate that early after injury, resting

networks may be composed of more highly significant connections,

creating a network higher in local clusters with shorter path length

and a degree distribution that approximates the power law with

cut-off. One characteristic of this degree distribution is that it

permits greater neural dynamics and flexibility for adjusting the

strength of connections within the network. One interpretation is

that, over time, recovery results in resting connectivity that is

diminished in overall strength and increased small-worldness

approximating what is observed in healthy adults. Thus, recovery

following TBI does not appear to result in elaboration and

permanent inclusion of additional connections to the network,

which may have important implications for understanding the

neural recruitment observed in activation studies to date.

While the current findings are the first to use graph theory and

weighted network analysis to examine neural recovery in humans,

this report is not without limitations. The most important

shortcoming to the current study is the limited sample size, which

does influence the generalizeability of the findings. Future work

should endeavor to increase the sample size so that sample

subtypes may be examined (e.g., injury severity, magnitude of

behavioral improvement). Even so, there are two reasons why we

believe the sample size here can support the conclusions made in

this study. First, the effect of time on network analysis was large

and, therefore observable (and statistically significant) within this

small sample size. Second, for all indices, meaningful change from

Time 1 to Time 2 resulted in networks more closely approximat-

ing those observed in the healthy adult sample. In sum, the current

findings represent an important first look at how networks adapt to

disruption during a critical window of recovery.

Materials and Methods

Participants
Participants recruited for the study included 8 healthy adult

control participants (HCs) (3 females, ages 19–51) and 8

individuals (3 females) sustaining severe TBI between the ages of

19 and 55 underwent MRI scanning at separate time-points. Two

subjects with TBI were later excluded following data collection

due to significant head movement (n = 1) and poor compliance

with task demands (n = 1). Clinical descriptive information

regarding patient injury is available in Table 3. The severity of

TBI was defined using the Glasgow Coma Scale (GCS) in the first

24 hours after injury [42] and GCS scores from 3–8 were

considered ‘‘severe’’. The BOLD fMRI data were collected at

approximately 3 months and 6 months after resolution of

posttraumatic amnesia; these 3-month and 6-month follow-up

time-points are henceforth referred to as Time 1 and Time 2. Of

note, subjects were selected based upon observable injury to

prefrontal cortex which is known to subserve WM dysfunction,

(see Fig. S1), thus providing the opportunity to directly examine

the influence of disruption in neural networks related to the task.

Prior to official enrollment in the study, all subjects signed IRB-

approved informed consent forms approved by the Human

Subjects Projection Office (HSPO) at Hershey Medical Center

(HMC) in Hershey, PA. All study procedures complied with the

HSPO office at HMC and with The Health Insurance Portability

and Accountability Act (HIPAA) standards.

Experimental Design
This study employed a simple non-verbal working memory task

requiring delayed-response scenarios. This task primarily requires

Network Plasticity after TBI
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sustained visuo-spatial attention, working memory rehearsal, and

speeded processing. The detail information regarding the cognitive

task and data analysis methods are identical to those presented

previously (see [33]). In brief, the task requires memory for

included exposure to one, two, or four black and white images of

male and female faces. This paradigm required the subject to

examine a target slide for 3000 msecs. After a delay of 3000 msecs

requiring focus on a fixation point, the subject is provided a final

target stimulus, or a single face presented in one of four quadrants.

At the time of presentation of the Target, the subject is required to

make a yes/no decision about the identity (match/no match) and

the location of a single face presented in one of the four quadrants.

In this delayed response task, the subject is required to examine a

Stimulus Slide for 3000 msecs and after a delay of 3000 msecs

(fixation point), the subject made a determination regarding a final

target stimulus (3000 msecs).

Data Acquisition
For all scans, data were acquired using a Philips 3T system

(Philips Medical Systems, Best, the Netherlands) in the Depart-

ment of Radiology, Hershey Medical Center, Hershey, PA. High

resolution anatomical images (MPRAGE) with isotropic spatial

resolution of 1.2 mm61.2 mm61.2 mm were acquired. Other

imaging parameters of the MPRAGE sequence consisted

of: 468.45 ms/16.1 ms/18, TR/TE/flip angle, 2506200 mm2

FOV, and a 2566180 acquisition matrix. Imaging parameters

for echo planar imaging (EPI) consisted of: 2000 ms/30 ms/89,

TR/TE/flip angle, mm2 FOV, 2566180 acquisition matrix.

In this block design paradigm, 166 images were obtained

for each run for a total scanning time of 6 minutes and 32

seconds.

Anatomical Parcellation and Pre-Processing
AFNI [43] was used to perform the following preprocessing

steps, including motion correction, spatial smoothing, and

mean-based intensity normalization. As a final preprocessing

step, each individual’s time series was spatially normalized by

registration to the MNI152 template (Montreal Neurological

Institute), with 2 mm3 resolution, using a 12 degrees-of-freedom

affine transformation. Parcellation divides each cerebral hemi-

sphere into 56 anatomical regions of interest (ROI). Regional

mean time series were estimated for each individual by

averaging the fMRI time series over all voxels in each of 112

regions. The resultant signals ware filtered with a bandpass filter

([0.01, 0.1] Hz).

Recently, Fox et. al reported that task-evoked activity are

linearly superimposed on underling spontaneous activity (resting

data) [44,45]. This funding suggests that if the effect of task-

induced activity is adequately removed from task-related design

data, the remaining residual component should represent resting

state data. The deterministic task-related brain activity can be

properly modeled using a linear model, and can be removed by

regression approaches. Here, we employed an orthogonalization

method to remove task-related effects from intrinsic BOLD

fluctuations [46].

Estimation of Strength of Functional Connectivity
Functional connectivity is defined as the temporal correlations

between spatially remote neurophysiological events [9,47–49].

The correlation between a given pair of regions is typically used to

index functional connectivity [19,23,28,22] and the resultant pair-

wise correlation matrices R are then thresholded to generate a

statistically significant functional connectivity network.

In this study, the partial correlation coefficients ri,j were used as

a measure of functional connectivity between given pairs of BOLD

signal from regions i and j (i, j = 1,2,…,M; here M is a number of

ROIs). The partial correlation matrix R (M|M ) is a symmetric

matrix in which each off-diagonal element is the correlation

coefficient between a pair of regions after filtering out effects of all

other brain regions. The procedure for obtaining partial

correlation values here is consistent with other work [28,22].

Construction of Functional Connectivity Network
For the current data, construction of a functional connectivity

network was achieved by testing the null hypothesis that the partial

correlation coefficient ri,j was significantly different from zero

between any region pairs [50]. Two regions were considered

functionally connected if their partial correlation coefficient was

significant at p,0.05 level, resulting in an adjacency matrix A

containing information about the connectivity structure of the

network. From resultant matrix, the sparsity, which is the

connection density in the network, and the strength S, which is

an average of all significant correlation coefficients and a measure

of expensiveness in the network, were evaluated.

For the purposes of this study, both weighted and un-weighted

networks were examined. In constructing un-weighted networks,

each component of the adjacency matrix was labeled 1 if a

corresponding ri,j was significant, and 0 in other cases

(wi,j~f0,1g). For weighted networks, a number of potential

‘‘weight’’ definitions can be used. Consistent with previous work

using graph theory to examine neural systems [18], networks were

defined with the definition wi,j~1{ri,j (wi,j~½0,1�[R) if the

corresponding ri,j was significant and wi,j~0 if it was non-

significant. Such analysis results in adjacency matrices: graph

G~½N,E,W � consisting of a set of nodes N~ i,i~1,:::,Mf g (brain

regions), a set of edges E~ ei,j ,i,j~1,:::,M
� �

(significant connec-

Table 3. Demographic, clinical and behavioral data for the subjects with TBI.

S# G Age GCS CT Complications Acute stay (days)

1 f 25 4 Bilateral SDH None 16

2 m 39 6 L Frontal SDH, L IVH, DAI None 21

3 m 21 3 Bi frontal contusion Multiple facial fractures 32

4 f 56 14 L frontal contusion None 5

5 f 19 11 L Temporal contusion None 4

6 m 28 3 Bifrontal hematoma, SAH, left temporal SAH None 12

L = left, SDH = subdural hematoma, IVH = intraventricular hemorrhage, DAI = diffuse axonal injury, SAH = subarachnoid hemorrhage, Acc = task accuracy during WM
paradigm, RT = reaction time during fMRI WM task.
doi:10.1371/journal.pone.0008220.t003

Network Plasticity after TBI

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8220



tivities), and a set of associating weights W~ wi,j ,i,j~1,:::,M
� �

between node i and j. Of note, alternative weight definitions such

as wi,j~1
�

ri,j have been applied to examine other networks (e.g.,

world wide web) [51,52]. This weight definition was used in the

current data and the results were largely similar to those presented

in this manuscript. We have chosen to focus here on the results

using wi,j~1{ri,j as a weight definition because of its prior use in

neural systems.

Network Properties: Path Length and Clustering
Coefficient

In Graph theory, the clustering coefficient C, and characteristic

path length L of any graph G are key indices characterizing the

statistical properties of a network [53]. For weighted networks the

shortest path length di,j between two nodes i and j is the smallest

sum of the weights for all the possible paths from node i to node j.

The path length L of a graph G is the mean of the shortest path

lengths over all possible pairs of nodes:

L~
1

M(M{1)

X

i,j[G,i=j

di,j :

L thus represents the extent and average connectivity or overall

routing efficiency of a network.

The clustering coefficient Ci of a node i with degree ki is

calculated as the geometric average of subgraph weights [54]:

Ci~
1

ki(ki{1)

X

j,k[G,j,k=i

(~wwi,j
:~wwj,k

:~wwk,i)
1=3,

where ~wwi,j is the normalized weight by the largest value of the

weight in the network ~wwi,j~wi,j

�
max(wi,j). The clustering

coefficient C of the network is an average of Ci over all nodes.

The clustering coefficient is an index of local structure, and has

been interpreted as a measure of resistance to failure and the

extent of the local density or cliquishness of the network.

In random networks, characteristic path length Lrand is typically

short, and clustering coefficient Crand is typically small [55,53]. In

small-world networks, by definition, we expect the ratio

c~C
�
Crandw1 and the ratio l~L

�
Lrand&1 [53]. A scalar sum-

mary of small-worldness can be defined as the ratio s~c=l, which

is typically .1 for a small world network, or greater than random

clustering and near random path length [19,56]. In order to obtain

random networks, we used a surrogate method where generated

networks preserve the same number of nodes, edges, and degree

(the degree of each node ki is the number of nodes directly

connected to the node i distribution as the real network) [57]. For

all data sets here, including each session per subject, 100 random

networks were generated for each network and the averaged

indices C
rand

and L
rand

were calculated.

Network Properties: Global and Local Efficiency
Application of Graph theory also provides the opportunity to

examine network efficiency on global and local scales

[18,51,52,58]. The global efficiency Eg of a graph G is defined as;

Eg~
1

M(M{1)

X

i=j[G

1

dij

:

The global efficiency is an indicator of global efficiency of parallel

information transfer in the network [18,51,52].

The local efficiency of each node El can be defined as follows:

El~
1

M

X

i[G

Eg(Gi),

where Gi is a set of nodes directly connecting to the ith node

[18,51,52,58]. The measure is a mean local efficiency of information

transfer in the immediate neighborhood of each node [18]. Note that

both Eg and El can be calculated for both un-weighted and weighted

networks as well as path length and clustering coefficient.

Network Properties: Degree Distribution
The degree distribution likely represents the most fundamental

component of the various indices that characterize a graph [20].

The degree of each node ki is defined as the number of nodes

directly connected to the node i in the network, so the degree

distribution P(k) is the observed distribution of the number of direct

connections of nodes in the network. Here we use a cumulative

distribution Pc(k) in the place of P(k). The degree distribution P(k)
furthermore classifies small-world networks into different structural

classes including: (a) scale-free networks, characterized by a degree

distribution that decays as a power law, i.e P(k)*k{a, (b) broad-

scale networks, characterized by a degree distribution that has a

power law regime followed by a sharp cutoff P(k)*ka{1f (k=j),
and (c) single-scale networks characterized by a degree distribution

with a fast decaying tail [35].

Statistics
Wilcoxon matched-pairs test was used to test significant

differences between different time points. For Control group there

were no significant differences in any network indices between

point Time 1 and Time 2, thus we used the averaged values of

both points for all indices to increase reliability in the observed

networks. Dannet’s test was used to determine the differences in

network indices between the TBI sample and the Healthy Control

(HC) sample. In the data presented here, error bars indicate the

standard error of mean and an asterisk in the graphs indicates a

significant difference between time points.

Supporting Information

Figure S1 MR images of TBI. Axial MR images providing

examples of the types of discrete frontal lesions occurring in this

sample.

Found at: doi:10.1371/journal.pone.0008220.s001 (1.09 MB TIF)

Table S1 The list of region name for Left/Right Hemisphere

Found at: doi:10.1371/journal.pone.0008220.s002 (0.04 MB

DOC)

Table S2 Functional Brain Network properties of un-weighted

network with threshold value p,0.01

Found at: doi:10.1371/journal.pone.0008220.s003 (0.03 MB

DOC)

Table S3 Functional Brain Network properties of weighted

network with weight definition wij = 12rij and threshold value

p,0.01
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