
Reaction Factoring and Bipartite Update Graphs
Accelerate the Gillespie Algorithm for Large-Scale
Biochemical Systems
Sagar Indurkhya1, Jacob Beal2*

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 BBN

Technologies, Cambridge, Massachusetts, United States of America

Abstract

ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations.
Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational
complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to
occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a
disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of
the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be
updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions
and species requires only O(n) storage for n reactions, rather than the O(n2) required for a graph that includes only
reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude
faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models.

Citation: Indurkhya S, Beal J (2010) Reaction Factoring and Bipartite Update Graphs Accelerate the Gillespie Algorithm for Large-Scale Biochemical Systems. PLoS
ONE 5(1): e8125. doi:10.1371/journal.pone.0008125

Editor: Mark Isalan, Center for Genomic Regulation, Spain

Received May 21, 2009; Accepted September 4, 2009; Published January 6, 2010

Copyright: � 2010 Indurkhya, Beal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NSF Grant 6898853. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: BBN Technologies is an independent research laboratory, and for this work, the only financial interest of BBN is the same as that of a
university: publication will improve the chances of obtaining grants relating to the material. There are no patents relating to this manuscript. Jacob Beal is
affiliated to BBN Technologies; this affiliation does not impede the data sharing policies of PLoS ONE.

* E-mail: jakebeal@bbn.com

Introduction

Dynamic Monte Carlo methods are a common means of

simulating the time-evolution of chemical systems. The Gillespie

Algorithm (SSA) [1] is the standard algorithm for this process, and

has inspired a variety of derivative methods that speed up

computation, including the Optimized Direct Method (ODM) [2]

and the Next Reaction Method (NRM) [3]. These methods,

however, are still computationally costly. Speeding up the Gillespie

Algorithm and related hybrid methods will likely play an important

role in advancing the productivity of computational systems biology.

In this paper, we develop a new algorithm, LOLCAT Method,

that can speed up the exact stochastic simulation of a large class of

well-mixed chemical systems by orders of magnitude. The ability to

perform simulations orders of magnitude faster will allow scientists

to revisit problems that were previously computationally intractable,

such as whole-cell simulation. Other applications include the

simulation of large genetic regulatory networks and metabolic

pathways. Further, we demonstrate that this algorithm can operate

on a typical desktop personal computer, bringing the simulation of

extremely large chemical systems into the reach of the general

scientific community. Our implementation of LOLCAT Method is

publicly available at [4]

Simulating Chemical Systems
There are two main approaches to simulating the time-

evolution of chemical systems: deterministic and stochastic.

Deterministic methods express chemical concentrations with real

numbers, and evolve concentrations forward in time via

differential equations. Stochastic methods, on the other hand,

express concentrations as non-negative integers, and evolve them

in discrete steps: at each step, a reaction is chosen and executed,

transforming a set of reactants into a set of products and

advancing the simulation time by a small amount. The reaction

and time step are chosen randomly according to a distribution

that produces a statistically correct simulation of the chemical

system.

Stochastic methods are generally much slower because they

simulate every chemical interaction explicitly, but produce

guaranteed valid results for systems where concentrations are

very small. Deterministic methods are much faster, but do not

handle small concentrations well. This is particularly problematic

when dealing with models of biological systems, since these often

contain important chemical species with dozens of molecules or

less.

Hybrid methods attempt to resolve this dilemma by mixing

deterministic and stochastic methods, and are sped up signifi-

cantly by techniques such as tau-leaping at the expense of not

being exact (although they are becoming increasingly accurate

and are good enough for many problems) [5,6]. These hybrid

methods are often based on some exact method [7], so LOLCAT

Method can likely increase the speed of even these hybrid

methods. For a thorough treatment of stochastic versus

deterministic simulations, see [3].

PLoS ONE | www.plosone.org 1 January 2010 | Volume 5 | Issue 1 | e8125

Stochastic Simulation Algorithm
The Stochastic Simulation Algorithm (SSA), also known as the

Gillespie Algorithm, is a standard, well established approach for

computing statistically correct trajectories of the time evolution of

spatially homogeneous chemical systems. Unfortunately the SSA is

extremely computationally expensive. We review the SSA briefly

to build a foundation for deriving LOLCAT Method.

Consider a chemical system of constant volume (for systems

with variable volume, see the Supporting Information S1) in which

there is a set of species S and a set of reactions R governing the

interactions of these species. Assume that all reactions have at most

two reactants and two products (any reaction with more than two

reactants or products can be factored into reactions with at most

two reactants and products), as well as a constant reaction rate.

The SSA is then as follows:

1. Initialize simulation time tsim~0, and the initial concentration

of each species.

2. For each reaction r[R, compute the reaction propensity ar; if

reaction r is AzB?CzD,k (where k is the reaction rate) we

have ar~k½A�½B�, where ½A� and ½B� are the number of

molecules present in the system for species A and B
respectively. Note that if A and B are the same species, then

we instead have a~k½A�(½A�{1)=2, and for reactions with less

then two reactants and products, we use the the chemical

NULL, which is omnipresent with constant concentration

½NULL�~1. Compute the sum of the propensities:

aR~
P

r[R ar.

3. Choose a reaction, r�, at random from the weighted

distribution of reaction propensities. Each reaction r[R has

probability ar=aR of being chosen.

4. Execute reaction r�: subtract 1 from the concentration of each

reactant, and add 1 to the concentration of each product.

5. Update the simulation time: t’sim~tsim{log(z)=aR, where z is

chosen uniformly randomly from (0,1�
6. Record species concentrations of interest as desired for the

experiment. Go to step 2 until the simulation is completed

(usually when some desired amount of time has been simulated,

or when a desired number of iterations have been completed).

Each iteration of the SSA may also be viewed as two phases: a

read phase, in which the algorithm chooses a random number and

maps it to the reaction to execute (step 3), and a write phase, in

which the reaction is executed, propensities are adjusted, and

simulation time is advanced (steps 2, 4, and 5). We use this two-

phase view in describing LOLCAT Method, as focuses attention

on the interaction of the algorithm with its supporting data

structures.

Review of Prior Methods
The SSA has inspired a variety of derivative methods that speed

up computation. The two most significant are the Optimized

Direct Method (ODM) and the Next Reaction Method (NRM).

The Optimized Direct Method (ODM) [2] stores the reactions

in an array. First, a random number q is chosen uniformly from

the interval (0,aR�. The algorithm then steps through the array

(linearly) subtracting ark
, (where rk is the kth reaction) from q until

qƒ0, and at that point takes r�~rk. Several simulations are run

ahead of time to determine an average propensity for each

reaction and the reactions are sorted by average propensity from

greatest to least. In most biochemical systems, a relatively small

number of reactions occur a disproportionately high percentage of

the time, so ODM’s linear search allows for these reactions to be

quickly detected at the front of the array. The time for choosing a

reaction is O(jRj), but the sorting causes it to be much faster on

average.

To recompute the propensities, ODM uses an update

dependency graph (UDG) that maps each reaction r to a list of

ur reactions whose propensities should be updated upon execution

of r. As a result, recomputing propensities takes O(ur) time. For

large systems, ur is often high for the most frequently occurring

reactions, dramatically slowing down ODM.

The Next Reaction Method (NRM) [3] takes a different

approach than ODM. NRM computes for each reaction the

amount of time before it will next occur. It then stores the

reactions in a binary min-heap structure, so that the next reaction

to occur is always at the top. This reaction is executed, and then

the necessary reactions have their propensity (and wait-times)

updated (using a UDG as ODM does). However, as each reaction

propensity is updated, it must be shifted up or down in the heap to

maintain the min-heap property. While choosing a reaction takes

O(1) time, execution and update requires O(ur log R) time. Thus,

for large systems the size of ur tends to slow NRM dramatically,

just as it does ODM.

Other methods exist, but their performance and algorithmic

structure are similar to ODM or NRM. For example, the Sorting

Direct Method [8] is like ODM with dynamic reordering of

reactions as propensities change, and Logarithmic Direct Method

[9] is like ODM with propensities are stored in a binary structure

for faster lookup of r�. Although these methods sometimes perform

better, the measured speedup is only a small constant, and we thus

compare only against ODM and NRM.

Methods

We make two observations that appear to apply in many models

of large scale biochemical systems:

N A small number of reactions tend to occur a disproportionately

large percentage of the time.

N A relatively small proportion of the species take part in a

relatively large proportion of the reactions (e.g. ATP and water

in some cellular systems). One consequence is that these

change concentration with a disproportionately high frequen-

cy. We will refer to these species as super-species.

LOLCAT Method exploits these observations in two ways.

First, when possible, reactions are grouped by a common reactant

and the common reactant’s concentration factored out, allowing

the simultaneous update of the propensities of reactions in that

group. Second, the update dependency graph is stored in a

bipartite representation to reduce the amount of computer

memory required. We discuss these ideas in detail one at a time,

introducing necessary data structures along the way, and then

formally describe the algorithm in its whole.

Factoring Out Common Reactants
The propensities of reactions with one or more common

reactants can be grouped together:

1. The sum of the propensities for a set of n reactions Q with a single

common reactant X0 can be factored as: aQ~
Pn

i~1 ki½X0�½Xi�~
½X0�

Pn
i~1 ki½Xi�, where Xi is the other reactant in the ith

reaction in Q and ki is its reaction rate.

2. The sum of the propensities for a set of reactions Q with both

reactants in common can be factored as: aQ~
Pn

i~1 ki½X0�½X1�~
½X0�½X1�

Pn
i~1 ki.

Factored SSA

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8125

From this observation, we derive a brief mathematical

foundation which we will employ in later developing the data

structures for LOLCAT Method. Consider a set of reactions T in

which all reactions have a common reactant Xa. We may then

further partition this set of reactions into sets G and H1,H2,:::,Hy,

where each set of reactions Hi, i[f1,2,:::,yg has a unique

secondary common reactant Xb,Hi
, and G contains all other

reactions in T (those without shared secondary common reactants,

or where the number of reactions sharing a secondary common

reactant is too small for a second factoring to be beneficial).

The sum of the propensities of the reactions in G is

SaG~
X

r[G

½Xa�½Xr�kr~½Xa�
X

r[G

½Xr�kr ð1Þ

~½Xa�SG ð2Þ

defining SG~
P

r[G½Xr�kr. Notice that we factored out the ½Xa�
common to all reactions in T .

The sum of the propensities of the reactions in Hi, i[f1,2,:::,yg
is

SaHi
~
X

r[Hi

½Xa�½Xb,Hi
�kr~½Xa�(½Xb,Hi

�
X

r[Hi

kr) ð3Þ

~½Xa�SHi
ð4Þ

defining SHi
~½Xb,Hi

�
P

r[Hi
kr. Note that we factored out the

common reactant ½Xa� from all Hi, i[f1,2,:::,yg, and factored out

each secondary common reactant ½Xb,Hi
� as well from each Hi.

Also note that
P

r[Hi
kr is a constant.

We let ST~SGz
Py

i~1 SHi
, and SaT~½Xa�ST . SaT is the sum

of the reaction propensities for all reactions in T. Now we show

some operations we can perform.

1. If we increment the concentration ½Xa� by some amount Dx,

then we can produce updated values as follows:

½Xa�’~½Xa�zDx ð5Þ

S ’aT~½Xa�’ST ð6Þ

Without the use of factoring, this would have incurred O(jT j)
operations rather than O(1). This provides one of the main

speedups of LOLCAT Method.

2. If we increment ½Xr�,r[G by Dx, then we have:

½Xr�’~½Xr�zDx ð7Þ

S ’G~SGzkrDx ð8Þ

S ’T~STz(S ’G{SG)~STzkrDx ð9Þ

S ’aT~½Xa�S ’T ð10Þ

3. If we increment ½Xb,Hi
�,i[f1,2,:::,yg by Dx, then we have

(noting again that
P

r[Hi
kr is a constant):

½Xb,Hi
�’~½Xb,Hi

�zDx ð11Þ

S ’Hi
~SHi

zDx
X

r[Hi

kr ð12Þ

S ’T~STz(S ’Hi
{SHi

)~STzDx
X

r[Hi

kr ð13Þ

S ’aT~½Xa�S ’T ð14Þ

The latter two provide less speed-up, but factoring still provides

some benefit.

Reaction Group Data Structures
LOLCAT Method embodies these mathematical insights in a

specialized data structure that we call a cloud. Each cloud stores the

factored propensities for a group of reactions sharing a common

species. Continuing with our sets G,H1,H2,:::,Hy and T used

previously, we define the cloud’s factor-species as their common

reactant Xa. The cloud then consists of a primary tree, a set of sub-

trees, and a slot which holds ST .

The primary tree is a balanced d-ary tree with each leaf node

having a one-to-one mapping to a reaction in G. The value of the

leaf node tied to reaction r[G is ½Xb,r�kr (where Xb,r is the reactant

in r that is not the factor-species Xa), and the value of any non-leaf

node holds the sum of its child nodes. Thus the root of the primary

tree holds the value SG .

Note that we choose d-ary trees rather than binary trees. The

branching factor of a tree controls its height: shorter trees are

faster to update, but more branches require more tests to find a

node. On modern processors, the optimal branching factor may be

much greater than the 2 dictated by binary trees. See the

Supporting Information S1 for details.

The cloud also has y different sub-trees, which are also d-ary

trees. Each leaf node of the ith sub-tree has a one-to-one mapping

to a reaction in Hi: the value of the leaf node tied to reaction r[Hi

is kr. Each non-leaf node holds the sum of its child nodes. Thus the

root node of the ith sub-tree holds the value
SHi

Xb,Hi

.

In our implementation of LOLCAT Method, clouds are

constructed by a preprocessing program that takes in the input

system to be simulated, along with samples of the average

propensities of each reaction over trial simulation runs. Reactions

are assigned to clouds using a greedy approach:

1. A potential cloud is created for each species in the system, and

each reaction is put into any cloud that could hypothetically

contain it.

2. The sum of propensities of reactions in each cloud (based on a

trial run) is computed. This heuristic score estimates how often

the cloud’s grouping will be taken advantage of.

3. The cloud with the best score is fixed, and all reactions in the

newly fixed cloud are removed from any other clouds they are

in.

4. Rescore each cloud (discarding empty clouds) and continue the

process until every reaction is part of a fixed cloud.

Within a cloud, reactions with two common reactants are

assigned to the primary tree unless there are enough of them (three

Factored SSA

PLoS ONE | www.plosone.org 3 January 2010 | Volume 5 | Issue 1 | e8125

or more in our implementation) that creating a sub-tree for them is

deemed worthwhile.

Clouds are stored in a balanced d-ary tree, which we call the

main tree, for fast access. Each leaf node has a unique one-to-one

mapping with a cloud and holds the value SaT for that cloud. Each

non-leaf node holds the sum of its child nodes, such that the root

node of the tree holds the sum of the propensities of all reactions

that reside in a cloud. When selecting a reaction using a random

number q, we traverse down this tree using our random number to

determine which child node to proceed to until we reach a cloud.

If there are C clouds, then this operation takes O(log C) time.

Once we reach a cloud we rescale the random number to aid in

selecting a reaction from the cloud. See the formal description of

the LOLCAT Method below for more details.

Finally, to take advantage of the observation that a few

particular reactions will occur disproportionately frequently, we

segregate these reactions out and store them in a small static array,

which we call the super-cache. This holds the reactions with the

largest average propensity (and therefore the reactions most likely

to be executed during the simulation). We also maintain a sum,

SSC , of the propensities in the super-cache. The super-cache is

always searched first, and its size is chosen to balance the cost of

linear search against the advantages of local access.

Figure 1 shows an example of reactions organized by LOLCAT

Method into a super-cache, main tree, and clouds.

Using a Bipartite Update Dependency Graph
After a reaction executes, the reaction propensity must be

updated for all reactions whose reactants’ concentrations have

changed. ODM and NRM store the dependencies between

reactions in an update dependency graph (UDG) where each

node is a reaction and directed edges connect it to all reactions

whose propensities must be updated when it executes. When the

same species appears in many reactions as a reactant but not a

product, those reactions form a clique, with every reaction

pointing to every other reaction. For a system of n reactions, the

number of edges is O(n2). Because it is often the case in large scale

biochemical systems that some species are involved in a relatively

large proportion of the reactions, such systems may often

approach this bound.

LOLCAT Method uses a bipartite UDG instead, where each

reaction points to the species whose concentrations it changes, and

each species points to the reactions in which it is a reactant. Each

reaction has two reactants and can affect the concentration of no

more than 4 species, so the number of edges is bounded above by 6n.

The difference between O(n) and O(n2) is not noticeable for low

n, but as n grows the amount of memory required to store the

graph grows. A reaction-only UDG bounded by O(n2) rapidly

overwhelms the cache and eventually even the main memory

(RAM), making it far slower or even impossible to execute. Thus

for large systems where some species participate in many reactions

there is no question that we should use a bipartite UDG. To

plainly demonstrate this point, we have created and benchmarked

(see below) a Modified ODM (MODM) that is identical to ODM

except that it uses a bipartite UDG.

Note that every time a reaction is executed, the set of update

computations that must be performed are identical. An additional

minor speed increase may thus be obtained by compiling this

dependency graph together with the cloud structures into a cache

of per-reaction and per-species update instructions rather than

using a generic function that references the graph. See Supporting

Information S1 on the Optimized Interpreter and Figure S1 for

details.

Formal Description of the LOLCAT Method
The following algorithm is repeated until a termination criteria

is satisfied, such as completing a desired number of iterations or

tsim reaching some desired value:

1. Phase 1: Choose a reaction to execute

(a) Generate a random number q uniformly in the interval

(0,aR�.
(b) If qƒSSC , then q maps to the super-cache. If it does, step

linearly through the super-cache, subtracting the propensity

of each reaction until q is less than or equal to the propensity

of next reaction. Let this reaction be r�, and go to Phase 2.

(c) Otherwise, subtract SSC from q and descend down the main

tree. At each level, subtract the propensity of left branches

from q until the propensity of a branch is greater than q: this

is the branch that is selected. When this is a leaf, it contains

c�, the cloud that q maps to. Let q’~
q

½Xa�c�
.

(d) If q’ƒSG then q’ maps to c�’s primary tree. If it does, then

descend down that primary tree as above, subtracting the

cumulative propensity of untaken left branches from q’, to

find which reaction in the primary tree q’ maps to. Let this

reaction be r�, and go to Phase 2.

(e) Otherwise, step through the list of sub-trees of c�, subtracting

the SHi
of each non-selected sub-tree from q’. The sub-tree

for which q’vSHi
is the sub-tree that q’ maps to. Let

q’’~
q’

½Xb,Hi
�c�

.

(f) Descend down the sub-tree si as above, subtracting the

cumulative propensity of untaken left branches from q’’ to

find the reaction that q’’ maps to. Let this reaction be r�, and

go to Phase 2.

2. Phase 2: Execute the chosen reaction

(a) Update the simulation time: tsim
0~tsim{log(z)=aR, where z

is a random number in (0,1�.

Figure 1. Example of LOLCAT Method’s data structure. In
practice, our implementation only creates subtrees for sets of reactions
significantly larger than those shown in Cloud A’s subtrees, for
efficiency reasons. As a result, most clouds are like Cloud B and have
no subtrees.
doi:10.1371/journal.pone.0008125.g001

Factored SSA

PLoS ONE | www.plosone.org 4 January 2010 | Volume 5 | Issue 1 | e8125

(b) Use the (compiled) update graph to adjust species concen-

trations and reaction propensities for an execution of r�, as

per the mathematical rules given above. For details on the

efficient implementation of updates and recording, see the

Supporting Information S1 on the Optimized Interpreter

and Figure S1.

Note that the actual propensity of each individual reaction (and

thus its probability of selection) is precisely identical to that used by

the Gillespie Algorithm—LOLCAT Method only organizes and

records this information differently. Because the probability of

selecting any given reaction and the effect on propensities

following its selection is identical for LOLCAT Method and the

Gillespie Algorithm, we are guaranteed that LOLCAT Method is

a correct implementation of the Gillespie Algorithm, assuming

that a sufficient number of bits are used in the floating point

representations of propensities.

Results

We experimentally verified the speed advantage of LOLCAT

Method on a set of yeast MAPK cascade models obtained from

the Yeast Pheromone Model repository [10]. Note that we are

concerned only with the fact that these are complex biochemical

models that a scientist would reasonably wish to simulate, not with

the correctness of these particular models. Six different versions of

the cascade model were used, each with a different number of

reactions and species. Each model was run to steady-state for

100,000 seconds (about 28 hours) of simulation time. We then

changed the pheromone concentration from 0 nM to 100 nM for

each model, and benchmarked ODM, NRM, MODM and

LOLCAT Method.

For the purpose of benchmarking the various algorithms, all

simulations were written in ISO compliant C++ and carefully

optimized. The Intel C++ Optimizing Compiler v. 10.1 was used

to compile the source to machine code. Benchmarks were

measured on a machine with an Intel Xeon 5355 Quad-Core

2.66 Ghz 64-bit processor with the SSSE3 instruction set, a 4 MB

cache, 8 GBs of RAM, 12 GB swap space and a 250 GB hard

drive. Our implementation of LOLCAT Method [4] is publicly

available in MIT’s DSpace archival storage at http://hdl.handle.

net/1721.1/46710.

For each model, we ran 10 trials of 40 million iterations for

each of the four different algorithms and recorded the mean and

standard deviation of the runtimes. We computed the ratio of

the runtimes, normalizing by the mean time taken by LOLCAT

Method, and present the resulting speedup factors in Table 1.

We do not report the preprocessing time for the various

methods, as preprocessing needs to be done only once for a

batch of many simulations (often thousands or more per batch)

and all of the methods evaluated completed preprocessing in

less than one second. As the structure of the reaction graph is

critical to the behavior of simulations, we also computed the

distributions of the reaction valences (the number of other

reactions whose propensities change when the reaction exe-

cutes) with respect to propensity in the 6 different models after

they had reached steady-state and the pheromone was added,

and present the cumulative distribution function for all model in

Figure 2.

In every case, LOLCAT method greatly outperforms the other

methods. As the size of the model increases, the advantage of

LOLCAT rises by orders of magnitude. Indeed, ODM and NRM

were not even able to run the largest model we benchmarked due

to the size of their dependency graph, while Model D consumed

more than 4 GB of RAM and Model E consumed more than

12 GB of memory. This means that ODM and NRM require a 64

bit architecture to run models D, E and F, while LOLCAT

method consumed less than 4 megabytes and fit into the L3 cache,

and can run on a 32 bit architecture if desired.

Table 1. Benchmarking results for ODM, NRM, MODM and LOLCAT Method.

System Parameters Runtimes(s) m,sð Þð Þ

ID # Rxns. # Species ODM NRM MODM LOLCAT

A 2040 236 8.45, 0.04 25.52, 5.75 25.08, 0.12 3.06, 0.14

B 11492 5092 61.08, 0.17 162.68, 6.15 64.21, 0.22 1.68, 0.04

C 35003 11402 152.18, 0.64 374.73, 4.63 166.06, 0.46 3.73, 0.06

D 84301 15087 374.66, 2.30 720.35, 62.32 390.85, 1.41 4.73, 0.13

E 162150 14766 640.72, 3.01 964.49, 99.97 623.39, 1.58 1.88, 0.04

F 292190 15287 { { 2527.93, 61.09 9.30, 0.09

System Parameters Slowdown Factor

ID # Rxns. # Species ODM NRM MODM LOLCAT

A 2040 236 2.77 10.37 8.21 1.00

B 11492 5092 36.35 93.78 38.21 1.00

C 35003 11402 40.78 98.51 44.49 1.00

D 84301 15087 79.21 159.29 82.64 1.00

E 162150 14766 340.03 447.67 330.83 1.00

F 292190 15287 { { 271.73 1.00

Six versions of the Yeast Pheromone Model [10] were benchmarked. Slowdown factors are mean time normalized against the performance of LOLCAT Method for
each model. The ‘‘{’’ in the last entry for ODM and NRM indicates that those simulations could not be run because the dependency graph consumed more than
the RAM and swap space, roughly 20 GB, of the host machine. The varying structure of the simulated system may account for the non-uniform scaling of
runtimes.
doi:10.1371/journal.pone.0008125.t001

Factored SSA

PLoS ONE | www.plosone.org 5 January 2010 | Volume 5 | Issue 1 | e8125

Discussion

LOLCAT Method uses two key ideas: (1) grouping reactions

with common reactants and updating the propensities of many

reactions in a single operation, and (2) using a bipartite update

dependency graph of species and reactions, resulting in a much

more compact form. Note that the factoring of reactions allows for

the dependency graph to be further compressed beyond the simple

Figure 2. Cumulative distribution function (CDF) plots of reaction valence for all six models. To compute the CDF we first computed the
PDF of reaction valence, weighting each reaction valence by the reaction’s average propensity over a pre-computed sample trajectory. We then
computed the CDF from the PDF to increase visual salience of the sparsely distributed weights. A steep climb near a particular valence means a
significant probability of a randomly chosen reaction having that approximate valence. This, in turn, often indicates the presence of a super-species
that is involved in many reactions and benefits greatly from factoring.
doi:10.1371/journal.pone.0008125.g002

Factored SSA

PLoS ONE | www.plosone.org 6 January 2010 | Volume 5 | Issue 1 | e8125

species-based dependency graph used by MODM. These two

principles allow LOLCAT Method to outperform other popular

methods by orders of magnitude on the chemical systems we

benchmarked. Furthermore, the performance advantage of

LOLCAT Method is expected to increase as the size of the

systems being modeled increases. LOLCAT Method is also able to

gracefully handle systems with a large number of interdependent

reaction propensities, something that all previous methods are not

able to do.

It is important however, to note that the speedup of LOLCAT

Method cannot be measured simply as a function of the number of

reactions or species or even the average reaction valence. Rather,

the speedup factor seems to be best measured by studying the

reaction valence CDF of the system being modeled. However, we

are optimistic that many large scale biochemical systems will prove

to have CDFs that mean they are amenable to orders of

magnitude speedup via LOLCAT Method simulation.

Note also that the results presented above do not separate the

advantage due to factoring from the advantage due to logarithmic

search for a reaction to execute, but we believe the first to be

dominant for large systems due to the large size of clouds

generated by the greedy search in our application of LOLCAT to

these models.

The authors would like to acknowledge the recent publication of

another variant of the Gillespie Algorithm, SSA-CR, published in

which Phase 1 of the algorithm is reduced to O(1) time via a clever

method based on rejection-sampling [11]. Phase 2 of this

algorithm, however, still cannot scale well when the average

reaction valence is high, and in the case of high reaction valence

systems, Phase 2 dominates the cost of the Gillespie Algorithm.

Thus, we believe that if we were to benchmark SSA-CR,

LOLCAT Method would outperform it by a similar margin.

We would also like to note that there is an aggressive trend in

computational biology to tackle computationally expensive

problems by throwing hardware at the problem. Sometimes this

approach generates interesting methods, such as the use of FPGAs

[12]. Some of these gains can be realized on desktop computers

simply by paying careful attention to the interaction between

software and hardware (see the Supporting Information S1 for

details). As the size of chemical systems to be simulated grows

steadily larger, however, we argue that it is more important to

reduce algorithmic complexity by searching for exploitable hidden

structure.

If LOLCAT Method is able to take advantage of grouping

reactions with common reactants as well as we believe it can, then

LOLCAT Method may have a significant impact on what kinds of

systems researchers are able to simulate. We hope the perfor-

mance increase will help to transform computational biology into a

more streamlined, interactive exercise.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0008125.s001 (0.95 MB EPS)

Supporting Information S1

Found at: doi:10.1371/journal.pone.0008125.s002 (0.31 MB

PDF)

Acknowledgments

The authors would like to thank Thomas F. Knight Jr., Gerald J. Sussman,

Roger Brent, Steve Andrews and Mark M. Tobenkin for discussion,

Christopher J. Terman for providing computational resources, and Ty M.

Thomson for giving us the Yeast Pheromone Model.

Author Contributions

Conceived and designed the experiments: SI. Performed the experiments:

SI. Analyzed the data: SI JB. Contributed reagents/materials/analysis

tools: SI JB. Wrote the paper: SI JB.

References

1. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions.

Journal of Physical Chemistry 81: 2309–2586.
2. Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation

algorithm for chemically reacting systems. Journal of Physical Chemistry 121:
4059–4067.

3. Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical

systems with many species and many channels. Journal of Physical Chemistry A
104: 1876–1889.

4. Indurkhya S, Beal J (2009) Code for lolcat method. MIT Dspace: http://hdl.
handle.net/1721.1/46710.

5. Gillespie D, Petzold L (2003) Improved leap-size selection for accelerated

stochastic simulation. Journal of Chemical Physics 119: 8229–8234.
6. Sali H, Kaznessis Y (2005) Accurate hybrid stochastic simulation of a system of

coupled chemical or biochemical reactions. Journal of Chemical Physics 122:
054103–054115.

7. Rao C, Arkin A (2003) Stochastic chemical kinetics and the quasi-steady-state
assumption: Application to the gillespie algorithm. Journal of Chemical Physics

118: 4999–5010.

8. Mccollum JM, Peterson GD, Cox CD, Simpson ML, Samatova NF (2006) The

sorting direct method for stochastic simulation of biochemical systems with

varying reaction execution behavior. Computational Biology and Chemistry 30:

39–49.

9. Li H, Petzold L (2006) Logarithmic direct method for discrete stochastic

simulation of chemically reacting systems. Technical Report http://www.engr.

ucsb.edu/,cse, Department of Computer Science, University of California,

Santa Barbara.

10. Thomson T (2008) Models and Analysis of Yeast Mating Response: Tools for

Model Building, From Documentation to Time-Dependent Stimulation. Ph.D.

thesis, Massachusetts Institute of Technology.

11. Slepoy A, Thompson A, Plimpton S (2008) A constant-time kinetic monte carlo

algorithm for simulation of large biochemical reaction networks. Journal of

Chemical Physics 128: 205101–205109.

12. Salwinski L, Eisenberg D (2004) In silico simulation of biological network

dynamics. Nature Biotechnology 22: 1017–1019.

Factored SSA

PLoS ONE | www.plosone.org 7 January 2010 | Volume 5 | Issue 1 | e8125

