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1 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany, 2 Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany,

3 Institute for Complex Systems, University of Aberdeen, Aberdeen, United Kingdom

Abstract

The ability of an organism to survive depends on its capability to adapt to external conditions. In addition to metabolic
versatility and efficient replication, reliable signal transduction is essential. As signaling systems are under permanent
evolutionary pressure one may assume that their structure reflects certain functional properties. However, despite
promising theoretical studies in recent years, the selective forces which shape signaling network topologies in general
remain unclear. Here, we propose prevention of autoactivation as one possible evolutionary design principle. A generic
framework for continuous kinetic models is used to derive topological implications of demanding a dynamically stable
ground state in signaling systems. To this end graph theoretical methods are applied. The index of the underlying digraph is
shown to be a key topological property which determines the so-called kinetic ground state (or off-state) robustness. The
kinetic robustness depends solely on the composition of the subdigraph with the strongly connected components, which
comprise all positive feedbacks in the network. The component with the highest index in the feedback family is shown to
dominate the kinetic robustness of the whole network, whereas relative size and girth of these motifs are emphasized as
important determinants of the component index. Moreover, depending on topological features, the maintenance of
robustness differs when networks are faced with structural perturbations. This structural off-state robustness, defined as the
average kinetic robustness of a network’s neighborhood, turns out to be useful since some structural features are neutral
towards kinetic robustness, but show up to be supporting against structural perturbations. Among these are a low
connectivity, a high divergence and a low path sum. All results are tested against real signaling networks obtained from
databases. The analysis suggests that ground state robustness may serve as a rationale for some structural peculiarities
found in intracellular signaling networks.
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Introduction

One of the crucial properties of living systems is the ability to

sense, process and react to changes in the environment. The basic

biological unit capable of translating external information into an

appropriate behavior is the cell, whereas the context of cells

establishes responses during evolution which are suitable for

certain stimuli. As a common principle, the information flow from

outside the cell to internal targets like the DNA or the cytoskeleton

is mediated by molecular interactions. Signal transduction

pathways can amplify the receptor signal by successive steps of

activation or deactivation of downstream components. High-

throughput methods provide a compelling abundance of data

about compounds and their interaction patterns, however, they

also reveal a complexity in molecular networks which challenges

our understanding of the relationship between structure, dynamics

and function. Even the concept of a signaling pathway has been

called into question [1].

In recent years attempts have been made to explain topological

properties of molecular networks in the light of evolution. The

design is regarded as a molecular phenotype which is shaped by

natural selection and reflects a successful adaptation towards

certain functional demands [2,3]. Are functional principles in

signaling networks present and can we relate them to topology?

Clearly, the function of any open living system is governed by its

dynamic properties and can therefore not be entirely determined

by its topology alone. However, functional flexibility of a system

may be constrained or supported considerably by an appropriate

structure. Thus, a proper understanding of function should

consider the contribution of both the topology and the parameters

characterizing the dynamics on this topology.

It is often stated that biological networks have evolved to allow

for a robust performance of their functions [4–6]. This is

attributed to the fact that living systems are constantly subjected

to intrinsic and extrinsic noise. Although some findings indicate

that living systems do use noise constructively [7], there is no

doubt that in many cases maintenance of functionality over a wide

range of conditions relies on mechanisms to buffer noise. To

provide rationales for particular mechanisms, one needs to be

precise about the behavior which is supposed to be robust and the

type of uncertainties considered [4]. As the system function is

determined by structural as well as kinetic properties, two ways to
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achieve robustness in signaling networks can be envisaged: by fine-

tuning the parameters of the reactions or by establishing a network

design for which the considered function is a robust property. The

chemotaxis network design of E. coli has been shown to provide a

robust response both towards extrinsic (changing attractant

concentrations [8,9]) and intrinsic (gene expression [10]) noise.

In line with these studies, and in contrast to purely statistical

approaches (see e.g. [11,12]), we pursue the view that discerning

functional advantages or disadvantages of topological properties is

more reliable if the corresponding dynamical process is taken into

account. However, because in most dynamical models the structure

remains fixed or is varied only slightly, the results cannot be readily

generalized. An interesting approach to study how network motifs

contribute to the stability of the complete network with respect to

changes in parameter perturbations has been given by Prill et al.

[13]. There, the authors could show that those motifs exhibiting

stability for a wider range of kinetic parameters tend to be

overrepresented in several analyzed signaling and gene-regulatory

networks. Promising approaches to the expansion of these studies on

the basic interplay between topology and dynamics to general

signaling network structures include more abstract representations

like those used in [14] and [15], because they allow for a systematic

evaluation of theoretically possible alternative network designs and

thus to arrive at theoretical statements of general validity. For

example, Heinrich et al. could analyze the effect of the length of a

kinase cascade on signaling time and amplitude [15].

Our aim is to study a specific relationship between structure and

function by means of a simple framework of signal transduction

introduced in [15] and extended in [16,17]. The model can describe

arbitrary activation patterns and is quite general. This enables us to

take a graph theoretical approach and use known mathematical

results which will highlight new topological properties in signaling

systems. The function we consider is a dynamical property which

relates to the input-output behavior of the system. Our rather simple

hypothesis is that reliable signaling systems should be active only if

an input signal (e.g. a ligand) is present. Apparently, an

autoactivation in the signal-off case could mimic an input signal

and cause a behavior detrimental to the cell or the organism. In

other words, owing to the fact that extra- and intracellular noise is

always present, spurious activations should be dampened out rather

than amplified [15]. We will raise this assumption to a robustness

principle and analyze for structural properties which support this

type of robustness. We propose that during evolution those network

topologies have been selected which to a certain extent support the

maintenance of ground state stability and thereby prevent noise

propagation through the network.

Methods

Dynamical System
Consider a network of molecular species Ki which can exist in a

signal transmitting (‘‘active’’) and a signal blocking (‘‘inactive’’)

form. Only in its active form is a species able to activate other

molecules. In principle, the adopted framework allows for the

description of a large class of signaling systems [15] and more

complex processes such as multiple phosphorylations or the effects

of scaffold proteins can be included. For simplicity, the analysis is

restricted to simple interactions and single activation steps.

Assuming mass action kinetics the non-autonomous ordinary

differential equations for the concentration of active species, xi, read

dxi

dt
~ciS tð Þ~xxiz

Xn

k~1

aik~xxixk{bixi , i~1, . . . ,n, ð1Þ

where S tð Þ denotes the strength of an external signal, ci denotes the

rate of activation of the i-th molecular species by the signal, and the

concentration of the inactive form is denoted ~xxi. The rate constants

aik specify the rate of activation of Ki by Kk. The zero-nonzero

structure of the matrix aikf g reflects the circuitry of the elements in

the signaling network. The constants bi characterize the rate of

constitutive deactivation of the species Ki, for example by

dephosphorylation.

Assuming that production and degradation of each species in

the network is always balanced, or a time scale is considered for

which changes in total levels are negligible, the conservation

relation ~xxizxi~Ci~const: can be used to uncouple the

dynamics of inactive and active forms. Furthermore, because the

focus is on the impact of signaling topology and the dynamics in

the signal-off case, we set S tð Þ:0 and drastically reduce the

kinetic degrees of freedom by imposing bi~b for all i~1, . . . ,n.

With this we can rescale time (t~tb) and concentrations

(ji~xi=Ci) resulting in the corresponding dimensionless and

autonomous system

dji

dt
~
Xn

k~1

aikjk 1{jið Þ{ji, with j0
i [ 0,1½ �, ð2Þ

where aik~Ck
:aik=b.

Due to nonlinearity, multiple stationary states are possible in the

system (2). The off-state j0~ 0, . . . ,0ð Þ is always a solution

characteristic for signal absence. Any stationary state where the

concentrations of some or all active species, ji, are non-zero is

referred to as an autoactived state j� of (2). A bifurcation of the

dynamical system occurs if some stationary state looses its stability.

We are specifically interested in transcritical bifurcations where at

some point in the parameter space stability switches from one

state, which is defined as the ground state, to an autoactivated state.

For the sake of simplicity the off-state is assumed to be the ground

state of the signaling system.

Graph Theory and Algorithms
In terms of graph theory, the quadratic system’s matrix

A~ aikf g is the adjacency matrix of the associated directed graph

(or digraph) C Að Þ. The non-zero entries define the edges, i. e. the

positive regulatory pattern in the network, whereas the nodes

symbolize the species. The digraph C Að Þ is weighted because the

non-zero entries can deviate from unity.

The number of incoming edges of a node is its in-degree and

accordingly the out-degree is defined as the number of outgoing

edges. A source is a node with in-degree zero, a sink has out-degree

zero. A series of unidirectional edges is generally called a directed

walk or a path if and only if each node is visited only once.

The total number of nodes n is denoted order of the graph and

the number of edges e specifies its size. If the graph is connected,

which is a reasonable assumption for signaling networks, a useful

measure is the connectivity, k :~e=n n{1ð Þ. For loop-less graphs

(without edges originating and terminating at the same node), it

varies in the range of 1=nƒkƒ1 and characterizes the average

unspecificity of species in the network.

Any digraph formed by subsets of the original nodes and edges

is a subdigraph. A spanning subdigraph has the same node set as the

original digraph. A subdigraph in which there exists a path

between any two nodes is called a strongly connected component (SCC).

A cycle motif is thus a special type of SCC with in-degree and out-

degree one for every node. As a closed path it constitutes a positive

feedback in the signaling system. An l-cycle is defined as a cycle of

length l, where l is the number of nodes or edges in the cycle.

Ground State Robustness
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Spectral graph theory is concerned with the eigenvalues of a

graph. The ordinary spectrum of a graph is the spectrum of the

corresponding adjacency matrix. The adjacency matrices of

isospectral graphs have the same principal eigenvalue which is

real and in terms of graph theory is denoted the index, r, of the

graph [18]. Isospectral graphs with distinct topologies are said to

belong to the same index class.

All calculations were carried out in Matlab (R2008b, The

MathWorks Inc., MI, USA), using additional functions from the

Boost Graph Library precompiled in MatlabBGL [19]. The paths

in the networks were calculated via the random acyclic subdigraph

method [20,21].

Results

First, we examine how the system structure and parameters

determine off-state stability. We show that only the subdigraphs

which comprise cycles have an influence in this respect. To

analyze how topological characteristics constrain the stable regime

a system reduced in kinetic degrees of freedom is considered. A

straightforward quantification of kinetic off-state robustness of

different motifs is possible in this case. Second, we take into

account structural perturbations to discriminate topological

features within index classes which are neutral towards kinetic

robustness. Three properties which support structural off-state

robustness are highlighted. Finally, we analyze signaling networks

retrieved from databases for robustness and topological features

suggested by our results.

The Digraph Index Determines Off-State Stability
The Jacobian of (2) evaluated at the off-state reads

J0~A{I, ð3Þ

where I is the identity matrix. It can be shown that the off-state

Jacobian has a similar form for Michaelis-Menten type activation

kinetics. We can apply Schur’s unitary triangularization theorem

to (3) and, subsequently, the Perron-Frobenius theorem for non-

negative matrices [22] in order to show that the spectral radius of

A exactly determines the eigenvalue with maximal real part. Let li

be the eigenvalues of the off-state Jacobian and < lið Þf g the set

comprising the corresponding real parts then

max < lið Þf g~r Að Þ{1 ð4Þ

holds. Therefore, a necessary and sufficient condition for off-state

stability in the signal-off case is that the index of the signaling

network fulfills r Að Þv1. This holds true irrespective of the exact

model topology and the precise values of the kinetic parameters in

(2). The bifurcation occurs at r Að Þ~1.

The Index Depends on the Feedback Family
With result (4) it is possible to discuss which topological features

of the network affect the relevant qualitative change in the

dynamic behavior via the digraph index. As long as we consider

weighted digraphs a straightforward answer is not possible,

because there are still as many kinetic parameters as edges in

the network which of course influence the dynamics. Definitely,

the matrix entries (i.e. edge weights) impose lower and upper

bounds on the index [18,22],

max min RSif g,min CSif gf gƒrƒmin max RSif g,max CSif gf g, ð5Þ

where RSi~
Pn

j~1 aij and CSi~
Pn

j~1 aji are the ith row and

column sums, respectively, and RSif g and CSif g (i~1, . . . ,n)

denote the corresponding sets.

A critical result can be derived if the nodes are permuted such

that the adjacency matrix is brought into the so-called irreducible

normal form denoted Airr [22]. Then the square matrices aligned

in the diagonal Ai with i~1, . . . ,p, pvn are either irreducible or

1-by-1 zero matrices. By permutation similarity the eigenvalues of

Airr are equal to those of A and hence for the spectrum % the

following holds true (see also [23]):

% Að Þ~% Airrð Þ~
[p

i~1

% Aið Þ: ð6Þ

In fact, the irreducible matrices are the adjacency matrices of

the SCCs whereas the acyclic subdigraph of C Að Þ has only zeros

in the diagonal of Airr. Hence, r~0 for acyclic graphs in general,

as is well-known in graph theory [18,20]. According to (4) a zero

index means that acyclic networks always have a stable off-state

irrespective of the values of the activation constants. Thus we focus

in the following on the influence of the SCCs.

We will call the set whose elements are the SCCs the feedback

family of the network and denote their indices by riw0. The union

of spectra (6) shows that the index of the whole network is

determined by the component with maximal index [23],

r~max rif g: ð7Þ

The SCC with maximal index is called the dominant component of the

feedback family. Relation (7) is intriguing because it implicates that

the positive feedback cycles outside of the dominant component

are neutral with respect to off-state stability. If the i-th SCC

dominates the network index, condition (4) reduces to

max < lið Þf g~r Aið Þ{1. If all or more SCCs have the same

maximal index, these components are dominant representatives of an

index class called the dominant class of the network. The index of

any network equals the index of its dominant class. Note, that the

number of representatives in a dominant class is irrelevant for

stability. Unlike the assumption raised by means of numerical

calculations [16], this analytical result shows that there is no

straightforward relation between number of feedback cycles and

off-state stability. Thus, dominance over off-state stability is not an

intrinsic property of a single strongly connected motif but rather

depends on the context given by the specific composition of the

feedback family.

Kinetic Off-State Robustness and Its Relation to Strongly
Connected Motifs

Because r Að Þ§0 always holds true, condition (4) can provide a

natural definition of the network’s off-state robustness. The basic

idea is that the extent of the parameter space, for which a key

function of a system is maintained, can be seen as a possible

measure for robustness of a biochemical network towards this

function [4,8].

In the following we confine the treatment to simple (i.e.

unweighted) digraphs by setting aik~a and assume that there is no

trans-autoactivation. The resulting binary adjacency matrix is

denoted ~AA and its index has no values between zero and one [22].

The advantage of restricting the analysis to simple loop-less

digraphs lies in the fact that in-degree and out-degree of each node

directly reflect the number of upstream activators and downstream

Ground State Robustness
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targets of a signaling compound, respectively. For an accurate

kinetic analysis these restrictions are too strong. However, because

our focus is on constraints imposed solely by topology the

simplification is reasonable. In the more general case different

edge weights could partially compensate each other to allow for

stability.

Relation (4) now reads max < lið Þf g~ar ~AA
� �

{1 and the critical

value for the bifurcation parameter a results in acrit~1
�

r ~AA
� �

.

Thus the structural design of a signaling system encoded in the

index r ~AA
� �

distinguishes parameter regions with the desirable

property of stability (0vavacrit) and a region in which a

dysfunction of the system by autoactivation cannot be avoided

(awacrit). Apparently, the larger the stable regime the more

reliably the signaling system performs its function in the sense that

additional combinations of the parameters a, Ci and b are buffered

by the network structure. Therefore, the value acrit provides a

measure for what we call the kinetic off-state robustness

Rk~
1

r ~AA
� � ð8Þ

of a network design. This of course results in Rk~? for acyclic

networks. In the following we discuss networks with non-empty

feedback family. It is appropriate to classify the SCCs as either

regular or irregular digraphs because the structural characteristics

decisive in kinetic off-state robustness differ in both cases.

The Degree of Regular SCCs. A regular digraph of degree d
(or d-regular digraph), is a digraph where every node has the same

in- and out-degree d . A cycle of arbitrary length thus is classified as

a 1-regular digraph. Note, that a higher degree implicates more

cycles in regular digraphs. Inclusion relation (5) implies that r~d
for d-regular components [18]. Thus, the degree of regular SCCs

is decisive in kinetic robustness, Rk~1=d . The minimal degree

possible, realized in a cycle, confers the highest possible robustness

value, Rk~1. Note, that this equation holds regardless of the

length of the positive feedback. The lowest robustness value,

Rk~1= n{1ð Þ, for a network of a given order n is due to the fact

that all networks are spanning subdigraphs of the completely

connected simple loop-less digraph, which is regular of degree

n{1 [18]. This implies that regardless of the actual size and

topology the off-state is always stable whenever av1= n{1ð Þ is

fulfilled.

The Girth and Relative Size of Irregular SCCs. Strong

digraphs which are not regular always comprise interlocked cycles

of different length. An example for a signaling system with

interlocked cycles is the neuronal EGF-pathway studied in [24],

exhibiting a SCC with positive feedbacks of length 6 and 7.

Whereas the number of non-overlapping cycles does not influence

the index, interlocked cycles have a further destabilizing effect and

lead to indices rw1. Networks with irregular SCCs are thus always

less robust than networks with only cycles in the feedback family.

The specific effect of cycles on the index has been clarified by

Brualdi [25] who noticed that cycle structure constrains the index

according to Pg
i~1 di

� �1=g
ƒrƒ Pn

i~n{gz1 di

h i1=g
. Here, di de-

notes elements from either the in-degree or the out-degree set in

an increasing order. The relation shows that along with the

number of interactions the girth, g, defined as the length of the

shortest cycle in the SCC turns out to be an important topological

characteristic. In our terms, the SCC with the shortest girth and

the greatest number of interactions will most probably be the

dominant component. The difference between size and order of

the component further constrains the index, since, according to

[26], rƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e{nz1
p

holds.

In summary, if there is evolution towards off-state robustness,

cycles should be prevented (Rk~?). Beyond that, nothing can be

said about structural properties in acyclic networks regarding

kinetic off-state robustness. If for some reason, for example to

achieve a robust bistable response, positive feedbacks are

necessary, they should preferably not be interlocked, i.e. the

feedback family should comprise only 1-regular SCCs (Rk~1).

Again, nothing can be said about the number and length of the

cycles. However, in the case of interlocked feedbacks further

constraints may become relevant. The dominant component

should have a small index which may be achieved by keeping the

difference between size and order of the SCC small. Since each

edge in a SCC is part of a cycle, this also applies to the number of

interlocked feedbacks. Moreover, the SCC should be organized

such that the girth is as large as possible.

The Impact of Structural Perturbations - Structural Off-
State Robustness

Natural variation among individual cells in a population is a

prerequisite of evolution. Thus, within our framework selection

pressure towards off-state robustness in signaling systems can only

act as long as there are topologies with distinct indices. However,

as the spectrum does not fully determine topology there is

considerable structural plasticity within index classes, for example

acyclic networks may be in-trees or out-trees. To evaluate the

significance of those structural properties which vary among

networks with the same index, we further elaborate the concept of

off-state robustness.

So far, we analyzed the implications of different topologies while

assuming the topology of a particular system to be fixed. In the

following, we consider the fact that living cells are steadily

subjected to variation even on the structural level of signaling

systems due to random genetic events, diseases or other exogenous

factors. If to each network topology a dynamical system is

attached, structural perturbations may affect dynamic properties

like off-state robustness. We assume that during evolution signaling

networks have been molded into topological designs which support

kinetic off-state robustness despite structural defects.

A measure for structural off-state robustness. In analogy

to the concept introduced in [27] for metabolic networks, we define

a neighborhood Nn of a particular network structure n by considering

specific structural perturbations, e. g. addition or deletion of a single

edge. All neighboring networks ni possess an index rni
. We pursue

the following hypothesis: natural selection not only favors networks

with a low index but networks having a neighborhood comprised of

networks with low indices. Therefore, we set out to determine those

design features which support a robust neighborhood to see if they

are found in real signaling systems.

In order to assign a robustness value to the neighborhood first

we make the simple assumption that all possible perturbations in a

certain perturbation mode (see below) are equiprobable. In case of

an event the transition probability to any neighbor is 1= Nnj j,
where Nnj j denotes the number of neighbors. Second, for

evaluating the index of the neighborhood only those neighbors

are taken into account which to some extent still perform the

original network function, that is those having similar input-output

relations, which is tested by checking reachability between input

and output nodes. These neighbors are said to belong to the

functional neighborhood N fun
n (Nn with the index defined as

rN :~
1

Nnj j
X

ni[N fun
n

rni
: ð9Þ

Ground State Robustness
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With the analytical results from the first part at hand we can

quantify the structural off-state robustness of the original network

design in analogy to the kinetic robustness, Eq. (8), as Rs~1=rN .

A network cannot cope with all types of perturbation, and also

from the computational point of view it is feasible to confine the

analysis to small perturbations which presumably occur more

frequently. Here, changes of network order are not considered.

The addition of a new signaling protein caused by gene

duplication for example is a rare and long-term process [28].

Thus, selection pressure towards structural robustness is assumed

to be dominated by perturbations changing only the interaction

pattern in the network.

Due to the modular assembly of eukaryotic signaling proteins it

is possible that not all interactions of a protein are affected at once.

Basically, binding to other proteins and catalytic domains are

structurally separated [29,30]. Based on this knowledge, two

different modes of perturbations are analyzed which lead to

different compositions of a network’s neighborhood.

Perturbation mode (a). Only loss or gain of one interaction

is considered, i.e the active site is assumed to be unaffected.

Perturbation mode (b). Additionally, perturbations of the

catalytic site are taken into account: Thus, a species Ki either

looses all its outgoing edges or it can loose its specificity which can

result from oncogenic mutations as has been reported e.g. in

[31,32].

First, numerical analysis of digraphs of different order suggests a

significant negative correlation between a network’s index and its

structural off-state robustness for both perturbation modes. That

is, a lower kinetic robustness results in a decreased structural

robustness. This is illustrated in Figure 1 for all 9364 non-

isomorphic digraph topologies of order n~5. A dot represents a

network n characterized by a certain combination r,Rsð Þn. Because

acyclic topologies have Rk~? but always possess neighbors with

cycles, their structural robustness is finite. For indices r§1, the

values of Rs scatter more or less around Rk, however, for 1vrƒ2
it seems that the functional neighborhood tends to be more robust

than the original network. Similar pictures are obtained for n~3
(13 topologies), n~4 (199 topologies) and n~6 (*1:5:106

topologies, data not shown).

Despite its correlation with the index it is interesting to see that

the structural off-state robustness can vary considerably within the

same index class. At least for the acyclic (r~0) and 1-regular (r~1)

classes the set of networks clearly fans out. Can we find structural

properties among index equivalent networks which can explain

this diversity? To this end, we chose the index classes r~0 and

r~1 and analyzed all digraphs of order n~3, . . . ,6. The index

classes with 5,942 and 30363 topologies, respectively, were

evaluated separately to not introduce some bias. Three candidate

features are tested for correlation with structural off-state

robustness: connectivity, divergence and path sum.
Structural robustness and connectivity. The influence of

connectivity on structural off-state robustness is depicted in

Figure 2A for acyclic topologies and Figure 2D for r~1. A

negative correlation for acyclic networks indicates that

maintaining off-state robustness tends to be supported by a low

connectivity. This property is reasonable at least from one

perspective. A 2-cycle can always be generated by adding an

existing edge in reverse direction; therefore, the more edges in the

network, the more neighbors exist with 2-cycles. However, there

are many networks with identical connectivities but quite different

Rs-values. Moreover, the robustness of topologies with cycles

seems to correlate with connectivity rather weakly.
Structural robustness and divergence. The number of

sinks and sources, m, reflects the extent of a network’s

communication with the environment. To compare networks of

different order we introduce the divergence m given by m :~m=n,

which generally varies in the range of 0ƒmƒ1. Figure 2B shows

that divergence and structural robustness are positively correlated

for acyclic networks. The robustness supporting effect of the

divergence is due to the fact that sinks and sources cannot be part

of cycles. The more sources and sinks that exist in the original

network, the less likely the generation of a cycle by an edge

addition. However, like in the case of connectivity there are still

many networks which do not obey this tendency. Again, no

correlation can be observed in the class r~1 (Figure 2E).
Structural robustness and path sum. Generally, the

generation of an l-cycle by an edge addition requires the

existence of a path of length l{1 in the original network.

Therefore, longer paths and more paths in a network suggest an

increased number of neighbors with cycles and thus lower

robustness. If there exist nl paths of length l in the network, the

path sum in the network is defined as

L :~
Xn{1

l~2

nl
:l,

where all paths of length l§2 are counted. In case of the path sum

both acyclic networks and networks with cycle motifs show a

marked tendency of robustness decay with more paths in the

network. The calculations suggest that a low path sum is a

structural feature which is of importance to maintain off-state

robustness against structural perturbations.

Figure 1. Dependence of structural off-state robustness on network index. Each dot corresponds to one of the 9364 non-isomorphic
topologies of order n~5. The structural robustness values are calculated for perturbation mode a (left) and b (right). For comparison, the colored
curve shows the kinetic off-state robustness, Eq. (8).
doi:10.1371/journal.pone.0008001.g001
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Robustness of Real Signaling Networks
For illustration and to put our hypothesis to the test five

signaling systems have been evaluated: The Transpath [33] kinase

network which was already analyzed in [17] for other properties

and some recent canonical signaling networks [34–37] retrieved

from the Science STKE database [38]. The positive interaction

maps of the STKE networks were derived as follows. First, the

negative interactions and those whose sign is currently unknown

were deleted. Any node becoming isolated by this procedure was

ignored. Second, because we are considering only the signal-off

status, all nodes defined as an external signal are discarded.

Because the corresponding edges have to be deleted as well, again

some nodes may become isolated. The topological properties

shown to be important for our study are summarized in Table 1.

We want to demonstrate that there exist real signaling systems

that may indeed exhibit off-state robustness and that the

corresponding topological properties are not the product of

chance. For this, structural features are compared with random

counterparts to assess their statistical significance. Random

networks can be created by different means. Here a rewiring

method is used which is described in [39]. Starting with the real

network, repeatedly, two edges are chosen at random, their target

nodes or their nodes of origin are exchanged, provided the

resulting edges do not already exist. This procedure ensures that in

the rewired network order, size and the in-degrees as well as out-

degrees for each node are preserved. As a consequence, of the

three properties considered above, only the path sum differs

between the random networks.

The results for the five biological networks are depicted in

Figure 3. The graphs in the left column depict the distributions

of the indices of the perturbed networks, and the graphs in the

right column represent the distributions of their structural

robustness values. All five networks are acyclic and the index

distributions clearly indicate that the maximal kinetic off-state

Figure 2. Correlations of topological properties with structural off-state robustness in two index classes. A, B and C show the
dependence of acyclic digraphs on connectivity, divergence and path sum, respectively. D, E, and F (log-scale) depict the same for digraphs with only
1-regular SCCs. All non-isomorphic digraphs of order n~3, . . . ,6 were analyzed using perturbation mode a for the calculation of Rs .
doi:10.1371/journal.pone.0008001.g002

Table 1. Topological characteristics relevant for ground state robustness in real networks.

Network Nodes n Edges e Index r (Rk) Rob. Rs Conn. k Div. m Path Sum L

Transpath 86 171 0 (‘) 6.794 0.023 0.605 635

Adrenergic 35 42 0 (‘) 7.579 0.035 0.276 174

B Cell Antigen 29 37 0 (‘) 3.878 0.046 0.343 213

TGFb 16 33 0 (‘) 3.735 0.138 0.250 36

IFNc 6 8 0 (‘) 1.851 0.266 0.333 15

Each network is characterized according to the topological aspects deemed significant according to the results part. Networks 2–5 are derived from the STKE database
as described in the text.
doi:10.1371/journal.pone.0008001.t001
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robustnesses can not be expected by chance. For the Transpath

network for example, only 35 out of 100,000 random networks

are acyclic. Therefore, an acyclic network design is most likely a

striking feature. Further, the structural robustness for three of

the five networks is the highest observed for all perturbations.

Only for the B Cell Activation network and for the IFNc
pathway, perturbed network structures with a slightly higher

structural robustness were found. We hypothesize that these

findings also reflect evolution towards structural off-state

robustness. Table 2 gives an overview of the p-values of all

signaling networks analyzed. All analyzed networks have a

significantly low index and high structural off-state robustness.

The path sums are all lower in the original networks than in the

random samples, however, compared to the values of random

networks being in the same index class only the TGFb and

(weakly) the IFNc pathways seem to have significantly low p-

values. To assess the effect of connectivity and divergence the

original networks would have to be tested against random

networks generated by different means, for example by

generating Erdös-Renyi graphs of the same order.

Discussion

Kinetic parameters of biochemical systems can be altered by

mutations resulting in perturbed activities and are subject to

fluctuations due to variations in the environment (pH, tempera-

ture, ionic strength). These sources of reaction rate noise may have

a profound effect on the dynamic behavior of a system. Moreover,

in many cases the same topology is realized with different proteins

in different organisms and cells (orthologs and paralogs) [40].

These supposedly have different kinetic properties. A sensitive

signaling design could not cope with such a diversity.

In this paper we argue that the design of signaling systems

should have evolved to support the maintenance of functionality as

reflected by a stable ground state. This frees up the kinetic

parameters of the system to meet other demands. Therefore, both

a higher kinetic and structural off-state robustness of network

design could confer a better evolvability [41,42].

With reference to the robustness principle, our approach is

somewhat complementary to that of Shinar et al. [43]. There, the

signal-on case is considered in which the output should accurately

match the input despite variations in components. However,

through our systematic approach we could analyze a particular set

of models and highlight topological features which to our

knowledge have not been considered before in the context of

signaling networks. The generality of our approach required us to

make some drastically simplifying assumptions, such as equal rate

constants for deactivation processes. Clearly, for many biological

systems such simplifications are unrealistic. To overcome the

simplifications made on the rate constants, a future prospect could

be to combine our notion of robustness with that introduced in

[13] to also quantify the parameter ranges of stable behavior for

cases for which the analytical results presented here do not hold.

Another limitation of our theoretical framework is that we did only

analyze positive regulatory structures and it would be an

interesting and obvious extension of our approach to also include

the stabilizing or destabilizing effects of negative feedback loops.

Nevertheless, our studies provide insight into how graph

properties of the underlying networks influence their robustness,

both with respect to dynamic and structural perturbations. Indeed,

the apparent lack of cycles and a higher compactness, which is

related to a lower path sum, has also been noted by other authors

[44]. These observations can in fact be explained in the light of

Figure 3. Histograms of dynamic robustness in randomized
signaling networks retrieved from databases. For the Adrenergic
pathway 104 random networks were evaluated, for all other signaling
systems 105 . The distribution of the indices of the randomized networks
are depicted in the left column. The right column shows the structural
robustness values for the perturbed networks. The asterisks mark the
values for the original networks. Perturbation mode a has been used to
calculate RS .
doi:10.1371/journal.pone.0008001.g003

Table 2. Statistical significance (p-values) of topological
characteristics in real networks tested against randomly
rewired samples.

Network Index r Robustness Rs Path Sum L

Transpath 2:6:10{11 <0* 0.2232

Adrenergic 0.0445 0.0015 0.2413

B Cell Antigen 0.0117 0.0274 0.7920

TGFb 0.0017 2:3:10{14 0.0031

IFNc 0.0178 0.0033 0.0795

*Properties which can differ between the original network and the random
samples of 105 rewired networks, respectively, have been tested for
significance by calculating the p-value from a normal distribution using the z-
score. The original path sum has been compared to the path sums of random
counterparts being in the same index class as the original network.

The p-value for the structural robustness in the Transpath kinase network is
extremely low, the corresponding p-value for the neighborhood index, rN , is
p~2:6:10{10.
doi:10.1371/journal.pone.0008001.t002
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ground state robustness. For selected real signaling networks, we

have shown that these and other topological features are

characteristic for evolved systems and are not expected to have

appeared by chance. Our results demonstrate that, despite the

simplifying assumptions, conclusions with a general validity may

be drawn and support the view that ground state robustness is a

systemic constraint which puts selection pressure on signaling

network topologies during evolution.
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