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Abstract

Background: Aberrant activation of signaling pathways drives many of the fundamental biological processes that
accompany tumor initiation and progression. Inappropriate phosphorylation of intermediates in these signaling pathways
are a frequently observed molecular lesion that accompanies the undesirable activation or repression of pro- and anti-
oncogenic pathways. Therefore, methods which directly query signaling pathway activation via phosphorylation assays in
individual cancer biopsies are expected to provide important insights into the molecular ‘‘logic’’ that distinguishes cancer
and normal tissue on one hand, and enables personalized intervention strategies on the other.

Results: We first document the largest available set of tyrosine phosphorylation sites that are, individually, differentially
phosphorylated in lung cancer, thus providing an immediate set of drug targets. Next, we develop a novel computational
methodology to identify pathways whose phosphorylation activity is strongly correlated with the lung cancer phenotype.
Finally, we demonstrate the feasibility of classifying lung cancers based on multi-variate phosphorylation signatures.

Conclusions: Highly predictive and biologically transparent phosphorylation signatures of lung cancer provide evidence for
the existence of a robust set of phosphorylation mechanisms (captured by the signatures) present in the majority of lung
cancers, and that reliably distinguish each lung cancer from normal. This approach should improve our understanding of
cancer and help guide its treatment, since the phosphorylation signatures highlight proteins and pathways whose
phosphorylation should be inhibited in order to prevent unregulated proliferation.
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Introduction

At the molecular level, cancers are heterogeneous diseases,

arising from genetic factors, environmental carcinogens and

random, somatic mutation [1]. Phosphorylation of proteins is a

key regulator of protein activity [2], and in particular, modification

of tyrosine residues modulate critical signaling and control

processes [3]. In cancers, aberrant phosphorylation status of key

residues (its presence or absence) has been observed and

documented in many studies, which include the original oncogene,

src [4], and many others [5].

Signatures based on protein levels are starting to be developed

[6]. Protein levels are expected to be strongly correlated with

phenotype and protein-based diagnostics can be easily imple-

mented in most major medical centers. Monitoring the functional

status of proteins may therefore be highly germane to clinical

applications, and offer an additional layer of specificity for

enhancing our scientific understanding of causal progression of

disease. Methods for high-throughput detection of phosphorylated

residues using mass spectrometry are being rapidly developed

[7,8,9,10] and applied to the study of signaling pathways [11]

along with complementary analysis and modeling approaches

[12,13].

In this paper, we examined global tyrosine phosphorylation data

from lung cancers and normal lung tissue [14], seeking to identify

differentially phosphorylated protein sites and differentially

activated pathways, and to assess their suitability as classifiers.

We report a large set of sites that are differentially phosphorylated

in tumors, many of which can be used as direct targets for new

drugs. We present evidence that certain pathways are differentially

activated, based on their global phosphorylation status using a

novel computational approach to perform a protein variant of

gene set enrichment analysis.

We then demonstrate that a relatively small number of

phosphorylated peptides observed in that data [14] can discrim-

inate between normal tissue and tumor with exquisite sensitivity

and specificity. We validate our phosphorylation signature using

rigorous cross validation and testing on a previously unpublished
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independent set. Finally, we compare the binding affinities of

multiple kinase inhibitors with the phosphorylation activity of their

targets in our study. The integration with pharmaceutical data

leads to interesting hypotheses about the relative efficacy of such

drugs and suggests unexplored but potentially potent lung cancer

agents, highlighting potential clinical applications.

There is a fundamental distinction between predictive signa-

tures, such as the ones developed here, and the observation that a

protein is differentially expressed (or phosphorylated) with

statistical significance. In principle, a protein may be differentially

phosphorylated but be of little predictive utility for the broad

classification of a disease or for devising a personalized treatment

strategy. Differential phosphorylation of a protein is a population

aggregate summary. It means that, on average, the phosphoryla-

tion level of a protein is higher or lower in a cancer than normal

tissue. However, for any given patient the probability of error in

classifying the biopsy as a cancer could be as high as 0.49 (if the

distributions of the measurements for cancer and normal tissues

overlap). No account of disease heterogeneity is considered, and

elevated levels could result solely from a subset of the disease cases.

Conversely, a signature with high predictive value suggests that the

phospho-sites included in the signature are part of a core set of

pathways that are universally operative in the disease. They are

therefore potentially reflective of a universal pathogenetic

mechanism for that disease, and can lead to the discovery of a

‘‘phosphorylation logic’’ that captures the tissue specific, or even a

general, neoplastic phenotype. Heterogeneous cancer sub-types

will necessarily require more complex signatures, requiring a large

set of predictive mechanisms that can provide high-coverage of the

differential activity of key pathways in the specific cancer. Finally,

if the predictive signatures consist of a small set of proteins that

implicate specific pathways (as implied by our work), this set of

pathways becomes a prime target for a broad combinatorial multi-

target drug strategy.

Results

Multiple Tyrosine Sites Are Differentially Phosphorylated
in Lung Cancer Tissue

We first analyzed individual protein sites to determine those that

are differentially phosphorylated between the 48 normal and 94

non-small cell lung cancer (NSCLC) tumor samples. Our results

reveal 129 unique amino acid sites that were significantly

differentially phosphorylated between normal and tumor samples

(false discovery rate, FDR q value ,0.05). Of these, 77 of the sites

were more phosphorylated in cancerous tissue and 52 sites were

more phosphorylated in normal tissue. Table 1 lists the highest-

ranking 20 protein sites with the smallest ranksum p values, with all

sites listed in Table S1.

In addition to the top genes listed in the table many other

prominent markers of cancer were detected in our analysis. In

particular, EGFR is a receptor tyrosine kinase implicated in lung

cancer and is involved in multiple biological processes, including

apoptosis, cell adhesion, and growth [15,16,17]. Mutations of

EGFR are seen in a set of NSCLC patients with good response to

EGFR inhibitor [18,19]. The phosphorylation statuses of two

Table 1. The 20 protein sites most differentially phosphorylated between normal and NSCLC samples.

Index ID T/N SCR* P-value** FDR*** Description

1 ADH1B_34 0.08 5.13E-12 1.35E-09 Alcohol dehydrogenase IB (class I), beta polypeptide

2 CAV1_14 0.15 2.13E-11 2.27E-09 caveolin 1, caveolae protein, 22kDa

3 TNS1_1149 0.16 2.58E-11 2.27E-09 tensin 1

4 C11ORF52_103 0.13 4.32E-11 2.85E-09 chromosome 11 open reading frame 52

5 GAB1_659 0.17 3.26E-10 1.72E-08 GRB2-associated binding protein 1

6 TNS1_1326 0.19 8.84E-10 3.89E-08 tensin 1

7 ANXA2_29 0.2 4.40E-09 1.66E-07 Annexin A2

8 TNS1_1404 0.13 1.12E-08 3.62E-07 tensin 1

9 STAT1_701 0.05 1.23E-08 3.62E-07 signal transducer and activator of transcription 1,
91kDa

10 LYN;HCK_396;410 3.87 3.46E-08 9.14E-07 v-yes-1 Yamaguchi sarcoma viral related oncogene
homolog //// hemopoietic cell kinase

11 CDC2_15 9.36 7.75E-08 1.86E-06 cell division cycle 2, G1 to S and G2 to M

12 CDC2_15,19 13.45 1.25E-07 2.75E-06 cell division cycle 2, G1 to S and G2 to M

13 C19ORF59_38 0.08 1.40E-07 2.84E-06 chromosome 19 open reading frame 59

14 SEPT2_17 0.08 1.71E-07 3.23E-06 septin 2

15 TNS1_1323 0.14 1.86E-07 3.27E-06 tensin 1

16 C11ORF52_78 0.09 2.06E-07 3.41E-06 chromosome 11 open reading frame 52

17 TJP2_1118 0.25 3.55E-07 5.51E-06 tight junction protein 2 (zona occludens 2)

18 PTTG1IP_174 4.03 8.59E-07 1.26E-05 pituitary tumor-transforming 1 interacting protein

19 MAPK13_182 2.72 1.03E-06 1.39E-05 mitogen-activated protein kinase 13

20 PIK3R2_464 4.87 1.05E-06 1.39E-05 phosphoinositide-3-kinase, regulatory subunit 2 (p85
beta)

*T/N SCR: Tumor/normal phosphorylation spectral count ratio;
**P-value: significance of difference between two sample groups with rank sum test;
***FDR: False discovery rate correction of the p values.
doi:10.1371/journal.pone.0007994.t001
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tyrosines on the cytoplasmic tail of EGFR were found to be

statistically different, exhibiting greater levels of phosphorylation

in cancer. The residues Y1172 and Y1197, are known to regulate

proliferative activity [20]. Interestingly, Y1172 is hyper-phosphor-

ylated (Tumor/Normal phosphorylation spectral count ratio .1)

only in adenocarcinoma (AD) samples. Y1197 is hyper-phosphor-

ylated in both AD and squamous cell carcinoma (SCC) subtypes,

but to a significantly higher degree in AD.

The site specific analysis revealed, somewhat surprisingly, that the

amino acid most consistently differentially phosphorylated in

normal and tumor tissue was Y34 of alcohol dehydrogenase 1B,

ADH1B ( less phosphorylated in tumors). This protein participates

in multiple related processes such as glycolysis, gluconeogenesis, and

fatty acid metabolism. Its expression is up-regulated in the late stage

of rat lung development, but down-regulated in human NSCLC

[21]. The specific role of Y34 is currently unknown, but the low

phosphorylation count may reflect either compromised enzyme

activity or the decreased protein abundance in tumors. With its role

in alcohol metabolism, this may be a consequence of the Warburg

effect whereby tumors employ aerobic glycolysis to meet their

metabolic needs [22]. ADH1B was recently identified as a risk

modifier for squamous aerodigestive cancers, with a postulated

mechanism of altered ethanol metabolism as being contributory

[23]. Another study noted decreased protein levels of ADH1B in

breast tumors [24], postulating the inability to oxidize the hydroxyl

group of retinol blocks the production of retinoic acid, a molecule

that helps maintain epithelial cells in their differentiated state.

There were many other differentially phosphorylated proteins.

Those hyperphosphorylated in tumors include multiple receptor

tyrosine kinases (listed in Table S2), and other signaling proteins,

such as p38 delta, protein kinase C delta, and members of the

PI3K signaling pathway, including p85 beta. Conversely, proteins

hypophosphorylated (Tumor/Normal phosphorylation spectral

count ratio .1) in tumors include the transcription factors

STAT1 and STAT5, the protein tyrosine phosphatase PTPN11,

the G-protein coupled receptor GPRC5A, and the kinases

MAPK1, MAPK3, and TNK2.

Highly Accurate Classification of Tumor Tissue via Cross
Validation

In order to assess the potential utility of monitoring protein

activity via tyrosine phosphorylation data, we developed classifiers

to predict the cancer/normal phenotypes of individual samples. In

particular, we examined our ability to distinguish normal tissue from

cancers based on small set of phosphotyrosines. Table 2 summarizes

the performances of five predictive models we examined. Two of the

models were based on statistically selected sites that yield maximum

discriminating power between cancer and normal tissue. Three

models were based on biologically driven selection of sites from key

pathways associated with lung cancer. A regularized regression

model (aiming to reduce the likelihood of overfitting the data) based

on all significantly differentially phosphorylated protein sites (FDR q

value ,0.05) successfully predicted the sample classes with an

average classification accuracy of 0.925 and an area-under-the-

curve, AUC at 0.974 in a rigorous bootstrapped cross validation

analysis that carefully separates training on random subsets of the

data and testing on the remaining subset. The selection of most

informative sites used to construct the model was also done on

training data. The average number of phosphotyrosine sites used

across all bootstrap trials was 88.

We also investigated whether biologically informed models

based on relevant gene modules can deliver an equal accuracy.

Specifically, regression models based on genes in the MSigDB

‘‘Proliferation’’ protein-set (commonly referred to as ‘‘gene sets’’ in

the microarray literature) [25], and two different protein-sets

representing the EGFR pathway, were also shown to discriminate

between normal and tumor samples with high accuracy. For the

EGFR pathway, we considered two representations: a ‘‘core’’

pathway with 11 proteins (Biocarta) and an ‘‘expanded’’ pathway

with 47 proteins (HPRD). The proteins are listed in Table S3. Our

results suggest that while the core EGFR proteins do provide a

reasonable accuracy in distinguishing cancer versus normal tissue

(0.83 AUC), the ‘‘expanded’’ EGFR pathway, with additional

proteins, performs significantly better (0.96 AUC). The most

informative proteins in the expanded pathway not included in the

core EGFR network are CAV1, GAB1, PXN, and PTPN11.

Lastly, a model based on the top 20 performing sites has an

average classification accuracy of 0.88 and AUC at 0.94. This

classifier supports the feasibility of building a relatively inexpensive

chip using very few sites as markers to enable detection of cancer

cells based on phosphorylation assays.

These results, taken together, indicate that the phosphorylation

status of proteins can be used to develop models that predict a

malignant phenotype of clinical samples with very high accuracy,

Table 2. The performances of the predictive models for normal/tumor classification.

Marker Sites Used in the Regression Models
Classification
Accuracy (95% C.I.) AUC (95% C.I.)

Average No. of Marker
Sites in the Model

Differentially phosphorylated sites 0.925 0.974 88

(0.833,0.986) (0.925,1.000)

Proliferation category 0.81 0.912 17

(0.712,0.859) (0.858,0.945)

EGFR pathway from BioCarta 0.764 0.826 12

(0.637,0.85) (0.718,0.894)

EGFR signaling network from HPRD 0.887 0.957 47

(0.791,0.961) (0.892,0.991)

Top 20 sites 0.883 0.944 20

(0.757,0.962) (0.820,0.995)

Shown in the table are the mean classification accuracy and AUC across the 100 bootstraps. The 95% bootstrap confidence intervals (C.I) of the accuracy and AUC are in
the parentheses.
doi:10.1371/journal.pone.0007994.t002
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similar to the performance reported from mRNA expression (see

Note S1) [26].

Highly Accurate Classification of Cancer Tissue via
Prediction on an Independent Validation Dataset with 16
NSCLC Samples

We applied two regression models trained from the 142 samples

to an independent dataset consisting of 16 NSCLC samples. The

coefficients used to integrate the phosphorylation level of proteins

in the two models are shown in supplementary Table S4 and S5.

At 90% sensitivity for cancer patients in the training data, the

statistical model using the 20 most informative phosphorylation

sites has 87.5% sensitivity on the validation samples. We repeated

the analysis using the ‘‘Proliferation Genes’’ category from the C2

database of MSigDB. The corresponding validation sensitivity is

93.8% which is slightly better than the sensitivity obtained by the

statistical model. The most informative sites used in the

proliferation module classifier are derived from EGFR and SYK

(Spleen Tyrosine Kinase).

Because we had no new independent normal samples to evaluate

the specificity of the classifiers, we adopted a variant of a resampling

approach to estimate the overall accuracy on the independent set

(described in the methods section). We report the average sensitivity,

specificity, accuracy, and AUC in Table S6. With seven samples left

out from training data, the new classifiers showed slightly reduced

sensitivity over the 16 validation cancer samples. The proliferation

module classifier showed better sensitivity but lower specificity than

the one based on statistically most informative markers. The

estimates of accuracy for these two classifiers ranged from 84 to

88%, and the estimated AUC is 92–93%.

Differential Phosphorylation of Cancer Associated
Pathways

To gain insight into biological processes whose activity may be

modulated in lung tumors, we tested 639 curated protein-sets

from the canonical pathway database of MSigDB to determine if

the overall phosphorylation levels of tyrosine sites in proteins

from each pathway are significantly different between normal

and tumor samples. We were not able to use traditional Gene Set

Enrichment Analysis [25] to detect these dysregulated pathways

due to the extreme sparsity of the data. Instead we associated a

metaprotein representation with each pathway and computed

whether the phosphorylation level of this metaprotein is

correlated to changes in phenotype. This technique is a new

variant of the metagene technique deployed for gene expression

analysis.

In total, 181 proteins observed in this dataset were a member

of at least one of the 639 protein-sets. Table 3 lists the top 15

protein-sets that display differential phosphorylation levels. The

protein-set that displays the greatest change in its overall

phosphorylation level when comparing normal and NSCLC

tissue is the KEGG pathway ‘‘HSA05211 RENAL CELL

CARCINOMA.’’ Of the 181 proteins considered here, 14 of

them belong to this protein-set, and 9 displayed high correlation

with the metaprotein phosphorylation levels. These 14 proteins

are shown in Supplementary Table S7, in which a positive

coefficient indicates higher phosphorylation in the tumor. Two

other pathways that are especially relevant for lung cancer that

have significantly different overall phosphorylation levels are

‘‘HSA05223 NON SMALL CELL LUNG CANCER’’ and

‘‘METPATHWAY BIOCARTA.’’ Five additional pathways are

explicitly related to cancer: ‘‘HSA05220 CHRONIC MYE-

LOID LEUKEMIA’’, ‘‘HSA05215 PROSTATE CANCER,’’

‘‘HSA05218 MELANOMA’’, ‘‘HSA05213 ENDOMETRIAL

CANCER’’ and ‘‘HSA05210 COLORECTAL CANCER.’’

Two pathways are generic for signaling pathways, ‘‘HSA04070

PHOSPHATIDYLINOSITOL SIGNALING’’ and ‘‘HSA04010

MAPK SIGNALING PATHWAY,’’ and the geneset with the

most members was the ‘‘INTEGRIN MEDIATED CELL

ADHESION GENMAPP,’’ with 32 observed and 28 correlated

proteins.

Table 3. The top 15 protein-sets from MSigDB C2 database for normal/tumor classification.

Pathway # Proteins # Corr Genes %Var FDR

HSA05211 RENAL CELL CARCINOMA 14 9 48 0.00041

HSA04540 GAP JUNCTION 10 6 44 0.0048

HSA04662 BCR SIG PATH 14 13 33 0.016

HSA04070 PHOSPHATIDYLINOSITOL SIGNALING 12 10 32 0.016

INTEGRIN MEDIATED CELL ADHESION GENMAPP 32 28 51 0.016

HSA05220 CHRONIC MYELOID LEUKEMIA 13 7 49 0.019

HSA05120 EPITHELIAL CELL SIGNALING HP INF 17 7 81 0.019

METPATHWAY BIOCARTA 24 20 55 0.019

HSA05223 NON SMALL CELL LUNG CANCER 12 6 52 0.019

ST DIFFERENTIATION PATHWAY IN PC12 CELLS 12 8 53 0.019

HSA05215 PROSTATE CANCER 13 6 52 0.019

HSA05218 MELANOMA 13 6 52 0.019

HSA05213 ENDOMETRIAL CANCER 13 6 52 0.019

HSA05210 COLORECTAL CANCER 14 8 50 0.019

HSA04010 MAPK SIGNALING PATHWAY 15 10 80 0.019

The protein-set name is listed in column 1. The number of proteins observed from that protein-set are reported in column 2. Column 3 reports the number of proteins
within the protein-set that are most responsible for the differential phosphorylation of the metaprotein. Column 4 reports the percentage of the metaprotein’s variation
that is differential in tumor and normal tissue. Column 5 reports the FDR q-value measuring the significance of the differential phosphorylation of the metaprotein
associated with the pathway in cancer.
doi:10.1371/journal.pone.0007994.t003
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Because of its pivotal role in lung cancer, we examined the

EGFR pathway in greater detail. In figure 1, we map all the

observed tyrosine phosphorylation events onto constituent pro-

teins, with a model constructed from the KEGG and HPRD/

NetPath databases. As expected, EGFR and many downstream

proteins in the pathway are differentially phosphorylated in

NSCLC samples. In total, 10 tyrosine sites are more phosphor-

ylated in tumors (pink), 7 more phosphorylated in normal tissue

(green) and 12 proteins were phosphorylated to a similar degree in

both sample types. Although no clear pattern is readily evident, it

is perhaps surprising to observe that the tyrosines Y186 and Y204

on ERK1 and ERK2 respectively are less phosphorylated in lung

tumors. It has been observed many times that excess phosphor-

ylation of ERK1/2 can result in cell cycle arrest, reviewed in [27],

and thus the lower levels observed in tumors could result in

increased cell-cycling, however, this requires additional study.

Phosphorylation Analysis of Different Tumor Subtypes
The histopathological distinction of AD and SCC can be

challenging [28], but with different treatment options available

[29], an important one. We analyzed phosphorylation level

differences between AD and SCC tissues at the levels of individual

sites, pathways and protein-sets.

To our surprise, there are no individual sites that are statistically

differentially phosphorylated in the two tumor subtypes in the

current dataset. Similarly, employing the metaprotein analysis

described above, we observe no significantly differentially

phosphorylated pathways or protein-sets (Supplementary Table

S8). The previously discussed gene models for tumor subtype

classification were evaluated, with results summarized in Supple-

mentary Table S9. The only classifier that performs reasonably

well, with AUC = 0.78, is based on EGFR features selected

manually with emphasis on sites observed frequently (without

consideration of cancer subtype). Assuming that all samples were

diagnosed correctly, these results suggest that the differences of

phosphorylation measurements between AD and SCC are small

and hard to detect with pure statistical or machine learning

methods. We expect that a more quantitative analysis using

relative peak areas, as opposed to spectral counts, would likely

perform better for this task.

Figure 1. The EGFR signaling pathway. Pink indicates higher phosphorylation in tumor samples, while green indicates higher phosphorylation in
normal tissue samples. Yellow nodes were observed to be phosphorylated, however did not change significantly in the two types. Gray nodes were
not observed in the analysis. A red arrow (or edge) relates a kinase to its target, green edges indicate a phosphatase and its target. Blue edges
indicate activation, which may not be direct. Finally, a diamond shape on the end of an edge indicates phosphorylation, while a circle indicates an
inhibition of phosphorylation. Arrowheads indicate activation, which may be indirect.
doi:10.1371/journal.pone.0007994.g001
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Comparison of Classifiers Based on mRNA Expression
Data with Phosphotyrosine Data

For comparison, we include in the supplement a report on the

accuracies of classifiers based on mRNA expression. Based on

current data, it appears that phosphorylation status and mRNA

expression are roughly equally informative with respect to

classifying samples as tumors or normal. For distinguishing tumor

subtypes, phosphotyrosines work reasonably well (AUC ,0.78),

but classifiers built with mRNA transcript levels perform

significantly better (AUC ,0.98). Neither type of data is successful

at distinguishing early stage (stage I and II) from late stage tumors

(stage III and IV). However, this ‘‘failure’’ may reflect the similar

biology of the primary tumors in the two cases, which may not

change significantly as metastases colonize distant sites. Interest-

ingly, we do not observe a significant correlation between those

mRNA levels that are differentially expressed, and differential

tyrosine phosphorylation levels of the related protein product,

highlighting the complementary nature of the information

provided by activity-based measures.

Discussion

The results presented in this paper open the door to a number

of future directions in both basic and translational research.

Understanding the precise role of phosphorylation measurement

in regulation of signaling pathways in cancer remains an important

challenge, and we primarily focused on the role of EGFR and cell

proliferation pathways. We have identified a set of tyrosine

residues that are differentially phosphorylated in cancerous and

normal lung tissue. More than mRNA transcript or protein

expression levels, the phosphorylation status of select residues are

related to the functional activity of the associated gene products.

This is potentially particularly important in cancers as the

presence or absence of various receptor proteins may not reflect

the activity of downstream signaling intermediates. This scenario

could be important in at least two cases with respect to signaling

pathways, one in which a receptor is present, but there is no

activating ligand (or an abundance of a non-functioning ligand) to

initiate downstream signaling events, or if the receptor is present,

but mutated and inactive and therefore unable to transmit the

binding signal.

As in any systematic genome-scale survey, the observation of

unexpected results challenges the ability to derive explanatory

hypotheses. Such is the case with the observation that ADH1B is

the most differentially phosphorylated protein, with decreased

amounts observed in tumors. Implicated in squamous aerodiges-

tive tumors [23] where a prominent role in the metabolism of

ingested ethanol is compelling, it may be the case that in lung

tumors, tumor-associated hypoxia may be altering cellular

carbohydrate metabolism.

The central result of the analyses presented here is the

demonstration that signatures based on the differential phosphor-

ylation of tyrosine residues exhibit robust performance at

classifying cancer from normal tissue. This is true regardless if

the signature is based on a large number of protein sites, a smaller

number, or pathway-specific residues. This result was confirmed in

both rigorous cross validation study as well as on an independent

set. The classification accuracy of cancer vs. normal tissue is

essentially equivalent to the results obtained by microarray

experiments, even when performed on bulk-dissected tissues.

Tyrosine kinases that are hyperphosphorylated in lung tumors

are hypothesized to be inappropriately activated, and can

therefore be regarded as potential therapeutic targets for

inhibition. In this study, we observe up to 19 tyrosine kinases

that have statistically different phosphorylation levels between lung

cancer and normal tissue, and nearly all of those are hyperpho-

sphorylated in lung tumors (Supplementary Table S2).

The activation of multiple tyrosine kinases in a given cancer has

been previously observed in glioblastoma multiforme [30]. In that

case, combinations of tyrosine kinase inhibitors (TKIs) were

necessary to substantially reduce cell viability. Rather than

combinations of drugs, an alternative is to employ a multi-kinase

inhibitor, such as imatinib, sorafenib and sunitinib, which are each

individually capable of inhibiting multiple tyrosine kinases [31].

This led us to explore the possible existence of a multi-kinase

inhibitor that targeted a large fraction of those kinases that we

observed to be hyperphosphorylated in lung cancer. A compre-

hensive, publicly available dataset of TKI binding data [32]

assayed 38 TKIs against 317 kinases. We integrated TKI binding

data with our differential phosphorylation analysis (Supplementary

Table S2). Of the tyrosine kinsases for which binding data was

reported, and we find that, nearly all of them were bound by the

TKI dasatinib with high affinity (Kd’s ,2 nM). This would

suggest that dasatinib could potentially be a useful therapy for a

selection of patients with lung cancer. More generally, our study

illustrates the utility of integrating global tyrosine phosphorylation

assays [14] with drug binding data to quickly arrive at potential

therapeutic options, and the possibility of predicting a response to

particular kinase inhibitors.

Analysis of pathway-specific total-phosphorylation levels dem-

onstrates the specificity of the overall approach, as 7 of the top 15

protein-sets identified are explicitly defined as cancer protein-sets.

Signaling pathways accounted for 4 of the remaining top 15

protein-sets, including the important examples of phosphatidyli-

nositol and MAPK signaling pathways. Pathways downstream of

the EGFR and Met receptors, with prominent roles in lung cancer

biology, were similarly implicated.

While the performance of phosphotyrosine signatures was

modest for the discrimination of AD and SCC, with the top

performing classifier having an AUC of 0.78, mRNA transcript

levels classify these subtypes with higher accuracy, and neither

method distinguishes early from advanced stages of lung cancers.

The latter observation may reflect a limitation of the method, or it

may accurately reflect the biology of lung cancers, in that

fundamentally new processes are not needed for progression, only

that enough time has elapsed for the dysregulated genes and

pathways to erode further into surrounding tissue and that

metastases have occurred.

Future challenges for the characterization of tumors based upon

phosphorylation signatures include the relative sparseness of data

(especially among multiple samples), the convolution of protein

levels with phosphorylation levels, and the semi-quantitative

nature of spectral counting for measuring peptide abundance.

However, straightforward improvements exist to address each of

these limitations. It is likely that the most significant improvement

would result from the use of stable isotope labels. These would

allow direct comparisons among multiple samples, and increase

quantitative accuracy. The fact that such excellent performance

for classifying normal versus tumor tissue can already be achieved

makes further improvements highly desirable. Another promise is

the potential to develop signatures to guide treatments and predict

patient outcomes. Kinase inhibitors are an exciting new class of

treatments for cancer [33,34], however, recent studies have

emphasized that single targets of inhibition may not be sufficient

to achieve a therapeutic response [30]. Combinations of kinase

inhibitors, with each potentially binding to multiple targets, may

be necessary to inhibit undesirable growth and proliferation signals

active in neoplasms [35]. The phosphorylated proteins analyzed
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here represent targets of kinases that should likely be inhibited to

achieve efficacy. Computational [36] or experimental [37]

methods for inferring the active kinases will potentially assist in

the identification of the relevant therapeutic targets in individual

cases.

Conclusions
Because the inappropriate activation of signaling pathways

represents fundamental biological processes in cancer, we

analyzed phosphorylation data from lung cancer and normal lung

tissue to identify differences. We identified several hundred

differentially phosphorylated sites in lung cancer, and developed

novel computational methodology to identify pathways whose

phosphorylation is dysregulated. Lastly, we demonstrated the

ability to classifying lung cancers with high accuracy based on

multi-variate phosphorylation signatures. The phosphorylation

sites identified provide an immediate set of novel drug targets, and

an analysis of the complement of sites provides a logic for the

selection among potential treatments using multi-targeted kinase

inhibitors or combinations of selective inhibitors.

Materials and Methods

Data Sources
The procedures of the experiments and the acquisition of the

tyrosine-phosphorylation data were described in the previous

publication [14]. The first dataset contains 151 NSCLC and 48

normal lung samples. Of the 151 tumor samples, 42 adenocar-

cinoma (AD) samples and 52 squamous cell carcinoma (SCC)

samples with available clinical information were used in the

classification analysis. Most of the 4551 observed phosphorylation

sites were identified in a relatively small number of samples. For

our analyses, we included those sites that were phosphorylated in

at least 10% of the samples under consideration. A second dataset

consisting of 16 NSCLC samples that were not originally included

in [14] (and are therefore previously unpublished) were used to

provide an independent validation of the predictive signature.

Statistical Analysis for Differential Phosphorylation of
Protein Sites between Sample Classes

For each site, phosphorylation levels were based on spectral

counts [38]. The statistical significance of the spectral count

difference between normal and tumor samples was evaluated by

the Kruskal-Wallis rank sum test. This non-parametric method-

ology was employed because the distribution of counts did not

observe a normal distribution. The p values were corrected for

multiple hypotheses using FDR q values [39]. Peptides with q

values ,0.05 were considered to display statistically significant

differential phosphorylation in tumor samples. We identify sites

that are both ‘‘hyper-phosphorylated’’ in tumor samples (Tumor/

Normal phosphorylation spectral count ratio .1) and ones that

are ‘‘hypo-phosphorylated’’ in tumor samples (Tumor/Normal

phosphorylation spectral count ratio ,1).

Logistic Regression Models to Predict the Sample
Phenotypes

For the classification of tumor samples and normal tissue we

applied a variant of a standard methodology. Five logistic

regression models with different gene sets were constructed for

sample phenotype classification. The first model uses all protein

sites that were significantly differentially phosphorylated between

two sample classes as the marker features (FDR q value ,0.05 with

Kruskal-Wallis rank sum test). Then we trained a ridge logistic

regression model to fit the binary sample classes with the

phosphorylation profiles of the marker protein sites by the

procedures in an R package ‘‘penalized’’ [40]. This methodology

was chosen to reduce overfitting by penalizing ‘‘model complex-

ity’’ implemented in the ridge regression. An optimal penalty

parameter was chosen based on the cross-validation. Models 2–4

use sets of genes that are biologically known to be related to the

formation of lung cancer. Model 2 used the phosphorylated sites

from ‘‘Proliferation genes’’ from the MSigDB C2 database [25] as

the marker sites to train the logistic regression model. Models 3

and 4 used the protein sites in the EGFR pathway from two

sources: a smaller core pathway protein set from BioCarta (www.

biocarta.com) and a larger EGFR related protein interaction

network from HPRD/NetPath [41]. Finally, we compare the

performance of a minimal model, using only the top 20

performing phosphorylated tyrosines from our analysis above.

Estimation of Model Performance for Prediction of
Sample Phenotypes

To account for the potential bias due to the use of the same

dataset for both model construction and model evaluation, we

deployed a contextually novel strategy, based on the 0.632+
bootstrap approach [42,43], to support the statistical validity of the

relative accuracy of the classifiers reported in this paper. The

approach provides a bias-corrected estimate of the prediction error

by combining the bootstrap and the cross-validation, which has

shown to perform better compared to the standard cross-

validation approach [42,44].

In each bootstrap instance, we created a bootstrap sample by

selecting 142 observations with replacement from the original

data, which on average are composed of roughly 90 unique

patients. The bootstrap sample would be used as the training data

for constructing logistic regression models to be used for assigning

model scores. A cut-off value of the model scores which

corresponds to the minimal classification errors in the training

samples was taken as the classification threshold. Subsequently, we

use the validation data, consisting of all the observations not in the

training data, to evaluate the performance of the prediction.

In the validation data, we classify a sample with model score

larger than the threshold as tumor and those below the threshold

as normal tissue. We computed the overall classification accuracy

as the fraction of samples whose phenotype classes were correctly

predicted. We let the threshold value vary to plot a receiver

operating characteristic (ROC) curve for each model using the

standard methodology of increasing the threshold and document-

ing the corresponding error rates. The overall accuracy was

summarized based on the area under the ROC curve (AUC)

values. The bootstrap procedure was carried out 100 times.

Finally, bias-corrected estimates of the accuracy measures were

obtained based on the 0.632+ method [42]. To assess the sampling

variability of the estimated accuracy, we used the standard 95%

bootstrap confidence intervals, defined by the ranges between the

2.5th and the 97.5th percentiles. The expected AUC for a random

non-informative model is 0.5. A classification model was

considered significantly predictive of the phenotypes only if the

lower bound of the 95% confidence intervals of the AUCs is larger

than the null AUC value.

Significant Correlation of the Overall Phosphorylation of
Pre-Defined Protein-Sets to Phenotypes

Due to the fact that, in general, mass spectrometric measure-

ment of low abundance proteins is extremely sparse, we developed

a metaprotein analytic approach for the analysis of pathway
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specific phosphorylation changes, based on pathways from

MSigDB. A metaprotein is defined as a specific linear combination

of selected phosphorylation sites from proteins within a curated

protein-set. In the first step, for each protein-set P, we utilized

principal component analysis on the phosphorylation profiles of

the protein sites belonging to P in all 142 samples to define

eigenvectors that reflect the variation in observed phosphorylation

patterns [45]. Principal components were only considered if they

explained a significant amount of the variation in metaprotein

phosphorylation (.30%) and had 10 or more phosphotyrosine

sites observed in the data. The metaprotein phosphorylation is

defined as the sum of the phosphorylation counts of individual

protein sites weighted by the coefficients in the eigenvectors

corresponding to the principal components. Metaproteins with

differential phosphorylation in normal tissues and tumors were

identified using the Kruskal-Wallis rank sum test. Pathways with

FDR q values less than 0.02 were considered significant. Lastly, the

Pearson correlation coefficient between each phosphorylated

residue and the metaprotein was computed in order to identify

those proteins within the pathway that are most responsible for the

observed global variation. This approach appears to be an

effective methodology for identifying differentially phosphorylated

pathways using proteomic data and should be broadly applicable

to other types of extremely sparse data. Traditional Gene Set

Enrichment Analysis [25] was not readily applicable to this type of

data due to the fact that relatively few measurements per pathway

were available. Combining principal component analysis, PCA, on

each pathway with correlation of the derived metaproteins to

phenotype produced results that are both consistent with literature

as well as new findings.

Validation on a New 16-Sample NSCLC Dataset
We compiled a set of 164 protein sites which are present both in

the 142-sample and the new datasets. The most informative 20

sites on the training set were used as markers. We applied a ridge

logistic regression model as described in previous sections.

Multiple cutoff values of the regression scores were chosen

corresponding to different sensitivity levels on the training dataset.

We repeated the model construction and validation using 12

protein sites from the ‘‘Proliferation Genes’’ set in the C2 category

of MSigDB database.

Estimation of Specificity, Accuracy, and AUC of the
Models

We randomly chose and excluded seven normal samples from

the old larger dataset, and combined these normal subjects with

the 16 new cancer samples to form a validation dataset. Each time

we retrain a new regression model on the remainder of the

training dataset with the top 20 differential sites or proliferation

category proteins respectively. The feature selection was carefully

performed only on training data. We repeated the resampling 100

times. The cutoff was also determined at each run, and was based

on the threshold at 90% sensitivity on training samples only.
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